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Abstract For decades, researchers have speculated how echolocating bats deal with masking by

conspecific calls when flying in aggregations. To date, only a few attempts have been made to

mathematically quantify the probability of jamming, or its effects. We developed a comprehensive

sensorimotor predator-prey simulation, modeling numerous bats foraging in proximity. We used

this model to examine the effectiveness of a spectral Jamming Avoidance Response (JAR) as a

solution for the masking problem. We found that foraging performance deteriorates when bats

forage near conspecifics, however, applying a JAR does not improve insect sensing or capture.

Because bats constantly adjust their echolocation to the performed task (even when flying alone),

further shifting the signals’ frequencies does not mitigate jamming. Our simulations explain how

bats can hunt successfully in a group despite competition and despite potential masking. This

research demonstrates the advantages of a modeling approach when examining a complex

biological system.

Introduction
Echolocation, a prime example of active sensing, provides bats with the ability to detect and hunt

flying insects while avoiding obstacles in total darkness (Griffin, 1953). Echolocating bats emit high-

frequency sound-signals and process the reflected echoes to sense their surroundings. While hunting

in a group, conspecific bats emitting calls with similar frequencies may prevent nearby bats from

detecting and processing their own echoes. Understanding how bats avoid this process, which is

referred to as ’jamming’ or ’masking’, and how bats segregate the desired weak echoes from the

much louder calls emitted by other bats is one of the central debates in the field. We define a ’mask-

ing signal’ as any signal that reduces the bat’s ability to detect and localize an echo due to an over-

lap with the echo in both time and frequency (Clark et al., 2009), and a ’jamming signal’ as a signal

that completely blocks the detection of an echo. That is, a jamming signal is a masking signal that is

more intense than the desired echo (see Materials and methods).

The question of how bats deal with conspecific masking (Beleyur and Goerlitz, 2019; Jones and

Conner, 2019) and whether they perform a spectral Jamming Avoidance Response (JAR) has been

widely studied but is still under dispute. Many studies have suggested that bats change their echolo-

cation frequencies when hunting at the presence of other bats (Takahashi et al., 2014;

Ibáñez et al., 2004; Chiu et al., 2009; Ulanovsky et al., 2004) or when exposed to playback of par-

tially or fully overlapping signals (Gillam et al., 2007; Gillam and Montero, 2016; Bates et al.,

2008; Luo and Moss, 2017; Corcoran and Conner, 2014). In contrast, several recent field-studies

and laboratory experiments found no evidence for a use of spectral JAR by bats (Cvikel et al.,

2015a; Amichai et al., 2015; Götze et al., 2016). Particularly, in this study, we only deal with spec-

tral JAR (which we will term JAR).
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The main goal of our study is to use a mathematical approach in order to deepen the understand-

ing of the masking problem and its impact on bats’ hunting, and specifically to examine whether an

intentional shift of signal frequencies (i.e., a spectral JAR) can assist bats to mitigate the masking

problem. We developed an integrated sensorimotor model of bats pursuing prey. The modeling

approach entails several advantages in comparison to studies with real bats. (1) It allows us to assess

the acoustic input received by each of the hunting bats at every instance. This is currently impossible

to do in reality even when a microphone is placed on the bat. (2) Modeling enables manipulation of

different parameters and examining their influence on masking including testing hypothetical scenar-

ios that tease apart factors that are coupled in reality.

We analyzed the effect of masking under various prey and bat densities and when using different

echolocation behaviors. We measured the probability of jamming, the hunting performance and we

explicitly examined whether applying a spectral JAR improves hunting performance when hunting

with conspecifics. We were able to discriminate between the effect of direct interference resulting

from the need to avoid conspecifics and to compete with them over prey, and the effect of sensory

masking due to conspecific calling. We show that shifting the emission frequencies (i.e., a JAR) does

not assist mitigating masking because bats’ calls already differ from each other due to their well-

known behavior of adjusting the echolocation parameters of the calls based on the task and the

environment.

Results
The model consists of numerous bats searching for and attacking prey in a confined 2D area using

echolocation. Each simulated bat transmits sound calls and receives the echoes returning from prey

items and obstacles, as well as the calls emitted by conspecifics, which might mask or jam its own

echoes. The prey’s movement mimics a moth (Stevenson et al., 1995; Willis and Arbas, 1991) with

no ability to hear the bats. Prey echoes are detected and localized based on biological-relevant

assumptions which consider sound reflection and propagation, and hearing physiology (see

Materials and methods). Based on the acoustic input, the bat decides whether to continue searching,

to pursue prey or to avoid obstacles such as other bats. The acoustic input is composed of the fol-

lowing signals: (1) insect and obstacle echoes generated by the bat’s own calls (i.e. ‘desired echoes’),

(2) echolocation calls of conspecifics, and (3) echoes returning from calls emitted by conspecifics.

The bat then adjusts its echolocation and movement according to the vast literature on bat echolo-

cation (Griffin, 1953; Griffin et al., 1965), and the recently published control models of bat flight

and hunting (Kalko, 1995; Schnitzler et al., 1987; Wilson and Moss, 2004; Surlykke and Moss,

2000; Schnitzler et al., 1988; Vanderelst and Peremans, 2018; Giuggioli et al., 2015). For exam-

ple, the simulated bats emit search calls with a source-level of 110 dB-SPL (at 0.1 m, reference 20

mPa) and they lower it (and adjust other echolocation parameters) when approaching prey. A suc-

cessful hunt (i.e. a capture) occurs only when the simulated bat gets within 5 cm from the prey. That

is, the bats occasionally initiate attacks but miss.

We first demonstrate that our simulations behave similarly to bats. The simulated bats managed

to detect, pursue and capture prey at high rates both when hunting alone and when hunting in a

group (see Figure 1, Video 1 and Video 2 for examples of hunting by simulated bats). The move-

ment parameters of the bats in both single and multiple individual scenarios were similar to those of

actual bats, flying in a flight room (4.5 � 5.5�2.5 m3), suggesting that our model managed to cap-

ture the essence of the foraging movement (Figure 1—figure supplement 1). Moreover, the hunt-

ing rate of the simulated bats was also comparable to those of real bats. A simulated bat flying in a

density of 10 prey items per 100 m2 attacked 5–7 times per 10 s, similar to the rates reported for P.

abramus (Fujioka et al., 2014), a bat with similar foraging behavior, hunting in a comparable

environment.

The influence of a spectral JAR
We next compared the detection and localization performance of bats applying a JAR to bats that

do not actively react to masking signals. In both groups, the individuals’ terminal frequencies of the

FM sweep-calls were sampled from a normal distribution with a standard deviation of 4 kHz, as

observed in nature (Schnitzler et al., 1987; Schnitzler et al., 1988; Bartonička et al., 2007), and

the bats adjusted their calls according to their task and their distance to object. The JAR was
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Figure 1. examples of individual and group hunting of the simulated bats (also see the Videos 1 and 2). (A) A single simulated bat flying in the arena

with five prey items. The bat detects two prey items and decides to pursue the closest one (moth a). Panel A1 shows the trajectories of the bat (black)

and the moths (blue), the positions of each emitted call (green dots), and the location of the capture (black cross). Panel A2 shows the bat’s velocity

(gray), the distance to the prey (black) and relative angle (blue) to it. Panel A3 shows the level of the following signals (while the bat is in the gray-

bounded area in panel A1): the transmitted calls (black), the received echoes reflecting off the prey items (green), and the received masking signals

(red). Panel A4 shows a spectrogram of the same segment as in panel 3. Note how the frequency drops at the final terminal buzz. (B) Three bats (out of

five in the arena) hunting in an environment with 10 prey items. Bat one detects and pursues a moth, while conspecifics (bats 2 and 3) are flying nearby

and emitting echolocation calls. Some of the conspecifics’ calls mask (or jam) the echoes received by bat 1. Instances of jamming are marked by red

diamonds in panels B1-B4. All colors and symbols in B1-B4 are the same as in A1-A4. Magenta lines depict trajectories of conspecifics. Panel B4 also

demonstrates the variations between the calls of each bat due to the different behavioral phases. Note that bat two detects and pursues the same prey

item and thus emits ’approach’ calls. From the detection to the successful capture, bat 1 emitted 64 echolocation calls, 8 of which were jammed.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Simulated and real bats flight characteristics.

Figure supplement 2. The Bat Module streamlines.

Figure supplement 3. Angles and distances for two bats and two prey items.

Figure supplement 4. The modified piston model for the directivity of ear and mouth of the bat.
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modeled as follows: whenever the echoes

reflected off the closest prey were jammed, the

bat shifted its entire frequency range in steps of

2 kHz, upward or downward, to minimize the fre-

quencies’ overlap between the masking signal

and its own call. If the terminal frequency of the

masking signal was higher than its own, the bat

shifted the entire frequency-band downward,

and vice versa. The bat continued shifting the

frequency as long as jamming recurred

(Materials and methods).

We tested two different receiver models with

different assumptions: 1) the ’correlation-detec-

tor’ which is an optimal receiver across all fre-

quencies and is at least slightly better than the

bat’s brain (Denny, 2004; Griffin et al., 1963;

Erwin et al., 2001; Simmons et al., 2004; Wie-

grebe, 2008; Peremans and Hallam, 1998). (2)

The ‘filter-bank receiver’ which is considered to

represent the mammalian auditory physiology

and implements a series of gammatone band-

pass filters (Wiegrebe, 2008; Boonman and

Ostwald, 2007; Sanderson et al., 2003;

Suga, 1990; Weissenbacher and Wiegrebe, 2003)(see Materials and methods).

The JAR has been hypothesized to improve the reception of the desired echo by reducing the

overlap between the spectra of the masking signal and the echo. The reception process consists of

three main tasks: detection, localization and discrimination of the desired echo. We, therefore,

examined three reception-criteria reflecting these three tasks (see Materials and methods): (1) The

jamming- probability defined as the probability that the echo reflected off the closest prey item is

jammed by a masking signal and is thus not detected. (2) The ranging error defined as the difference

between the estimated and the actual distance to prey. (3) The false-alarm rate defined as the prob-

ability of identifying a masking signal as prey by mistake. We examined whether a JAR improves

reception by comparing these three criteria under different conditions (e.g., different receiver mod-

els and different bat densities).

In all scenarios, and for the two different receiver models, the jamming avoidance response did

not decrease spectral masking, and did not improve detection performance according to any of the

three criteria defined above. See Figure 2: One-way ANOVA statistics for correlation and filter-

Video 1. One bat and one prey item. The video

presents one simulated bat (thick blue line) flying in the

arena with one prey item (thin dot). The bat starts flying

randomly, and whenever it detects the prey it heads

towards it and tries to capture it. After each successful

capture, indicated by a cross in the video, a new prey

item reappear in a random place in the arena.

https://elifesciences.org/articles/55539#video1

Video 2. Three bats with 10 prey items. The upper

panel displays three simulated bats (thick lines) flying

simultaneously with 10 prey items (colored dots). Thin

lines on top of the bats’ trajectories indicate the

behavioral phase: ‘green’ for approach, ‘pink’ for buzz,

and ‘cyan’ for an obstacle-avoidance maneuver

(avoiding the arena-borders or other bats). Red

diamonds indicate locations and timings of the

jamming events (i.e. whenever the desired echo is

completely blocked by a masker). The lower panel

shows the level (dB-SPL) of the following signals as a

function of time: the transmitted calls (black), the

echoes reflecting off the prey items (green), and the

received masking signals (red). The illustrated signals

are acquired from the trajectory of the bat that is

depicted by the dark blue line, starting at the upper-

left position.

https://elifesciences.org/articles/55539#video2
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Figure 2. The effect of JAR on the receiver. Panels A-C depict three reception criteria as a function of bat density

for a correlation-receiver (solid black), and a filter-bank receiver (solid blue) with and without a JAR (dashed gray

and dashed turquoise, respectively). The prey density was constant with 20 prey items per 100 m2. (A) Jamming

Probability. (B) Range errors. Note that the range-errors are high because they are calculated for all detected prey.

The errors for the pursued prey (i.e. the prey items that bats attacked) are substantially lower, since, as the bats

approach their targets echoes have higher SNR and the errors decrease. For the correlation receiver, the range

errors are calculated as a function of the SNR (see equation 9). For the filter bank receiver, the range errors are

derived from the time difference between the estimated time of the detected peak and the arrival time of the

desired echo. (C) False-alarm rate, which is measured only for the filter-bank model (Materials and methods).

Error-bars depict standard-errors in all panels. Each data point represents 60–80 individual bats in each scenario.

The online version of this article includes the following source data, source code and figure supplement(s) for

figure 2:

Source code 1. The source data used to produce Figure 2.

Source data 1. The data for Figure 2 and Figure 2—figure supplement 2, correlation receiver.

Source data 2. The data for Figure 2; Figure 2—figure supplement 2, filter-bank receiver.

Figure supplement 1. Analysis of correlation gains between signals of search (A), approach (B–C) and buzz (D)

phases.

Figure supplement 1—source data 1. The data for Figure 2—figure supplement 1.

Figure 2 continued on next page
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bank, respectively: jamming-probability: F1,237 = 2.96, p=0.09; F1,237=2.26, p=0.13; F1,237 = 0.02

p=0.88, ranging error: F1,237 = 0.1 , p=0.76; F1,241 = 0.01, p=0.96, false-alarm: F1,237=0.19, p=0.66,

for filter-bank only.

A possible explanation for this seemingly surprising result is the fact that a bat’s calls continuously

vary depending on its behavioral phase and its distance to the targets. Therefore, at any instance,

the calls of two bats will already differ, even if their call repertoire is identical. Thus, the influence of

additional variability between the calls, achieved by spectral JAR, is insignificant, as we also demon-

strate (see Figure 2—figure supplement 1).

The effect of masking on hunting
Next, we tested the effect of masking on hunting performance (i.e., the prey capture rate) under dif-

ferent scenarios. We started with a hypothetical scenario (‘no-masking’), in which bats forage in a

group without any masking, that is they detect and pursue prey as if there is no sensory masking,

but they still have to avoid other bats and sometimes lose prey due to competition. This null-hypoth-

esis scenario enabled us to estimate the non-sensory effects of group hunting, which would be very

difficult to do in an experiment with real bats. Ultimately, it allowed us to isolate the effect of sen-

sory masking only. Hunting performance was measured in different bat-densities (from 1 to 20 bats

per 100 m2) and different prey densities (3, 10, 20 moths per 100 m2), see Figure 3.

Even without any sensory masking (i.e., in the ‘no-masking’ condition), hunting performance sig-

nificantly degraded as bat density increased due to competition over prey and due to the need to

avoid conspecifics (Figure 3A–C; see Green lines). The reduction in performance was significant in

all prey densities and resulted in a maximum decrease of 36%, 57% and 67% in performance when

the bats’ density increased (from 1 to 20) at three prey densities: 3, 10 and 20 prey items per 100

m2, respectively. See Figure 3 A1–C1, One-way ANOVA, F1, 188 = 64.3, p<0.0001; F1, 188 = 58.9,

p<0.0001; F1, 128 = 36.1, p<0.0001, respectively.

We next examined the masking-effect which we defined as the reduction in performance resulting

from sensory masking only, relative to the no-masking performance (Equation 1).

Masking effect¼ 100 � 1�
Performance with masking for a given scenario

Performance without masking

� �

(1)

Sensory masking further hindered hunting under all conditions, but there was no significant differ-

ence in performance whether the bats used a JAR or not (Figure 3, A1-C1, compare blue, black and

magenta lines; ANCOVA, F3, 1218 = 2.53, p=0.08, F1, 1581 = 0.57, p=0.56, and F1, 1085 = 0.24,

p=0.78, for 3, 10 and 20 prey items per 100 m2, respectively. This was the case also for another the-

oretical scenario that we tested: the ‘no-frequency variation scenario’, in which all bats had the same

call repertoire and, hence, it simulates an extreme case with maximal sensory masking (One-way

ANOVA, between ‘no-frequency variation’ and JAR with random frequencies: F2,856=2.74, p=0.1;

F2,971=0.85, p=0.36; F2,1086=0.43, p=0.64, for prey densities of 3,10 and 20 prey items per 100 m2,

respectively). See Figure 3—figure supplement 1 for a similar analysis using the filter-bank model.

To deepen our understanding of why a JAR does not improve performance, we analyzed the jam-

ming-probability in different behavioral phases. We found that jamming mostly occurred during the

search phase while, as the bats shifted from the search to the approach phase, the probability of

jamming decreased significantly because the prey’s echoes become louder (Figure 3 A3–B3–C3,

Figure 2 continued

Figure supplement 2. Number of prey detection events.

Figure supplement 3. Forward and Backward Masking Criteria.

Figure supplement 4. Filter-Bank Receiver.

Figure supplement 5. Localization errors of the Correlation and Filter-Bank receivers.

Figure supplement 6. Implementation of a half-wave rectifier a with 10 kHz LPF (iir filter of order 3

[Sanderson et al., 2003]) in the Filter-Bank receiver model did not influence our results: (A) Hunting Performance,

(B) Jamming Probability, (C) Ranging Errors, (D) False Alarms.

Figure supplement 6—source data 1. The data for Figure 2—figure supplement 6, correlation receiver.

Figure supplement 6—source data 2. The data for Figure 2—figure supplement 6, filter-bank receiver.
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Figure 3. Hunting Performance for different receiving models. The hunting success rate (A1–C1), masking effect (A2–C2) and jamming probability (A3–

C3) are presented for three prey densities per 100 m2: three prey items, 10 prey items, 20 prey items. Panels A1-C1 depict the performance as a

function of bat density; a green circle shows the performance of a single bat. Line colors and styles depict the performance of different receiver models:

solid green - no-masking; solid black - correlation-detector with random frequency variability and without JAR; dashed dark gray - correlation-detector

Figure 3 continued on next page
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ANCOVA, for the comparison between search and approach at any bat and prey density: F1, 8527

= 2784, p<0.0001, panels B3-C3 show that less than 15% of the prey echoes are jammed during the

approach phase). Notably, jamming during the search phase is less influential than it might seem to

be because, if a potential prey echo is jammed, the bat is likely to detect the prey with one of its fol-

lowing emissions. The low probability of jamming during the approach is probably the main reason

for the relatively small effect of sensory masking on performance.

We further explored whether the presence of background clutter echoes would modify our

results, giving an advantage to a JAR. In a set of clutter simulations, we took into account the echoes

reflected off the border of the arena as if the bats were foraging in a forest opening surrounded by

vegetation (see Materials and methods). We modeled the received levels and timings of the clutter

echoes reflected from the background assuming several target strengths. We conclude that also in a

cluttered environment applying a JAR had no significant effect on the hunting performance, Fig-

ure 3—figure supplement 2. As expected, hunting performance decreased as the level of the clut-

ter echoes increased.

We also analyzed the causes of unsuccessful attacks when bats initiated an attack but failed to

capture prey. There were four reasons for failed attacks: avoiding collisions with a nearby conspe-

cifics, losing the prey to a conspecific, avoiding an obstacle (the borders of the arena) and missing

the prey due to an insufficient maneuver or due to sensory error (resulting for example, from jam-

ming, hereafter ‘Misses’). We analyzed the proportion of these different sources of failure with and

without sensory masking (see Figure 3—figure supplement 3). With 20 bats and 10 prey items per

100 m2, without masking, 34 ± 2% of the capture attempts were successful (mean ± SE). The unsuc-

cessful attempts were due to conspecifics avoidance: 27 ± 2%; lost prey to conspecifics: 17 ± 1.5%;

obstacle avoidance: 7 ± 2% and misses: 15 ± 2%. When sensory masking was added, the proportion

of successful captures significantly decreased to 26 ± 2% (One-way ANOVA, F1, 198=4.59, p=0.033),

and misses became the most substantial cause for failure, significantly increasing to 38 ± 3.5% (One-

way ANOVA: F1, 198=68.8, p<0.0001). The total number of hunting attempts, however, was not

affected by the masking (effect-size = 0.01 trials per 10 s; one-way ANOVA: F1, 198=0.08, p=0.97).

Figure 3 continued

and random frequency with JAR response; dash-dotted light gray - correlation-detector without frequency variability. The regression slopes of no

masking condition (green lines) are (mean ± SD): 0.06 ± 0.0065 0.08 ± 0.0084, 0.079 ± 0.013 captures per bat per ten seconds, at the prey densities

above, respectively (ANCOVA: F1, 564 = 84.3, p<0.0001; F1, 679 = 90.4, p<0.0001; F1, 431 = 37.8, p<0.0001). There was no significant difference in

performance when applying or not applying spectral JAR - see main text and compare gray and black lines. Panels A2-C2 show the masking-effect on

hunting, that is the relative decrease in hunting relative to the ’no-masking’ condition. Panels A3-C3 present the probability of jamming during the

behavioral phases: search (turquoise marker), approach (magenta marker) and buzz (red markers). Jamming probabilities during the search phase were

significantly lower by at most 4.5% when using a JAR (ANCOVA, F1, 2422 = 23.42, p<0.0001). However, in the approach and buzz phases (which are more

critical for foraging), there was no significant difference between the two models (ANCOVA, F1,2388 = 0.11, p=0.74; F1, 2347 = 0.11, p=0.73, respectively).

Error bars show means and standard-errors for 70–120 simulated bats in each data-point.

The online version of this article includes the following source data, source code and figure supplement(s) for figure 3:

Source code 1. the source data used to produce Figure 3, panels A1-C1.

Source code 2. the source data used to produce Figure 3, panels A2-C2.

Source code 3. the source data used to produce Figure 3, panels A2-C2.

Source data 1. The data for Figure 3, panels A1-A3.

Source data 2. The data for Figure 3, panels B1-B3.

Source data 3. The data for Figure 3, panels C1-C3.

Figure supplement 1. Hunting performance for the filter-bank receiver.

Figure supplement 1—source data 1. The data for Figure 3—figure supplement 1, panels A1-A3.

Figure supplement 1—source data 2. The data for Figure 3—figure supplement 1, panels B1-B3.

Figure supplement 1—source data 3. The data for Figure 3—figure supplement 1, panels C1-C3.

Figure supplement 2. The influence of background clutter echoes.

Figure supplement 2—source data 1. The influence of background clutter echoes.

Figure supplement 3. The causes of hunting failures.
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The effect of the echolocation signal design and the detection
threshold on hunting in a group
After observing that spectral changes do not assist mitigating jamming, we tested whether other

adjustments to echolocation or physiological parameters could improve bats’ performance when

hunting in a group. We tested the effect of three prime parameters: source level, call duration, and

detection threshold (or hearing sensitivity), which is a function of the auditory system and could, in

theory, be changed by evolution. For all parameters, we used a range of values suggested in the bat

literature. For each of these parameters, we first examined its effect on the overall hunting success

when foraging in a group (i.e., including both direct competition and sensory masking), and we then

examined the parameter’s effect specifically on the masking.

Increasing the source level improved hunting performance, but only up to a level of ca. 110–120

dB-SPL, (at 0.1 m) above which the improvement was negligible and insignificant (Figure 4 A1,

shows that performance increased significantly when source level increased from 90 to 110 dB:

ANCOVA, slope = 0.06 captures/dB, F4, 3815=386, p<0.001; performance did not change when

source level increased from 120 to 150 dB: F4, 4795=0.1, p=0.98). Interestingly, the source level did

not affect the masking effect (i.e., the reduction in performance beyond the no-masking condition),

suggesting that increasing the emission level assists hunting in general (through increasing the

detection range) and does not assist overcoming the masking problem specifically (Figure 4 A2;

F = 2.45, p=0.16, Pearson linear regression).

Changing the duration of search-calls had no significant effect on the hunting performance (Fig-

ure 4 B1: ANCOVA, F1, 2314=0.15, p=0.69). To test the effect of call duration we slightly varied the

simulation (see the detection section in the Materials and methods).

Decreasing the hearing threshold (under a constant ambient noise level) significantly improved

hunting (Figure 4 C1, ANCOVA, F4, 2395=915, p<0.0001). Like in the case of increasing emission

level, changing the hearing threshold did not significantly change the masking effect (Figure 4 C2;

ANCOVA, F1, 797=2.19, p=0.14). This is probably because the decrease in the hearing threshold

increases the probability of detecting both echoes and masking signals. With a high hearing thresh-

old of 30 dB and a density of 5 bats per 100 m2, there seems to be a negative masking effect, but

that is because prey is only detected from very short distances and thus prey detection and masking

hardly occur, and consequently, the standard error of our estimate under these conditions is high.

Discussion
The jamming problem is one of the most fundamental challenges raised by researchers of echoloca-

tion, but, only a few studies (Beleyur and Goerlitz, 2019; Lin and Abaid, 2015; Jarvis et al., 2013;

Cvikel et al., 2015b) used a mathematical model to examine the actual chances of being jammed

by another bat, and how such jamming would affect hunting performance. Addressing these ques-

tions is a difficult task with real bats as even if a microphone is placed on the bat, it is typically not as

sensitive as the bat itself and it is not placed inside the ear. The substantial body of literature that

has accumulated on bat echolocation and sensorimotor control now allows simulating natural scenar-

ios where bats are foraging in aggregations. Using this approach, our simulations suggest how even

in very high bat-densities, bats can probably capture insects at high rates. Because our model fol-

lows a conservative approach underestimating the bats’ performance (see Materials and methods),

this result likely reflects the maximum impact of jamming. Indeed, bats’ ability to hunt and avoid

obstacles in high conspecific density has been documented (Cvikel et al., 2015b). Notably, we did

not fit any of the model’s parameters – we used parameters that are based on our measurements on

real bats or published results. Similarly, we used a simple control strategy to steer the bat to the

prey. For example, we do not assume any memory of the position of the target, nevertheless, our

simulated bats manage to catch prey even if some information is degraded or completely missing

due to jamming. Real bats probably use memory to overcome temporal miss-detections caused by

momentary jamming and are thus probably better than our simulated bats. Furthermore, our analysis

is based on relative measurements between different scenarios, therefore, even if the exact rates of

prey-capture that we estimated are biased, the principles which we observed are likely correct, pro-

viding insight to the jamming problem.

The two most important results are: (1) Much of the interference that bats suffer from when forag-

ing in a group results from competition over prey and from the need to avoid conspecifics, and not
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from acoustic masking. One of the main reasons for this is that jamming mostly occurs when the bat

is still searching for prey, while once it has detected prey and is closing in on it, prey echoes become

loud, and the chances of jamming substantially decrease. Masking during search might sound prob-

lematic, but even if a prey’s echo is completely jammed, another echo from the same prey will likely

be detected with one of the following echolocation calls. (2) Using a spectral JAR, which has been

suggested by many previous researchers, is ineffective for solving the jamming problem or even

reducing it. The reason for this is that bats constantly change their signals according to behavioral

phase and distance to nearby objects. Even if two bats have the same call repertoire, at any moment

in time, their calls are different due to their different behavioral phase and because they are likely to

have objects at different distances. Moreover, we only used the bats’ first harmonic. Simulating the

second harmonic too, thus using signals with more than twice as much bandwidth, would have prob-

ably made the jamming avoidance response even more irrelevant, because the differences between

Figure 4. The influence of source level, call duration and detection threshold on the performance (A1–C1), and masking effect (A2–C2). The panels

include the following conditions: the correlation-detector with frequencies normally distributed (black), no-masking (green), and one bat (blue). Solid

lines indicate a density of 10 prey items while dashed lines represent scenarios with 20 prey.

The online version of this article includes the following source data, source code and figure supplement(s) for figure 4:

Source code 1. The source data used to produce Figure 3, panel A1.

Source code 2. The source data used to produce Figure 3, panel B1.

Source code 3. The source data used to produce Figure 3, panel C1.

Source data 1. The data for Figure 4 panels A1-A2.

Source data 2. The data for Figure 4 panels B1-B2.

Source data 3. The data for Figure 4 panels C1-C2.

Figure supplement 1. Frequency- shift with no JAR.

Figure supplement 1—source data 1. The data for Figure 4—figure supplement 1.
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the calls of different bats would be naturally larger at any moment (even without a JAR). In theory, in

bats that emit narrow bandwidth calls, such as bats with shallow FM calls (Schnitzler et al., 2003),

jamming might be more influential and a spectral JAR might be more beneficial. However, most

shallow FM bats increase bandwidth considerably when pursuing prey, and thus spectral JAR is

probably not substantial for those bats too, at least during the pursuit. Indeed, in a previous study,

we did not observe a spectral JAR in a bat that uses shallow FM calls (R. microphyllum)

(Cvikel et al., 2015a).

Both of the receiver models that we tested revealed the same results regarding the inefficiency of

a JAR. One of the models (the correlation-receiver) is considered optimal in terms of its detection

abilities and probably over-estimates bats’ abilities. The fact that such a detector, which is extremely

sensitive to the specific spectro-temporal pattern of the desired signal, did not show better perfor-

mance when a JAR was applied, strongly suggests that the JAR is not helpful for real bats too, as

their ability to use the differences induced by a JAR are lesser, compared to this receiver.

As expected, the correlation-receiver outperformed the filter-bank in all scenarios: it detects

more objects (see Figure 2—figure supplement 2) and it has a lower probability to be jammed by

masking signals (see Figure 2A,B). Consequently, the total hunting performance is better (compare

Figure 3 A1–A3 with Figure 3—figure supplements 1 and 3 A1-A3). The range-errors of the filter-

bank seem lower (Figure 2c), but this is only because the correlation-receiver detects farther objects

than the filter-bank receiver and these objects have lower SNR and thus higher range errors. This

larger error has a little effect on the performance because when the bats get closer to targets, the

SNR improves and the errors decrease.

Another interesting result of the simulations was revealed when testing which of the echolocation

parameters would allow bats to perform best when hunting in aggregations. We found that the

source level actually used by real bats when hunting in a group (ca. 110–120 dB-SPL [Kalko, 1995;

Boonman et al., 2013; Kober and Schnitzler, 1990]) gave the best performance in the simulation.

Increasing the source level mainly helped increasing prey detection range and not overcoming mask-

ing - the masking effect was the same independently of the source level. Moreover, increasing the

source level beyond 120 dB-SPL did not further improve hunting, probably because when hunting in

aggregations there is no benefit in detecting prey beyond a certain distance. Prey that is farther

than this distance is very likely to be detected and caught by a closer bat. In a previous study, we

found that when hunting under masking background bats increase call intensity (Amichai et al.,

2015) and others have described similar results (Takahashi et al., 2014; Luo et al., 2015). This result

demonstrates how all bats can call louder up to a certain degree (i.e. 120 dB-SPL) and still benefit

from better performance. It would have been difficult to explain the benefit of everyone calling

louder without a simulation (note that we did not consider the caloric cost of increasing the source

level which might further reduce the actual level emitted by real bats).

Changing the call’s duration did not affect the performance. A possible explanation for this is the

fact that all simulated bats increased their call duration. Therefore, the benefit of own longer calls is

apparently balanced with the greater probability of overlapping with conspecific signals. Note that

we are not saying that call duration is irrelevant for hunting in general, but only that it does not

affect the ability to mitigate masking and does not improve hunting in a group.

Why then do bats exhibit JAR-like behaviors? Several previous studies reported that bats change

their emission frequencies in response to nearby conspecifics (Takahashi et al., 2014; Ibáñez et al.,

2004; Chiu et al., 2009; Ulanovsky et al., 2004) or to the playback of masking signals (Jones and

Conner, 2019; Gillam et al., 2007; Gillam and Montero, 2016; Bates et al., 2008; Luo and Moss,

2017). Researchers have interpreted this behavior as a spectral jamming avoidance response.

Explaining all previous studies would require much more than a short discussion. We will thus sug-

gest two alternative hypotheses that could explain these findings and should be further pursued.

Except for a few exceptions (Bates et al., 2008; Luo and Moss, 2017), the great majority of previ-

ous studies reported an upward frequency shift, that is bats always elevated their frequency. Such a

response could be part of the clutter response that is typical for bats when flying in the vicinity of

nearby objects. The function of the clutter response (Hiryu et al., 2010) is to improve localization of

nearby objects; in this case other bats. A clutter response is characterized by emitting calls with

higher frequencies and by additional signal adjustments such as a decrease in call duration, as some

of these studies indeed reported (Ulanovsky et al., 2004). Some of the previous studies

were playback experiments (Gillam et al., 2007; Gillam and Montero, 2016; Bates et al., 2008;
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Luo and Moss, 2017), in which additional bats were not present. In these experiments the clutter

should not have increased and thus should not have caused a frequency shift. One possibility is that

bats approached the playback speaker (as many bats do [Cvikel et al., 2015b; Dechmann et al.,

2009; Barclay, 1982]) and thus clutter actually increased in these experiments. Another possible

explanation for the bats’ apparent response is based on the Lombard effect, that is the effect of rais-

ing source level in the presence of noise, which is well documented in many mammalian species

(Luo et al., 2015; Brumm and Zollinger, 2011; Zollinger and Brumm, 2011; Brumm, 2004;

Scheifele et al., 2005), including bats (Takahashi et al., 2014; Amichai et al., 2015). It is also known

that increasing the emission frequencies could be a by-product of the increase in amplitude

(Titze, 1989; Genzel et al., 2019; Hotchkin and Parks, 2013). In both hypotheses, the change in

frequency does not aim to decrease spectral overlap and thus cannot be considered a spectral jam-

ming avoidance response. Note that other explanations have been suggested for frequency shifts

such as solving the ambiguity problem in the presence of clutter (Hiryu et al., 2010), and the execu-

tion of audio-vocal feedback during the emission period (Luo and Moss, 2017).

We used our simulations to test the increased clutter hypothesis by reproducing the analysis per-

formed in previous studies. That is, we analyzed the frequencies used by bats when flying alone and

when flying with nearby conspecifics, assuming that the bats did not use a JAR. We then compared

the emission frequencies used by solitary bats and by bats in aggregations. Indeed, our simulations

show that bats’ average frequency in the presence of conspecifics would rise by as much as 400 Hz

(as reported in previous studies) in comparison to when flying alone, although they are not perform-

ing a jamming avoidance response (see Figure 4—figure supplement 1). This result is well-aligned

with the findings of Götze et al., 2016. that during encounters with conspecifics the terminal fre-

quencies of nearly all calls were within the predicted transmission repertoire of the individual bats.

Our results thus provide an alternative explanation for the findings of many of the previous studies

that reported a JAR.

Our work demonstrates the power of simulations to reveal new insight into complex biological

systems that are difficult to examine and analyze otherwise. Our model shows that jamming is less of

a problem than previously suggested by most researchers (but see Beleyur and Goerlitz, 2019). It

proves that bats can successfully hunt in the presence of other bats without applying any JAR and

shows that applying a JAR has no significant impact on hunting performance and on prey detection.

Similar (modified) simulations can be used in the future to examine many additional fundamental

questions in echolocation and to provide insight that may allow us to interpret previous behavioral

results and to design better behavioral studies.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm MATLAB MATLAB R2018b.
MathWorks

Software, algorithm Model; Simulation This paper Newly created
using MATALB.
See Materials
and methods.

Software, algorithm JMP14 JMP14 Statistical
Discovery.
From SAS

General
The MATLAB model simulates the flight and echolocation behavior of Pipistrellus kuhlii bats. This

small insectivorous bat (approximately 5–9 g) is common in the Mediterranean region and is often

observed in groups of ~5 individuals foraging around a street-light (Amichai et al., 2015;

Kalko, 1995; Schnitzler et al., 1987; Barak and Yom-Tov, 1989). Our hunting-ground is a 10 �

10m2 2D area with no obstacles. Our model consists of three major modules: the prey module, the

bat module, and the acoustics module. The prey module controls the flight maneuvers of the
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simulated moths. The bat module simulates the bat’s behavior and executes the following processes:

decision making, echolocation behavior, flight control, and sensory processing. The acoustics mod-

ule calculates the received level and timings of all the signals composing the acoustic input (i.e.

desired echoes, conspecific calls, and echoes generated by conspecific calls).

The prey module
The movement of the targets was simulated by a ’correlated random walk’ model, resembling a

flight path of a moth (Stevenson et al., 1995; Willis and Arbas, 1991). The linear velocity has an

average of 1m/s and it changes every 100ms according to Equation 2, where the velocity’s change

(�) is sampled from a normal distribution: 0±0.1m/s (mean± SD, standard deviation). The velocity is

bounded between 0.8 and 1.2m/s. The flight direction is determined according to Equation 3. In

this equation,�n
_

, the angular velocity during a 100ms section is a normal random variable with distri-

bution: 0±2 rad/s (mean± SD), and t is the sample time of the model (0.5 ms). The starting position

of each moth is drawn from a uniform distribution across the 2D area, its initial flight-direction is ran-

dom between 0 to 2p radians, and the starting velocity is also normally distributed: 1±0.1m/s

(mean± SD).

vp nþ 1ð Þ ¼ vp nð Þþ� (2)

�p tþ tð Þ ¼ �p tð Þþ �n
_

� t (3)

The simulated prey does not detect or respond to the pursuing bats. When a moth reaches the

borders of the confined area, it changes its flight angle by p
2
rad relative to the border (to return into

the foraging area). To keep a constant prey-density during the simulation, each time a bat captures

a moth, a new moth is added to the environment at a random position with a random flight

direction.

The bat module
Decision making
The echolocation behavior and flight-control of the simulated bats are illustrated in Figure 1—figure

supplement 2. At the beginning of a simulation, each bat starts foraging in a random position and

transmits echolocation calls with ’search’ phase parameters (Table 1).

After emitting an echolocation call, the bat processes the acoustic inputs (including all echoes

and masking sounds, see above) and decides its next step. The rules of the decision making are as

follows: (1) If the bat’s flight-path comes too close to another bat (less than 20 cm) or the borders of

the area, it avoids them and changes its flight direction and velocity. (2) If one or more prey items

are detected, the bat chooses the closest one and executes a hunting maneuver. (3) Else, the bat

continues searching. According to its decision, the bat adjusts its flight control and echolocation

Table 1. the echolocation parameters in the different hunting phases.

Once prey is detected, the hunting phase is defined by the distance to the target. Based on Table 1. During each behavioral phase,

the IPI, call duration, bandwidth, and level (in dB) are reduced linearly between the start and end values (Table 1).

Flight phase Search Approach Buzz

Parameter Start End Terminal 1 start Terminal 1 end Terminal 2

Inter Pulse Interval [ms] 100 70 35 18 6 5

Call Duration [ms] 7 5 2 2 1 0.5

Terminal Frequency [kHz] 39 39 39 39 39 19

Chirp Bandwidth [kHz] 8 35 30 30 20 20

Source Level [dB-SPL] 110 110 90 90 80 80

Distance to target [m] >1.2 1.2 0.4 0.4 0.2 <0.2
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behavior. This decision process is executed every inter-pulse-interval (i.e., between the emissions of

two echolocation calls).

Echolocation behavior
The echolocating behavior of the simulated bats was modeled based on a rich body of literature

(Schnitzler et al., 1987; Wilson and Moss, 2004; Kober and Schnitzler, 1990; Kuc, 1994). The for-

aging behavior of insectivorous bats is divided into three main phases: ’Search’, ’Approach’, and

’Buzz’ (Griffin et al., 1965). Each phase is characterized by a different set of echolocation parame-

ters. Our model follows the echolocation and hunting behavior of Pipistrellus kuhlii based on field

studies (Kalko, 1995; Schnitzler et al., 1987). The bats in the simulation emit Frequency Modulated

(FM) down-sweep signals (mimicking P. kuhliis’ first harmonic, see Table 1).

Alternative JAR models
Bats emit linear frequency modulated (FM) down-sweeps. We tested three versions of the model: (1)

all bats have the same baseline call, meaning that if two bats are in the same phase and equal dis-

tances to targets, their calls will be identical. (2) The bats’ terminal frequency was sampled from a

normal distribution, with a mean set to 39 kHz, and a standard deviation of 4 kHz in the ’Search’

phase. The bandwidth of the calls is constant between bats, so the entire frequency range shifts

according to the terminal frequency. This frequency range is in line with the variance of the terminal

frequencies reported in the field for this species (Schnitzler et al., 1987). (3) To examine the effect

of JAR in the third version of the model, bats used active JAR. They evaluated whether their echoes

were jammed (i.e., the masking signal blocked the detection of the closest prey). In such cases, they

shifted their terminal frequency upward or downward in steps of 2 kHz, to reduce the overlap with

the masking signal (i.e. if the masker’s frequency was lower than their own, they would raise their fre-

quency). These frequency-shifts are in line with the findings of studies reporting evidence of JAR

(Ulanovsky et al., 2004; Gillam et al., 2007). The bats kept transmitting the modified call for five

consecutive calls, and if during that period another echo was jammed, the bats shifted their fre-

quency again in the proper direction. The terminal frequencies were bounded between 35 and 43

kHz (i.e., there was no shift beyond these boundaries). Real bats could, in theory, sense jamming

based on several cues. for example during prey pursuit, a bat has expectations regarding the level

and the direction of a received echo and a jamming signal would probably violet these expectations.

Furthermore, during a search phase, even before the first echo from the target is detected, bats

could potentially sense jamming signals based on their spectra which are different from those of

reflected echoes, and perhaps also based on the angle of the sound-source which can be outside

the echolocation field of view.

Flight Control
Before a prey is detected, simulated bats fly according to a ’correlated random walk’ path, with a

constant linear velocity 3.5 m/s and a random change of direction, sampled from a normal distribu-

tion of angular velocities: 0 ± 1 rad/sec (mean ± SD) (Vanderelst and Peremans, 2018; Erwin et al.,

2001; Kuc, 1994). A new angular velocity is sampled before each echolocation emission and the bat

turns according to this velocity until the next emission. Once a target is detected the bat turns

toward the prey by changing its angular velocity according to its relative direction to the target,

using a delayed linear adaptive law described in Vanderelst and Peremans, 2018; Ghose, 2006.

This dependency is described in Equation 4, where �
_

bat t þ tð Þ is the angular velocity of the bat in

the next time-sample (i.e., time t þ t ), kr is a gain coefficient, limited by the maximal acceleration of

the bat (set to 4 m/s2), and �target tð Þ is the current angle between the target and the bat.

_�bat tþ tð Þ ¼ kr �ftargetðtÞ (4)

We neglect head movements; the original model (Vanderelst and Peremans, 2018;

Ghose, 2006; Falk et al., 2014) refers to the gaze angle (i.e., the angle between the head’s direc-

tion and the target), but for simplicity, we assume that the head and body are aligned. Even though

we know the head and body are not always aligned; this assumption does not affect the behaviors

tested in this study. To keep its direction aligned with the target, the bat typically slows down when
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the angle to the target (ftargetÞ is large and accelerates linearly when the target is straight ahead

(Ghose et al., 2006; Jones and Rayner, 1991). To model this, we implemented a velocity-model

suggested by Vanderelst and Peremans to simulate this behavior (Vanderelst and Peremans,

2018), described in Equation 5. Vphase is the maximal velocity in each behavioral phase (3.5m/s in

the approach and search phases, and 2m/s during the buzz phase). Like the direction, the bat adjusts

its velocity after each inter-pulse-interval. Indeed, the accelerations and turning rates of the simu-

lated bats correspond well to those reported in the field (Ghose et al., 2006; Jones and Rayner,

1991), see Figure 1—figure supplement 1.

Vbat tþ tð Þ ¼ Vphase � cosðftargetðtÞÞ (5)

A successful hunt (capture) is achieved when the bat is less than 5 cm from the prey

(Vanderelst and Peremans, 2018).

We validated our flight model against the flight trajectories of real bats. We used the movement

of three P. kuhli bats recorded in Taub and Yovel, 2020 trained to search for and land on a static

target in a flight room (4.5 � 5.5�2.5 m3). Then, we performed a simulation with three bats in a 5 �

5m2 arena with one static prey item and compared between the flight trajectories and movement

parameters. The flight paths, linear velocities, angular velocities, and accelerations of the model

were similar to those of the actual bats (Figure 1—figure supplement 1) implying that our model

represents the foraging movement.

Sensory processing
The simulated bat detects and estimates the range and direction of objects in the environment (prey

and obstacles), based on the incoming acoustic input. Echoes will only be processed if they cross the

auditory threshold set to 0 dB-SPL based on the literature (Boonman et al., 2013; Poussin and Sim-

mons, 1982; Coles et al., 1989; Popper and Fay, 1995) (we also tested the influence of that thresh-

old between 0–30 dB-SPL, see results, Figure 4C). We define such detected echoes as ’Pre-Masking

Echoes’. Next, we calculate the effect of masking using two different detection-models: the correla-

tion-receiver which is a well-studied theoretical reference model, and the gammatone filter-bank

receiver which represents the temporal reaction of the inner ear to auditory signals. After the prelim-

inary detection, the bat chooses its target again, from the non-jammed echoes.

The correlation-receiver is based on a similarity between the bat’s own transmitted calls and the

received signals (Denny, 2004; Saillant et al., 1993). The detector calculates two correlations: (i) the

self-correlation between the echo and its own transmitted call. (ii) The cross-correlation between the

masking signal and its transmitted call. For the echo to be detected, the self-correlation peak should

be higher than the cross-correlation peak with more than the ’forward detection threshold’ (set to 5

dB) if the cross-correlation peak is within 3 ms before the echo, and higher than the masking peak

by more than the ’backward detection threshold’ (e.g. 0 db), if the masking signal arrives within 1

ms after the desired echo (see Figure 2—figure supplement 3). The periods and thresholds were

defined according to ’the law of first wave-front’ (Popper and Fay, 1995) ch. 2.4.5,

(Blauert, 1997) ch. 3.1 and (Mhl and Surlykke, 1989), and comprise lower boundaries of real bats’

abilities to cope with masking (Beleyur and Goerlitz, 2019). For simplicity, we used constant thresh-

olds within each window. Even if the echo is detected, masking signals may still degrade the accu-

racy of the sensory estimations, that is the distance and angle, see below. Masking sounds arriving

outside the reception window do not interfere with detection.

The filter-bank receiver is based on the bat hearing model described in Weißenbacher and Wie-

grebe (2003) (Weissenbacher and Wiegrebe, 2003). The detector consists of an 80-channel gam-

matone filter-bank with frequency bandwidths simulating the tuning curve of the inner-ear

(Boonman and Ostwald, 2007; Wittekindt et al., 2005). The impulse response of each channel in

this model is given by Equation 6; where n is the filter order (set to 4), b is the time constant of the

impulse-response (set to 0.15 fc), fc is the center frequency of the channel (Equation 7). The signal is

filtered by a lowpass filter, which keeps only the envelope of the signal (‘envelope detector’). Note,

that some biological models (e.g. Sanderson et al., 2003) assume that part of the phase information

is available to the bat. We chose to implement a simpler biological model in order to set the lower

bound for the problem, as opposed to the cross-correlation model that we tested and provides an

upper-bound for the effect of JAR. However, to validate that the alternative biological model does
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not change the results, we also implanted the half-wave rectifier with a 10kHz LPF model and con-

firmed that it did not influence our results in one context (see Figure 2—figure supplement 6).

gðtÞ ¼ atn�1e�2pbtcosð2pfctÞ (6)

fck ¼ 5702 � 2k=20:9 (7)

Then, we shift each channel in time to compensate for the delay time between the emission time

and the response time of each channel, according to the chirp’s slope. Finally, we sum the time-com-

pensated filter-channels and look for peaks in the integrated signal. Prominent peaks that are higher

than the detection-threshold, set to7 dB-SPL, are referred to as potentially detected echoes, and

their distance from the bat is estimated relative to the peak detection-time, see Figure 2—figure

supplement 4 panel C. Note that these peaks might be a result of desired echoes or masking sig-

nals and their amplitude will be determined simply by running them through the filter-bank model.

Like with the correlation-receiver, for each transmitted call, we implemented the filter-bank

receiver twice: (a) only on the echoes from the bat’s own emitted call, and (b) on both masking sig-

nals and echoes. We compared the peaks detected in (a) with the peaks in (b) and then defined the

following criteria: a jammed signal is a peak that was detected in (a) but not in (b). The time-estima-

tion error is the difference between the estimated peak-time in (b) and the actual received time of

the reflected echo. If the first peak in (b) was not detected in (a) and was the first detected peak (in

both a and b), the bat mistakenly decided to pursue a ‘fake target’ (i.e., a masking signal). This case

was defined as a false-alarm. Note that ‘correlation-receiver’ assumes that the bat can differ

between desired prey echoes and masking signals and echoes from conspecifics (Amichai et al.,

2015; Yovel et al., 2009). On the other hand, the ‘filter-bank receiver’ did not assume that the bat

can discriminate between desired echoes and masking signals and the simulated bats thus pursued

the first detected echo (which is, in this case, a masking signal). Therefore, false-alarms were only

applicable to the filter-bank receiver.

The SNR (Signal to Noise and interference Ratio) is calculated for each detector by Equation 8.

SNR¼

maxðSelfCorrÞ
maxðCrossCorrÞþNoideLevel

; forCorrelationDetector

maxðPdrÞ
maxðpdmaskÞt2detectiontimeþNoiseLevel

forFilter�BankDetector

8

<

:

(8)

To analyze the effect of call duration on performance, we modified the model by implementing

the correlation-detector in the detection process too, before the masking calculations. Here, the

received echo was first correlated with the emitted call, and then it was compared to a detection-

threshold. The detection threshold for the correlation was set to 15 dB-SPL, which equals to the

maximum of the autocorrelation of n 8 ms ’search’ call.

After the detection process, the bat estimates the range and the Direction Of Arrival (DOA) of

the reflecting object, based on all of the received signals (echoes and masking signals). The range

estimation is based on the acoustic two-way time-travel of the signal with an error (Equation 9),

comprised of two elements: the bat’s accuracy in measuring time, and a noise term which reduces

with increasing SNR (Equation 8, calculated using either the Correlation or the Filter-bank model).

For simplicity, because all bat calls are FM-chirps, we use an error that is independent of the signal’s

parameters: the term k1
SNR

, where k1 is a coefficient set to scale the error to values of ±1cm at SNR of

10dB, based on behavioral studies (Denny, 2004; Popper and Fay, 1995; Masters and Raver,

1996; Moss and Schnitzler, 1989). The independence of the signal’s parameters is reasonable

because all bat signals (calls, echoes, and masking signals) in our simulation were similar. The term

TimeRes (in Equation 9) is sampled from a Gaussian distribution with a mean ± SD of 0±50 microsec-

onds, equivalent to a range error of 0.85 cm, which is a low boundary estimation of bats capabilities

to measure distance (Genzel et al., 2019). ’c’ is the speed of sound: 343m/s.

Rangeerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

SNR

� �2

þ 0:5 � c �TimeResð Þ2

s

(9)

The estimation error of the DOA, see Equation 10, includes an error which depends on the DOA

(i:e: k3 þ k4 � sin fð Þ Þ, set such that the error equals 1.5o at 0o DOA, and error of 10o at 90o DOA, and
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a Gaussian noise term: 0o±1o (mean ± SD) at SNR=10dB, see k2
SINR

in (’Hearing by Bats’, Chapter 3.1,

Popper and Fay, 1995; Simmons et al., 1983). Figure 2—figure supplement 5 depicts the histo-

gram of the consequential range errors and DOA errors. Note, in our model, we did not simulate

the HRTF (Head Related Transfer Function).

DOAerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

SNR

� �2

þðk3 þ k4 � sinðfÞÞ
2

s

(10)

In general, our model intentionally underestimates the bats’ actual performance, and thus real

bats are likely to cope with acoustic masking even better than our simulated bats: (1) we simulated

monaural bats, while real bats use two ears with spatial selectivity (Griffin et al., 1963). We also did

not model the effect of reducing masking achieved thanks to directional hearing and referred to as

spatial unmasking. Spatial unmasking can improve the detection in the presence of off-axis maskers

by up to ca. 30 dB in the Big Brown Bat, Eptesicus fuscus (Sümer et al., 2009). (2) We assumed a

low detection threshold (0 dB-SPL), thus the bats were more susceptible to masking (see Figure 4

C2). (3) We chose long backward and forward masking windows (3 ms, 1 ms), and low jamming

thresholds: 0 dB for backward masking, 5 dB for forward masking (e.g. a masking signal that was

received first, even if it is 5 dB lower than the desired echo, will completely jam it). (4) The model

implied a pulse-by-pulse detection and estimation strategy with no memory, therefore, temporal

miss-detections caused by momentary jamming had a very substantial effect on hunting attempts.

Acoustics calculations
The estimated intensities of the reflected echoes based on the sonar/radar equation (Mazar, 2016,

pp. 196–198), shown in Equation 11, angles and distances are defined according to Figure 1—fig-

ure supplement 3.

Pr ¼ Pt �
Gtðftarget; f Þ �Grðftarget; f Þl

2

ð4pÞ3D4
� 10�2aattðf Þ=10�ðD�0:1Þ �sðf Þ (11)

Where:

Pr: Source level of the received signal [SPL]
Pt: Received level of the transmitted call [SPL]
ftarget: Angle between the bat direction and the prey [rad]

Gt(f; f Þ: Gain of the transmitter (mouth of the bat), as a function of azimuth and frequency (f)
Gr f; fð Þ: Gain of the receiver (ears of the bat)
D: Distance between the bat and the object [m]
aatt fð Þ: Atmospheric absorption coefficient for sound [dB/m]
s fð Þ: Sonar cross-section of the target [m2]
l: Wavelength of the signal [m]

The source level (Pt) of a search call equals 110 dB-SPL at a distance of 0.1 meters from the

source (Simmons et al., 1983). Pt during the hunt varies according to the distance to the prey (see

Table 1). The transmission gain of the bat’s mouth Gt(f; fÞ is modeled by a circular piston source

(Strother and Mogus, 1970; Kounitsky et al., 2015; Jakobsen and Surlykke, 2010), given in Equa-

tion 12. The directivity of the emitted call depends on the ratio between the wavelength of the sig-

nal (l) and the radius of the emitter (mouth), ’a’ (set to 3 mm [Kounitsky et al., 2015]); J1 is the

Bessel function of the first order and k= 2p/l. G0 of the mouth (at the head direction) is set to 1,

matching the measurements of intensities of bat’s calls from a distance of 0.1m.

Gðl;fÞ ¼G0 � ½
2J1ðK � a � sinftargetÞ

K � a � sinftarget

�2 (12)

G0 ¼
1 :mouthgain

4p
l2
pa2 : ear gain

(

(13)

To estimate the gain of the ears (Gr(fÞ in Equation 11), we modeled them as circular planes,
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using the piston model (Kuc, 1994), with ’a’ (the ear radius) set to 7 mm, matching Pipistrellus kuh-

lii’s ear size (Keeley et al., 2018). G0, the maximum gain of the ear, is defined by Equation 13

(Mazar, 2016 equation 5.36, pp. 181), where A is the geometric area of the ear. Since Pipistrellus

bats do not move their ears, this is a reasonable estimate.

The original piston model is symmetric: the back-lobe is equal to the front-lobe. In our model,

bats receive signals from the back hemisphere too, therefore we modified the piston model for the

back hemisphere (for transmission and reception), and it is shaped by the piston model with addi-

tional attenuation of 0–20 dB, increasing linearly (in dB) from ±90˚ to ±180˚, relative to the bat. The

modified piston model for ear and mouth are illustrated in Figure 1—figure supplement 4.

aatt in the sonar equation (Equation 11) is the atmospheric absorption coefficient, set to tempera-

ture 20˚C and humidity 50%, is approximated by Equation 14 (Kuc, 1994).

aatt ¼ 3:8 � 10�2f kHz½ �� 0:3
dB

m

� �

(14)

s, the Radar (sonar) Cross-Section (RCS, or ’target strength’) of the moth, is modeled as a disc

with a radius (’r’) equals 2 cm, equally reflecting in all directions. We apply the approximation of the

RCS for this type of reflector (Pouliguen et al., 2008), given in Equation 15, where A is the geomet-

ric area of the disc (A=pr2). ’r’ was set to 2cm, simulating a moth’s wing-length. This approximation

is in line with measurements of the target strength of medium-sized insects (Boonman et al.,

2013; Figure 1; Kober and Schnitzler, 1990).

s¼
4pA2

l2
(15)

The receiving time-delays of the echoes are the 2-way duration of the signals propagating from

the emitter to the target, see Equation 16, where, ’c’ denotes sound velocity, D is the distance

between bat and target, and t is the overall travel time from the emission to the reception.

t¼ 2D=c (16)

The received level of masking signals (PmaskÞ, i.e. echolocation calls transmitted by conspecific

bats (tx) and received by the bat (rx), is calculated by Equation 17, where Pt is the source level of

the masking call, and the angles are depicted in Figure 1—figure supplement 3.

Pmask ¼ Pt �
Gtðftxrx

Þ

4pD2 �
Grðfrx tx

Þ

4p
10

aatt�ðD�0:1Þ

¼ PtGtðftxrx
ÞGrðfrxtx

Þ � ð l
4pD

Þ210�aatt�ðD�0:1Þ
(17)

In addition to its own echoes (Equation 11) and conspecific calls (Equation 17), each bat also

receives echoes that are reflections off objects from conspecific calls. The intensities of these poten-

tially masking sounds are estimated by modifying Equation 11 (sonar equation), with fitting angles

and distances. This calculation is described in Equation 18, and the angles are defined in Figure 1—

figure supplement 3, arrows 3–4.

Pechoes fromMasking ¼ Pt �
Gtðftx �GrðfrxÞl

2

ð4pÞ3D2
txD

2
rx

10
�aatt�ðDtxþDrx�0:2Þ �sðf Þ (18)

In nature, bats must also deal with the background or clutter echoes reflected off nearby objects,

such as vegetation or cave-walls. To examine how background clutter echoes influence hunting in a

group and with and without using a JAR, we ran another set of simulations where we also simulated

the echoes of the borders of the arena. The borders were modeled as an array of points separated

by 5.7 degrees, relative to the bat’s emission. We calculated the timings and intensities of each echo

reflected off the points, using the sonar equation (Equation 11), with a target radius of 3 cm (similar

to the size of a leaf). We gradually increased the reflectors’ target strength by 0 to 40 dB at the fre-

quency of 40 kHz, simulating a variety of shapes and materials of reflectors. We then summed (using

a non-coherent summing) the echoes of all points within an angle of ±90 degrees relative to the

bat’s emission. We defined a clutter masking event whenever the summed clutter echo is received

during the reception window time (see above and Figure 2—figure supplement 3) with higher level
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than the echo from the prey item. In a clutter masking event, the bat does not detect the prey item

at all. The results are depicted in Figure 3—figure supplement 2. All other trials were performed

without any background clutter.

Data analysis and statistics
In each scenario that we simulated, we tested the effect of the varied parameters on hunting perfor-

mance using ANCOVA, ANOVA, or multiple regression, depending on the type of the parameters

(e.g. continuous or categorical) and their number. The Statistics were calculated using Standard

Least Squares method with JMP 14 and MATLAB R2018b.

For testing the significance of the masking effect, we used a different procedure. Because the

masking effect is a ratio (see Equation 1) we had to compute its SD. Thus, for each set of conditions,

we estimated the standard deviation of the masking effect, using Equation 19 (Stuart and Ord,

1998). To determine whether the masking effect significantly dependent on the tested parameters,

we simulated 100 points in each scenario with the average and SD calculated above and executed

ANCOVA to estimate the F test, for the simulated scenario. We repeated this process 1000 times in

each scenario and used the average results of the F tests and p-values as the statistics. This process

of repetitions was executed only for the statistics of the masking effect.

ð1Þ E u
v

� �

¼ Eu

Ev

ð2Þ STD u
v

� �

¼ Eu

Ev

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
u

E
2

u

þ
s2
v

E
2

v

� �

r

(19)

We also evaluated the ’Jamming Probability’ as the proportion of pursued prey echoes (echoes

of prey the bat chose to pursue) that are blocked by masking signals (Equation 20). Note, that this

ratio is not the proportion of all the jammed echoes to all detected echoes, because for each call

there can be several detected echoes from different prey items, but only one (maximum) is pursued.

Jamming Probability�
total pursuit jamming echoes

total number of echoes from hunted prey
(20)

Source data
Source data and code summary table: The attached Source data and code summary table summa-

rizes the source-data and source code used to produce the figures of this research. The source-data

and source-code are attached as supplementary data, hereafter. readme Bat Simulation: The file

‘readme Bat Simulation’ explains how to execute the attached GUI (Graphical User Interface) and

MATALB code which generate the sensorimotor predator-prey simulation.
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