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Chronic mucocutaneous candidiasis disease
associated with inborn errors of IL-17 immunity

Satoshi Okada1, Anne Puel2,3,4, Jean-Laurent Casanova2,3,4,5,6 and Masao Kobayashi1

Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral

and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with

inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer

and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1
(IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT
(RORγT) or AR autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) develop CMC as a major infectious

phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in

the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients

presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined

immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR

IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of

these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to

Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and

associated with, CMC.

Clinical & Translational Immunology (2016) 5, e114; doi:10.1038/cti.2016.71; published online 2 December 2016

INTRODUCTION

Candida albicans is a ubiquitous fungus and commensal yeast in
humans. It can occasionally be pathogenic causing oral thrush,
intertrigo and genital candidiasis in healthy populations. However,
in immunocompromised hosts, Candida can cause chronic
mucocutaneous or invasive infections. Chronic mucocutaneous
candidiasis (CMC) is characterized by recurrent or persistent infec-
tions affecting the nails, skin and oral and genital mucosae caused by
Candida spp., often C. albicans.1,2 CMC is one of the infectious
phenotypes in patients with inherited or acquired T-cell deficiencies.3,4

These clinical observations demonstrate the pivotal role of T-cell
immunity in host defense against superficial Candida infections.
Recent studies have revealed that Th17 cells, together with other cells
expressing retinoic acid-related orphan receptor γT (RORγT), such as
γδT cells and group 3 innate lymphoid cells, produce interleukin
(IL)-17 and have an essential role in host defense against
mucocutaneous Candida infections in mice and humans.2,3,5,6 In
contrast, invasive fungal infections are also observed in patients with
quantitative and/or qualitative disorders of neutrophils, such as
chronic granulomatous disease (CGD), autosomal-recessive (AR)

caspase recruitment domain-containing protein 9 (CARD9) deficiency
and neutropenic conditions.7,8

Patients with autosomal-dominant (AD) hyper IgE syndrome
(HIES), AD signal transducer and activator of transcription 1 (STAT1)
gain-of-function (GOF), AR autoimmune polyendocrinopathy–
candidiasis–ectodermal dystrophy (APECED), or AR CARD9, IL-12
receptor β1 (IL-12Rβ1), IL-12p40 or RORγT deficiencies, develop
CMC as one of the major infectious phenotypes associated with the
other clinical and infectious manifestations.2–4,6–18 These specific
conditions are designated as Syndromic CMC (Table 1) and occur
in association with impaired IL-17 immunity (Figure 1). Patients with
AD HIES develop CMC and staphylococcal infections associated with
other clinical manifestations, such as elevated serum IgE, characteristic
facial features, pneumatocele and retained primary teeth. These
patients have severely decreased frequencies of circulating IL-17A-
and IL-22-producing T cells, probably associated with impaired
STAT3-dependent signaling downstream of IL-6, IL-21 and/or
IL-23.15,17,19,20 The presence of CMC is also identified in one patient
with AR HIES with TYK2 mutation.21 However, a follow-up study
reported that the core clinical phenotype of TYK2 deficiency is
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mycobacterial and/or viral infections, with an association of CMC.22

Patients with APECED present with CMC in addition to polyendo-
crinopathy and ectodermal dysplasia.23,24 These patients produce
neutralizing autoantibodies against IL-17A, IL-17F and/or IL-22,
leading to development of CMC.9,13,25 Neutralizing antibodies against
these Th17-produced cytokines are also identified in patients with
thymoma who develop CMC.9 Patients with AR CARD9 deficiency
develop CMC, deep dermatophytosis and invasive fungal
infections.7,8,26 They present with decreased frequency of circulating
IL-17-producing T cells and impaired neutrophil-killing of C. albicans.
Patients with AR IL-12p40 or IL-12Rβ1 deficiency develop Mendelian
susceptibility to mycobacterial disease (MSMD), a primary immuno-
deficiency with selective host susceptibility to intracellular bacteria
such as Mycobacterium bovis BCG, environmental mycobacteria and
Salmonella that is associated with impaired IL-12-induced interferon
gamma (IFN-γ) signaling.27–29 These patients occasionally develop
mild CMC and show decreased frequencies of circulating IL-17A- and
IL-22-producing T cells as a result of impaired IL-23 responses.10,16,17

In 2011, AD STAT1-GOF was found to be responsible for CMC
disease (CMCD), typically defined as CMC in patients without any
other prominent clinical signs.30,31 Subsequent studies revealed that
AD STAT1-GOF is the major genetic etiology of CMCD, explaining
more than half of all CMCD cases.32–34 In the classification of primary
immunodeficiency compiled by the Primary Immunodeficiency
Expert Committee of the International Union of Immunological
Societies, AD STAT1-GOF, together with four genetic etiologies
directly related to defective IL-17 signaling, is categorized as CMC,
which is often referred to as CMCD.35,36 However, recent studies
revealed that patients with GOF mutations in STAT1 present with
broad clinical manifestations, including bacterial, viral, mycobacterial
and invasive fungal infections, autoimmune diseases, aneurysms and
tumors.33,34 Therefore, AD STAT1-GOF is categorized as Syndromic
CMC in this review.
Recently, a new primary immunodeficiency due to biallelic

mutations in RORC, encoding RORγ and RORγT, was identified
(designated as AR RORγT deficiency).12 RORγT is a master

Table 1 Syndromic CMC and CMCD: clinical and immunological phenotype and molecular defects/genetic etiologies

Disease Frequency

of CMC

Other infections Associated symptoms Immunological phenotype Gene Inheritance Refs

Syndromic CMC
HIES 85% Staphylococcus,

Aspergillus
Eczema, scoliosis, pneumatocoele,

hyperextensibility, dysmorphic facial

features, retention of primary teeth

Increased serum IgE,

eosinophilia, decreased

IL-17-producing T cells

STAT3 AD 14,17,19,20,78

APECED 70–98% Ectodermal dysplasia, autoimmune

dysfunciton of parathyroid and

adrenal glands, alopecia

Neutralizing antibodies against

IL-17A, IL-17F and/or IL-22

AIRE AR 9,23–25

CARD9

deficiency

35–86% Dermatophytes, Candida, brain
abscess

Decreased IL-17-producing T cells,

impairment of

C. albicans-killing by neutrophils

CARD9 AR 7,8,18,26

IL-12Rβ1 and

IL-12p40

deficiency

6–25% Mycobacterium,

Salmonella
Decreased IL-17-producing T cells,

impaired IL-12 signaling

IL12RB1
IL12B

AR 10,11,16,

27–29

STAT1

gain-of-function

98% Bacteria, viruses,

fungi, mycobacteria

Aneurysm, autoimmune

diseases, endocrine diseases

Decreased IL-17-producing T cells,

decreased switched memory B cells

STAT1 AD 30–34,52–66

RORγT
deficiency

6/7 (86%) Mycobacterium Lack of peripheral lymph

node, thymic hypoplasia

Defect of MAIT, type 1 NKT,

IL-17-producing T cells, impaired

antigen-specific IFN-γ production

RORC AR 12

CMCD
IL-17RA

deficiency

3/3

(100%)

Staphylococcus No response to IL-17A, IL-17E and

IL-17F

IL17RA AR 38,72

IL-17RC

deficiency

3/3

(100%)

No response to IL-17A and IL-17F IL-17RC AR 40

IL-17F

deficiency

5/7 (70%) Impaired IL-17F and IL-17A/F

function

IL17F AD 38,71

ACT1 deficiency 2/2

(100%)

Staphylococcus No response to IL-17A, IL-17E, and

IL-17F

TRAF3IP2 AR 39

Abbreviations: AD, autosomal-dominant; APECED, autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy; AR, autosomal-recessive; CARD9, caspase recruitment domain-containing
protein 9; CMC, chronic mucocutaneous candidiasis; CMCD, CMC disease; HIES, hyper IgE syndrome; IFN-γ, interferon gamma; IL, interleukin; RORγT, retinoic acid-related orphan receptor γT.

Inborn errors of IL-17 immunity
S Okada et al

2

Clinical & Translational Immunology



transcription factor of Th17 cells; thus, these patients showed a
markedly decreased frequency of circulating IL-17A- and IL-22-
producing T cells, which probably underlies the CMC seen in these
patients. Surprisingly, all RORγT-deficient patients also developed
MSMD, probably because of the impairment of IFN-γ production
associated with mycobacterial infections.12

The definition of CMCD is typically CMC in patients without any
other prominent clinical signs.1,37 However, this definition is not strict,
and some CMCD patients have other infectious diseases, such as
infection with Staphylococcus aureus.38,39 Therefore, the term CMCD is
now used to refer to patients presenting with CMC as the major
clinical phenotype, and its etiology is neither related to genes known to
cause severe combined immunodeficiency or combined immunode-
ficiency, nor genes responsible for Syndromic CMC. Four of the five
genes implicated in CMCD (IL17F, IL17RA, IL-17RC and TRAF3IP2/
ACT1) are directly involved in IL-17 signaling (Table 1).38–40 These
genetic disorders clearly reveal the pure and nonredundant role of
IL-17 in mucocutaneous immunity to Candida in humans (Figure 1).
Here, we review current knowledge of IL-17-signaling defects and the
genetic etiologies of Syndromic CMC and CMCD.

IL-17 cytokines, receptors and signaling
The IL-17 cytokine family consists of six members (IL-17A, IL-17B,
IL-17C, IL-17D, IL-17E and IL-17F), whereas the IL-17 receptor
family consists of five members (IL-17RA, IL-17RB, IL-17RC,
IL-17RD and IL-17RE; Figure 2).41 IL-17 cytokines form disulfide-
linked homodimers, and IL-17A and IL-17F can also form hetero-
dimers (IL-17A/F). IL-17A and IL-17F share the strongest sequence

homology and are produced by a distinct subset of T helper cells,
Th17. Receptors for all IL-17 cytokines also form homodimers or
heterodimers, and each combination recognizes distinct IL-17 cyto-
kines, with IL-17RA as the common subunit for each complex. For
example, the receptor complex formed by IL-17RA/C recognizes
IL-17A and IL-17F, whereas the complex formed by IL-17RA/B
recognizes IL-17E (CD25). In each case, signaling triggers recruitment
of ACT1 as an adaptor molecule for downstream signaling (Figure 2).
IL-17A and IL-17RA are the original members of the IL-17 cytokine
and receptor families, respectively, and, as such, are commonly
referred to as IL-17 and IL-17R. Mutations in four genes, IL17F,
IL17RA, IL-17RC and TRAF3IP2 (which encode ACT1) that directly
relate to IL-17A/F-induced, IL-17RA/C-mediated signaling, have been
identified in patients with CMCD.38–40 Furthermore, mutations in
IL17RA and TRAF3IP2 also affect IL-17E-induced, IL-17RA/B-
mediated signaling (Figure 2). These clinical and experimental
observations strongly suggest that defects in IL-17 signaling have a
pivotal role in host mucocutaneous immunity against Candida in
humans.

CLASSIFICATION OF SYNDROMIC CMC

AD Hyper IgE Syndrome
HIES is a primary immunodeficiency disease, which is characterized
by elevated serum IgE levels, recurrent staphylococcal skin abscesses,
eczema and pulmonary infections. It was first described in 1966 and
was originally named Job’s syndrome.42 HIES has either a dominant or
recessive pattern of autosominal inheritance, with the rare AR HIES
largely shown to be caused by mutations in DOCK8 (OMIM ID:

Figure 1 Inborn errors of IL-17 immunity. Phagocytes recognize C. albicans via pattern recognition receptors and produce proinflammatory cytokines, such as
IL-6 and IL-23. These proinflammatory cytokines activate T cells via STAT3 and upregulate RORγT expression, leading to production of IL-17A, IL-17F and
IL-22. Impairment in IL-23-induced STAT3-mediated signaling in AD HIES and AR IL-12Rβ1 and IL-12p40 deficiencies cause Syndromic CMC. Neutralizing
autoantibodies against IL-17A, IL-17F and IL-22 in patients with APECED impair IL-17 signaling, underlying Syndromic CMC. Patients with AR RORγT
deficiency show developmental defects of Th17 cells, resulting in Syndromic CMC. They also develop MSMD, probably caused by impairment of IFN-γ
production associated with mycobacterial infections. AD STAT1 gain-of-function was originally identified as a genetic etiology of CMCD. However, it can be
categorized as Syndromic CMC based on its broad clinical manifestations. The majority of patients with GOF-STAT1 display a decreased frequency of
IL-17-producing cells. Defects in four genes (encoding IL-17F, IL-17RA, IL-17RC and ACT1) that are directly involved in IL-17 signaling have been
identified in patients with CMCD. Blue: Syndromic CMC-related molecules and neutralizing antibodies (APECED). Magenta: CMCD-related molecules.
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243700); in addition, AD HIES has been shown to be mainly caused
by germline heterozygous STAT3 mutations (OMIM ID: 147060).15

STAT3 has a central role in signal transduction downstream of
multiple cytokines, including IL-6, IL-10, IL-17, IL-22, IL-23 and
IL-27. The STAT3 mutations identified in AD HIES patients are
loss-of-function (LOF) and exert a dominant-negative effect on
wild-type STAT3-mediated signaling.15 In addition to their infectious
phenotype, patients with STAT3 mutations present with multiple
clinical manifestations, including characteristic facial features,
high-arched palate, retained primary teeth, scoliosis, osteoporosis
and hyperextensibility of joints. STAT3-deficient patients also
frequently develop CMC associated with other infectious and clinical
manifestations. A large cohort study, collecting 60 patients with
germline STAT3 mutations, revealed that 85% of the STAT3-mutated
patients develop CMC, including oral (63%), genital (18%), cutaneous
(16%) and esophageal (8%) candidiasis and chronic onychomycosis
(57%).43 C. albicans was the major pathogen isolated in 88% of
collected samples obtained from infected sites.43 These patients
have severely decreased frequency of circulating IL-17A- and
IL-22-producing T cells. Furthermore, naive CD4+ T cells isolated
from patients demonstrated significantly impaired differentiation into
Th17 cells, probably associated with impaired STAT3-dependent
signaling downstream of IL-6, IL-21 and IL-23.15,17,19,20 Together,
AD HIES patients who develop CMC as one of the many clinical
manifestations associated with impaired Th17 differentiation are thus
categorized as Syndromic CMC.

AR APECED
APECED, also called APS-1 syndrome, is an AR inherited disorder
caused by biallelic mutations in AIRE (OMIM ID:240300). Affected
patients suffer from autoimmune polyendocrinopathy, such as Addi-
son’s disease, hypoparathyroidism and hypogonadism. They also

develop alopecia areata, vitiligo and ectodermal dystrophy, such as
nail dystrophy, or dental enamel dysplasia. CMC is one of the major
infectious phenotypes of APECED, observed in up to 98% of patients
(Table 1).25 Patients with APECED develop neutralizing autoanti-
bodies against cytokines IL-17A (41%), IL-17F (75%) and/or IL-22
(91%).9 However, no other anticytokine autoantibodies have been
detected in these patients (including against IL-6, IL-10, IL-12, IL-18,
IL-21, IL-23 or IFN-γ).13 Peripheral blood mononuclear cells from
APECED patients with CMC show decreased IL-17F and IL-22
secretion in vitro, following stimulation with heat-killed C. albicans
hyphae,9 and this cellular phenotype is correlated with the presence of
neutralizing antibodies against IL-17A, IL-17F and/or IL-22 in patient
serum.9 These results clearly reveal that autoimmunity in APECED
targets not only endocrine organs, but also IL-17 immunity via
production of high titer of neutralizing antibodies, resulting in a
specific impairment of host mucosal immunity to C. albicans.9

AR CARD9 deficiency
CARD9 is an intracellular adaptor molecule that, together with its
binding partners BCL10, Malt1 and NEMO, mediates signals from
C-type lectin-like receptors, Dectin-1 and Dectin-2, to induce
transcription and production of proinflammatory cytokines via
nuclear factor-κB (NFκB) signaling. In 2009, a primary immuno-
deficiency, which associates with a genetic defect of CARD9, was
identified in the patients who suffer from CMC and invasive fungal
infections (OMIM ID:212050).7 A homozygous mutation, Q295X,
in CARD9 was identified in those patients.7 Subsequent studies
revealed that patients with AR CARD9 deficiency also suffer from
deep dermatophytosis, invasive Exophiala dermatitidis, subcutaneous
Phaeohyphomycosis and Candida-species meningoencephalitis
and/or colitis, and are thus considered Syndromic CMC.18,26,44,45

There are several reports describing a decreased frequency of

Figure 2 IL-17 and IL-17 receptor family. The IL-17 cytokine family consists of six members (IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F), whereas
the IL-17R family consists of five members (IL-17RA, IL-17RB, IL-17RC, IL-17RD and IL-17RE). IL-17 cytokines form disulfide-linked homodimers, whereas
IL-17A and IL-17F can form heterodimers. Functional receptors for IL-17 family cytokines are thought to consist of homodimers or heterodimers. Upon
stimulation, ACT1 is recruited to IL-17RA, IL-17RB and/or IL-17RC (and probably IL-17RE) by homotypic dimerization of two SEFIR domains, and activates
the nuclear factor-κB (NFκB), mitogen-activated protein (MAP) kinase and CCAAT enhancer-binding protein (C/EBP) signaling pathways. In this pathway,
mutations in four genes (IL17F, IL17RA, IL-17RC and TRAF3IP2/ACT1) have been identified in patients with CMCD. These mutations are directly related to
IL-17A/F-induced, IL-17RA/RC-mediated signaling, and mutations in IL17RA and TRAF3IP2 also affect IL-17E-induced, IL-17RA/IL-17RB-mediated
signaling. Thus, effective host mucocutaneous immunity against Candida in humans is critically dependent on functional and effective IL-17A/F-induced,
IL-17RA/C-mediated signaling. Magenta: CMCD-related molecules.
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circulating IL-17-producing cells in CARD9-deficient patients, prob-
ably explaining the clinical phenotype of CMC.7,18,45 On the other
hand, several studies also report that the frequency of circulating
IL-17-producing cells in CARD9-deficient patients is equivalent to
healthy controls.44,46 Therefore, there is some controversy regarding
the frequency of circulating IL-17-producing cells in CARD9-deficient
patients. Neutrophils kill both serum-opsonized and unopsonized
C. albicans via distinct mechanisms; reactive oxygen species
production by the NADPH oxidase system has an important
role for neutrophil-killing of serum-opsonized Candida, whereas
neutrophil-killing of unopsonized Candida requires complement
receptor type 3 (CR3) and CARD9.47 Neutrophils from CARD9-
deficient patients show a selective C. albicans-killing defect that is
CR3- and CARD9-dependent, but NADPH oxidase-independent.8

Furthermore, patients with AR CARD9 deficiency are particularly
predisposed to meningoencephalitis caused by Candida species.18 This
might be explained by the enhanced requirement of CR3- and
CARD9-dependent neutrophil-killing in the limited access of plasma
proteins that is required for opsonization in cerebrospinal fluids,8 as
well as the finding that neutrophils from CARD9-deficient patients
normally inhibit germination of Aspergillus fumigatus, consistent with
the clinical observation that no CARD9-deficient patients were
reported to have Aspergillus species infection.8,18

AR IL-12Rβ1 deficiency and AR IL-12p40 deficiency
IL-12, IL-23, IL-27 and IL-35 belong to the IL-12 cytokine family.
Functional IL-12 (also called IL-12p70) consists of a heterodimer of
IL-12p35 and IL-12p40 subunits, each of which has distinct effector
functions. IL-12p40 is a common component of both IL-12 and IL-23;
IL-12 drives T helper 1 (Th1) differentiation, whereas IL-23 is critical
for Th17 survival and expansion. IL-12Rβ1 combines with IL-12Rβ2
or IL-23R to form high-affinity receptors for IL-12 or IL-23,
respectively. IL-12 binds to the IL-12R complex (IL-12Rβ1 and
IL-12Rβ2), on T lymphocytes and NK cells, and induces IFN-γ
production. IL-23 binds to its receptor complex (IL-12Rβ1 and
IL-23R) on Th17 cells and has an important role in maintenance of
Th17 cells and induction of IL-17 and IL-22.
AR-complete IL-12Rβ1 deficiency (OMIM ID: 614891) is the most

common genetic cause of MSMD, explaining 44% of MSMD patients
with a known genetic etiology.48 The first cases of AR-complete
IL-12Rβ1 deficiency were reported in 1998.27,28 From the first
identification, a total of 180 patients from 136 kindreds have since
been reported.48 A large cohort study, collecting 141 patients from 102
kindreds with AR-complete IL-12Rβ1 deficiency, revealed its hetero-
geneous clinical manifestations. Mycobacterial disease (83%), Salmo-
nellosis (43%) and CMC (23%) were the three major infectious
phenotypes reported in symptomatic patients.11 Moreover, 78% of
BCG-vaccinated patients developed BCG disease. In contrast, 8 of the
29 genetically affected siblings were asymptomatic (27%), suggesting
incomplete penetrance of this disorder.
The first case of AR-complete IL-12p40 deficiency (OMIM ID:

614890) was identified in 1998 in a patient born to consanguineous
parents who developed disseminated infection with BCG and
S. enteritidis.29 A follow-up study, collecting 49 patients from 30
kindreds, revealed that patients with AR-complete IL-12p40 deficiency
develop recurrent infections due to Salmonella (36.4%) and myco-
bacteria (25%).10 Strikingly, BCG disease was observed in 40 of the 41
patients (97.5%) who were vaccinated with BCG. Moreover, CMC was
also reported in three patients (6%). The clinical penetrance of
IL-12p40 deficiency is incomplete, with 33.3% of genetically affected
relatives of index cases showing no symptoms. Therefore, AR-

complete IL-12p40 and IL-12Rβ1 deficiencies are clinical phenocopies
that show increased susceptibility to intracellular pathogens and
develop CMC.10,11,48

Genetic defects in IL12B or IL12RB1, which encode IL-12p40 or
IL-12Rβ1, respectively, affect both IL-12- and IL-23-induced signaling.
Leukocytes from patients with AR-complete IL-12p40 deficiency show
a complete absence of IL-12p40, IL-12 and IL-23 proteins.10,17,29

T-cell blasts from IL-12Rβ1-deficient patients have undetectable cell
surface protein expression of IL-12Rβ1, and thus a complete lack of
cellular responses to IL-12 and IL-23.11 In both cases, the lack of IL-12
protein itself or cellular response to IL-12 results in poor production
of IFN-γ by T and NK cells, and is the pathogenic mechanism
responsible for susceptibility to intracellular pathogens, such as
mycobacteria and Salmonella. In contrast, the absence of IL-23 protein
or defective cellular responses to IL-23 forms the likely molecular
cause of CMC in these patients.10,16,17,49,50 Indeed, patients with AR-
complete IL-12p40 or IL-12Rβ1 deficiencies show decreased frequen-
cies of circulating IL-17-producing cells, albeit a less severe reduction
than observed in patients with AD HIES. This difference may explain
the disparity in the frequency and severity of CMC between AD HIES
and AR IL-12p40/IL-12Rβ1 deficiencies.10,11,17,43

AD STAT1-GOF
Germline mutations in STAT1 cause diverse range of primary
immunodeficiencies (Figure 3).51 Patients with biallelic hypomorphic
or LOF-STAT1 mutations (AR STAT1 deficiency; OMIM ID: 613796),
which partially or completely impair STAT1 protein expression, show
susceptibility to viruses and intracellular bacteria.48 The infectious
phenotype observed in patients with AR-partial STAT1 deficiency is
milder than in those with AR-complete STAT1 deficiency who require
hematopoietic stem cell transplantation to avoid life-threatening
infections. Germline monoallelic hypomorphic or LOF-STAT1 muta-
tions are responsible for AD MSMD (AD STAT1 deficiency; OMIM
ID: 614892). These STAT1 mutations do not disturb STAT1 protein
expression, but exert a dominant-negative effect on IFN-γ-induced
STAT1-mediated signaling.48 In 2011, monoallelic GOF-STAT1
(OMIM ID: 614162) mutations were shown to cause the AD form
of CMCD (Table 1).30,31 These mutations impair dephosphorylation
of STAT1, leading to hyperphosphorylation of STAT1 Tyr701 in
response to IFN-γ, IFN-α/β and IL-27 stimulation. This finding has
enabled the development of a simple flow cytometry-based STAT1
functional test to facilitate the diagnosis of CMCD patients with GOF-
STAT1 mutations.32 GOF-STAT1 mutations are preferentially identi-
fied in the coiled-coil domain and DNA-binding domain of STAT1,
whereas there are no obvious hot spots for LOF-STAT1 mutations
(Figure 3).30,31,33,48,51,52 Moreover, GOF-STAT1mutations are a major
mechanism of molecular pathogenesis of CMCD, and are reported to
explain more than half of the cases of this disorder.30–33,52–65

Although CMC is the major infectious manifestation among
the patients with GOF-STAT1 mutations, some patients develop
fungal infections other than candidiasis, or bacterial and
viral infections, mycobacterial infections, autoimmune disorders,
including IPEX (immune dysregulation, polyendocrinopathy,
enteropathy, X-linked-like syndrome) and/or even fatal combined
immunodeficiency.53,54,56–60,65,66 Recently, a large cohort study
investigating 274 patients from 167 kindreds reported in detail the
clinical manifestations of patients with GOF-STAT1 mutations.34 In
this large cohort, the majority of patients with STAT1-GOF mutations
developed CMC (98%), with a median age at onset of 1 year.
Many patients also suffered from bacterial infections (74%), mainly
due to S. aureus (36%), and viral infections (37%) typically caused by
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Herpes viruses (88%), whereas others/some experienced invasive
fungal infections (10%) and mycobacterial diseases (6%). In addition
to the infectious phenotypes reported in these patients, over one-third
also presented with autoimmune manifestations (37%), such as
hypothyroidism (23%), type 1 diabetes (4%) and blood cytopenias
(4%), highlighting the broad and devastating clinical symptoms that
can be associated with CMC in many patients with GOF-STAT1
mutations. Therefore, based on these broad clinical manifestations,
AD STAT1-GOF can be categorized as Syndromic CMC, rather than
the original categorization of CMCD. Immunological test also detects
B-cell defects in these patients, with reduced CD19+CD27+ memory B
cells (49%) and low IgG2 (38%) or IgG4 (50%).34 Although impaired
development of IL-17-producing T cells ex vivo is consistently
observed in patients with GOF-STAT1 mutations,30 the molecular
mechanism underlying such developmental defects of IL-17-producing
T cells is unknown.30 In mice and humans, IFN-γ, IFN-α/β and IL-27,
which predominantly signal via STAT1, inhibit IL-17 T-cell
development.67 In contrast, IL-6, IL-21 and IL-23, which mainly
signal via STAT3, promote IL-17 T-cell development.30,51 Probably,
IFN-γ-, IFN-α/β- and/or IL-27-induced enhanced STAT1 activity
might inhibit IL-17 T-cell development in patients with GOF-STAT1
mutations. It is also possible that GOF-STAT1 mutations affect IL-6-,
IL-21- and/or IL-23-induced STAT3 activity.2,3,6,64 Further studies are
required to fully understand the molecular and pathogenic mechan-
isms of GOF-STAT1 mutations underlying CMC.

AR RORγT deficiency
RORγT is a lineage-determining transcription factor of Th17 cells and
has crucial role for Th17 development, Th17 effector cytokine
production and expression of the Th17 chemokine receptor,

CCR6.68 In 2015, germline homozygous mutations in RORC, which
encodes RORγ and RORγT, were identified in seven patients from
three unrelated kindreds presenting with complex infectious pheno-
types, with CMC and severe mycobacterial infections (OMIM ID:
616622).12 Six of seven patients developed mild mucocutaneous
Candida infections, and mycobacterial infection was severe and
observed in all patients. Four of the seven patients developed
disseminated mycobacterial infection and one died because of BCG
meningoencephalitis. The patients presented with mild T-cell lym-
phopenia, thymic hypoplasia, lack of palpable axillary and cervical
lymph nodes, and absence of MAIT and iNKT cells that were
consistent with the phenotype of Rorc− /− mice.12 Moreover, Rorc− /−

mice were also susceptible to mycobacterial infection, suggesting that
host susceptibility to mycobacteria was not a human-specific finding.12

All three homozygous mutations (S17L, Q308* and Q411*) in RORC
identified in these patients were LOF and impaired DNA-binding
ability of the target sequence of RORγT in the promoter region of
IL-17A. CD3+ T cells from the patients displayed severe impairment in
the production of IL-17A, IL-17F and IL-22, and impaired IFN-γ
production in response to mycobacterial challenge. These clinical and
experimental observations demonstrate the essential role of RORγT
not only for the development of IL-17-producing lymphocytes to
protect the mucocutaneous barriers against Candida, but also for the
activation of IFN-γ-producing T cells required for systemic protection
against Mycobacterium.

CMCD: MOLECULAR DEFECTS AND PATIENT MANAGEMENT

AD IL-17F deficiency
The first identification of AD IL-17F deficiency (OMIM ID: 613956)
was in a multiplex family from Argentina in 2011.38 A heterozygous

Figure 3 Germline STAT1 mutations identified in patients with primary immune deficiency. (a) Loss-of-function or hypomorphic mutations are shown above
human STAT1α isoform. Germline STAT1 mutations identified in patients with an AR form of complete (orange) or partial (green) STAT1 deficiency. Germline
STAT1 mutations identified in patients with AD MSMD are shown in blue. (b) Germline GOF-STAT1 mutations are shown above human STAT1α isoform.
Gain-of-function mutations are preferentially identified in coiled-coil domain (magenta) and DNA-binding domain (purple) of STAT1. CC, coiled-coil domain;
DB, DNA-binding domain; LK, linker domain; N, N-terminal domain; SH2, SH2 domain; TA, transcriptional activation domain; TS, tail segment.
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missense mutation, S95L (c.284C4T), in IL17F was identified in this
family. The S95L mutation was found in four patients with CMC,
as well as two asymptomatic family members (aged 9 months and 21
years), suggesting incomplete clinical penetrance. All four patients
developed CMC from the first year of life. In addition to CMC,
recurrent furunculosis and recurrent upper respiratory tract infections
were observed in one patient. One sibling, who lacked genetic testing
for IL17F, died at the age of 6 years from encephalopathy of unclear
etiology associated with extensive oral candidiasis. The S95L IL-17F
mutant (IL-17FS95L) was normally expressed and formed homo- and
heterodimers with IL-17F, IL-17FS95L and IL-17A. However,
IL-17FS95L was severely hypomorphic and exerted a dominant-
negative effect by impairing the binding of its complexes to the
receptor. Curiously, Il17f−/− mice do not show susceptibility to
experimental infection with intravenously administered Candida.69

In contrast, Il17a−/− mice are susceptible only to cutaneous and
systemic candidiasis.69,70 Possible explanations for this discrepancy
could be a different function of IL-17F between mice and humans,
or the dominant-negative effect of IL-17FS95L on IL-17A signaling.
A subsequent study identified a second multiplex family with AD
IL-17F deficiency.71 The proband and his mother, carrying an
undescribed heterozygous IL17F variation, developed CMC. Although
no functional validation was performed, this might be the second
family reported with AD IL-17F deficiency.

AR IL-17RA deficiency
The first patient reported with AR IL-17RA deficiency (OMIM ID:
613953) was born to consanguineous Moroccan parents.38 A homo-
zygous nonsense mutation, Q284*, in IL17RA that was inherited from
asymptomatic consanguineous parents was identified. The patient
developed recurrent CMC, and was resistant to local antifungal
treatment from the first month of life. He was also susceptible to
S aureus, presenting with skin abscess and folliculitis on the buttocks.
Although the patient had several episodes of conjunctivitis, acute
media otitis, lower respiratory tract infections and folliculitis, he never
developed severe bacterial infection. Analysis of peripheral blood
mononuclear cells and patient-derived fibroblasts showed no
IL-17RA protein expression on their surface. Moreover, no response
to homo- and heterodimeric IL-17A and IL-17F was observed in
fibroblasts38 and no response to IL-17E (IL-25) was observed in
peripheral blood mononuclear cells from the patient39 (Figure 2).
A subsequent study identified a multiplex family with the combination
of AR IL-17RA and adenosine deaminase 2 deficiency.72 Two siblings
with CMC identified in this study shared a homozygous large deletion
including entire regions of IL17RA and CECR1 (encoding adenosine
deaminase 2). The absence of IL-17RA surface protein expression was
confirmed with flow cytometry on patient neutrophils, monocytes and
CD4+ T cells. Overall, the clinical observations in patients with AR
IL-17RA deficiency are comparable to those in Il17ra−/− mice that
show susceptibility to mucocutaneous pathogens, such as Candida and
Staphylococcus.5,73 Together with the original case of AR IL-17RA
deficiency, complete clinical penetrance was observed in this disorder.

AR IL-17RC deficiency
So far, three unrelated CMCD patients, one from Argentina and the
others from Turkey, have been reported with AR IL-17RC deficiency
(OMIM ID: 616445).40 Three different nonsense homozygous
mutations, Q138*, R376* and R378*, in IL-17RC that were inherited
from asymptomatic parents, were identified in the patients.
All patients with biallelic mutations in IL-17RC developed CMC,
suggesting complete clinical penetrance for this disorder. Unlike AR

IL-17RA and ACT1 deficiencies, patients with AR IL-17RC deficiency
did not have recurrent staphylococcal infections. Moreover, none of
the patients suffered from severe or recurrent bacterial infections. All
mutations were shown to be loss-of-expression, with a lack of
IL-17RC cell surface expression in HEK293T-transfected cells and
normal IL-17RA expression on SV-40-immortalized fibroblasts
obtained from the patients. The specific IL-17RC defect in these
patients was demonstrated by a lack of cellular responses to homo-
and heterodimers of IL-17A and IL-17F, but normal responses to
IL-17RC-independent signaling via IL-25 (Figure 2). Staphylococcal
disease is frequently observed in patients with AR IL-17RA and ACT1
deficiency (described below), whereas it is not obvious in patients with
AD IL-17F or AR IL-17RC deficiency. The infectious phenotype of
patients with AR IL-17RC deficiency resembled that of/ observed in
patients with AD IL-17F deficiency, and was consistent with that of
Il17rc−/− mice.74 This clinical observation supports the contribution of
an additional defect in the signaling pathway, downstream of IL-17E,
in patients with AR IL-17RA and ACT1 deficiency.

AR ACT1 deficiency
AR ACT1 deficiency was first reported in 2013 in two siblings born to
consanguineous Algerian parents.39 A homozygous mutation, T536I,
in the SEF/IL-17 receptor (SEFIR) domain of TRAF3IP2 (encodes
ACT1) that was inherited from asymptomatic parents was identified.
Both patients developed CMC, suggesting complete clinical penetrance
for this disorder. One patient also had recurrent episodes of folliculitis
decalvans and bilateral blepharitis caused by S. aureus. ACT1 is an
adaptor molecule that interacts with multiple partners, including
members of the IL-17R family.39,41 Upon stimulation, ACT1 is
recruited to IL-17RA, IL-17RB and/or IL-17RC (and probably
IL-17RE) by homotypic dimerization of two SEFIR domains, and
activates the NFκB, mitogen-activated protein kinase and CCAAT
enhancer-binding protein pathways (Figure 2).39 ACT1 also has an
inhibitory role in B-cell survival by negatively regulating CD40 and
B-cell-activating factor receptor through interaction with TRAF3.75

The T536I ACT1 mutation does not disturb its protein expression.
However, this mutation specifically impairs the homotypic interaction
of ACT1 with IL-17RA, IL-17RB and IL-17RC, abolishing responses to
IL-17A and IL-17F in fibroblasts and to IL-17E in leukocytes 39

(Figure 2). In contrast, the T536I mutation does not affect SEFIR
domain-independent interactions. This mutant normally interacts
with CD40 and other SEFIR-independent interaction partners such
as heat-shock proteins 70 and 90.39 The selective defect in the IL-17
signaling due to T536I-specific ACT1 mutation in the SEFIR domain
may explain the phenotypic discrepancy between identified human
AR ACT1 deficiency and Act1−/− mice. Unlike human AR ACT1
deficiency, Act1−/− mice display enhanced B-cell responses to CD40L
and BAFF, resulting in hypergammaglobulinemia.75 In conclusion, the
specific TRAF3IP2 mutation that selectively impairs the function of
ACT1 SEFIR domain is responsible for CMCD.

MANAGEMENT AND TREATMENT OF PATIENTS WITH CMCD

AND AD STAT1-GOF

Most patients with CMCD are treated with topical and/or systemic
antifungal agents.30,31,33,38–40 Fluconazole is the main first-line oral
therapy, followed by itraconazole, posaconazole and/or voriconazole.
As for topical treatment, nystatin is a good alternative to triazoles.33

CMC in approximately one-third of patients with GOF-STAT1
mutations is successfully treated with azoles, whereas a partial response
is observed in the others.33,34 In general, long-lasting treatments
and/or prophylaxis are required to treat persistent and prevent
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recurrence of CMC.30,31,33,38–40 Patients with AR IL-17RA and ACT1
deficiency develop staphylococcal infections in addition to CMC.
Antibiotic prophylaxis with sulfamethoxazole–trimethoprim seems to
be effective to treat these patients.38,39 Patients with
GOF-STAT1 mutations present various clinical manifestations in
addition to CMC. Many patients suffer from bacterial infections, such
as lower respiratory infections (in 47% patients), ear-nose-and-throat
infections (44%) and skin infections (28%), associate with infections
of S. aureus (36%), Streptococcus spp. (20%), Pseudomonas aeruginosa
(13%) and Haemophilus influenzae (9%).34 Thus, some patients are
also considered for antibiotic prophylaxis, such as sulfamethoxazole–
trimethoprim, to prevent bacterial infections. Moreover, patients with
GOF-STAT1 mutations occasionally develop severe autoimmune
disorders that require immunosuppressive treatment.57 The Janus
kinase inhibitor, ruxolitinib, has been trialed in two patients with
GOF-STAT1 mutations, leading to improvement of CMC and
autoimmune syndrome, without significant adverse effects.62,76

Hematopoietic stem cell transplantation might be considered as a
treatment option for patients with GOF-STAT1 mutations, especially
for those with severe clinical presentations, such as recurrent severe
viral and/or bacterial infections, IPEX-like syndrome or hemophago-
cytic syndrome.66 Indeed, invasive infections, cerebral aneurysms and
cancers are considered to be strong predictors of poor outcome.34

Hematopoietic stem cell transplantation seems to be an effective cure
of CMC, but large case studies are required to validate the wider
application of this treatment for all individuals with CMC.55

CONCLUSION

The recent identification of genetic etiologies of Syndromic CMC
and CMCD has revealed the nonredundant role of IL-17 in
mucocutaneous immunity to Candida in humans. These discoveries
have improved our understanding of CMC, by revealing inheritance,
clinical course and prognosis. Furthermore, clarification of the
molecular pathogenesis potentially gives us the opportunity to find
target molecules, such as Janus kinase inhibitors, which target
signaling, to improve the clinical symptoms. It might also inform of
the potential risk of increased susceptibility to Candida in patients
treated with anti-IL-17-targeted immunotherapies.77 The discovery of
GOF-STAT1 mutation as a molecular pathogenesis of Syndromic
CMC was a breakthrough in this field. From the first identification,
more than 300 of patients with GOF-STAT1 have been identified.34

However, there are still many patients with CMC who lack a genetic
etiology. Further studies are required to reveal the entire picture of this
congenital disorder.
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