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Abstract: The increasingly ageing population and the tendency to live alone have led science and
engineering researchers to search for health care solutions. In the COVID 19 pandemic, the elderly
have been seriously affected in addition to suffering from isolation and its associated and psycho-
logical consequences. This paper provides an overview of the RobWell (Robotic-based Well-Being
Monitoring and Coaching System for the Elderly in their Daily Activities) system. It is a system
focused on the field of artificial intelligence for mood prediction and coaching. This paper presents a
general overview of the initially proposed system as well as the preliminary results related to the
home automation subsystem, autonomous robot navigation and mood estimation through machine
learning prior to the final system integration, which will be discussed in future works. The main
goal is to improve their mental well-being during their daily household activities. The system is
composed of ambient intelligence with intelligent sensors, actuators and a robotic platform that
interacts with the user. A test smart home system was set up in which the sensors, actuators and
robotic platform were integrated and tested. For artificial intelligence applied to mood prediction,
we used machine learning to classify several physiological signals into different moods. In robotics,
it was concluded that the ROS autonomous navigation stack and its autodocking algorithm were
not reliable enough for this task, while the robot’s autonomy was sufficient. Semantic navigation,
artificial intelligence and computer vision alternatives are being sought.

Keywords: assistive robotics; affective computing; ambient assisted living; smart home; mood
prediction; mental well-being; quality of life; ecological momentary assessment (EMA); machine
learning; ROS

1. Introduction

Scientific advances, in general terms, have improved living conditions as reflected
in such basic aspects as longevity. According to several studies, there are expected to be
around 125 million people over the age of 65 in the EU in 2030. Life expectancy has indeed
improved considerably in recent years. Spain is one of the countries at the top of this list
despite a decline of 1.6 years in 2020 due to the COVID 19 pandemic, as has happened in
other countries [1].

Increased longevity is not always accompanied by greater happiness. [2]. Cities are
getting bigger and bigger and at the same time there are more lonely people. According
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to the survey published by the INE (the Spanish National Institute of Statistics) 42.7%
of women over the age of 85 lived alone, compared to 23.6% of men [3]. Since humans
are naturally social, this is becoming a significant psychological problem [4–6]. A clear
example is the current COVID-19 pandemic, which has brought about social isolation with
repercussions on mental health. Lockdowns and quarantines have forced even more of
the elderly to live alone. INE statistics show that the number of people over 65 who lived
alone in 2020 was 2,131,400 compared to 2,009,100 in 2019 [7], so that loneliness is already
postulated as one of the main epidemics of the 21st century.

Despite the loneliness involved, older people defend their right to stay at home and
in many cases they refuse to move in with relatives or to go to residences for the elderly,
even though their mobility and ability to look after themselves could be progressively
reduced [8]. Although assistance can be given by home caregivers, it will be difficult to
cover all demands for home assistance in the near future due to a shortage of available
health workers and doctors as a result of greater life expectancy and low birth rate. There
is thus an urgent need for innovative forms of support and health care for the elderly to
maintain their physical and mental well-being, for which society should be prepared by
adapting to the greater health assistance and monitoring requirements.

The latter is an advantage since it allowed reaching populations with scarce resources,
difficult to reach by traditional means [9]. In recent years, the contributions of psychology
have made sense with the intention of promoting interest in health and well-being during
aging. Being relevant that people live longer, with quality and above all with autonomy,
health and well-being [10].

The RobWell Project was begun in 2019 with the aim of finding technological solutions
to these needs. The team is made up of a multidisciplinary group of researchers, engineers
and psychologists from the Technical University of Cartagena, the University of Murcia
(Spain) and the University of Örebro (Sweden) and the University of Kuyshu (Japan). It is
part of the larger HIMTAE Project in cooperation with the University Carlos III of Madrid,
which includes physical assistance in the kitchen with a manipulating robot (not described
in this paper). The RobWell Project includes a mobile robotic platform integrated with
ambient intelligence in a smart home that also includes estimating the user’s mood through
wearables with a proposal for emotional coaching strategies.

From the user’s point of view, the idea is to create a relatively simple system that
can be installed in homes to monitor the user’s daily activities and his/her state of health
and mood by means of distributed home automation sensors, medical devices and smart
bands. The data is interpreted by artificial intelligence to estimate the habits and state
of mood of those living alone. If strange behavior or a low mood is detected, emotional
coaching strategies are proposed by a small robot with the size of a robot vacuum cleaner [9]
through smart speakers. Alerts can also be generated to reach caregivers, family members
or emergency services if necessary. Strange behavior would be considered, for example,
as spending too long in bed, not going to the bathroom for a long time, or not opening
the refrigerator all day. Emotional coaching strategies are recommended such as: “You
should go for a walk”, “Why don’t you call someone on the phone” or “You haven’t eaten
anything for a long time”. The robotic-based ambient intelligent system will not only detect
situations that suggest that the person needs help but can suggest activities to improve the
person’s mood, such as leaving the house to meet other people.

This system requires expertise ambient assisted living, sensor data analysis, and
machine learning. There is an additional distributed artificial intelligent system that
coordinates all the subsystems, with symbiosis of physical and virtual robotic and AI
subsystems to assist the elderly living alone during their daily activities. Advances in
smart home devices and activity wristbands may make it possible to address the design of
assistive environments with low-cost devices to achieve a relatively simple system that can
be marketed at an affordable price to potential users.

One of the most important aspects of this project is the artificial intelligence system
involved in mood recognition. As we pointed out in a previous paper [10], good results
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have been obtained in laboratory studies [11,12]. However, there are many problems
with making these experiments a reality. The biggest impediments encountered are the
number of uncontrollable variables involved in daily activities and the inconvenience of
including the sensors used in the studies in daily tasks. Advances have been made in
wearable devices, including the possibility of transferring these studies to other scenarios
(such as clinics [13] or experiments without laboratory models [14]). Ecological momentary
assessments (EMAs) have been used in this project as proposed in [10].

The main objective of this article is to present the RobWell project, including the
system architecture and integration of the distributed sensor ecosystem, data collection and
method of mood prediction using machine learning algorithms. To do so, the following
points will be discussed:

• General scheme, both software and hardware proposed. This section will present
the general hardware/software composition including elements such as the robotic
platform, the sensors for home automation and user monitoring, the actuators, the
data acquisition system for mood estimation, the user interface and so forth.

• Integration of the proposed elements. The proposed test system and the integra-
tion achieved in the field of mobile robotic platform and home automation will
be discussed.

• Robustness of the navigation of the robotic platform. The navigation system im-
plemented on the robotic platform will be discussed together with the continuous
operation tests. In this way it will be possible to discuss whether autonomous navi-
gation needs more sophisticated navigation strategies. The autodocking algorithm
offered for the Kobuki robotic base will also be tested for robustness in continuous
operation. With the continuous running test, the autonomy of the robotic system will
be observed.

• Mood prediction. The data acquisition system designed for conducting the exper-
iment in an everyday environment is discussed. On the other hand, the machine
learning strategy to be used for mood prediction is also discussed. In addition, the
psychological tools to be used (questionnaires and EMAs) are presented.

2. Related Works

The different technologies involved in the RobWell Project coexist and interact with
each other to achieve the ultimate goal: the user’s well-being. Four major groups address
the current state of the art: Assistive Robotics, smart home and Ambient Assisted Living
and Mood Recognition by means of biomedical signal processing.

2.1. Assistive Robotics

This field is attracting growing interest and is now focused on care in hospitals,
nursing homes, rehabilitation clinics and even people’s homes. In this way, the sick,
disabled or elderly can have continuous care and supervision. Assistive robotics can
include ADL (Activities of Daily Living) tasks such as cleaning, administering medication
and assisting healthcare personnel, general assistance and feeding, among others. Some
outstanding ADL projects include the Hospi Rimo robot [15], already installed in many
Japanese hospitals, or Moxi [16], which is being tested in hospitals in Texas.

Tasks such as feeding and personal hygiene represent a great challenge in terms of
assistive robotics. In the case of feeding, there are challenges such as the manipulation
of the food itself and tools of different geometry and size. One of the latest advances
in assisted feeding is from the University of Washington [17]. With regard to personal
grooming, there are designs for robotic toilets with a wall mounted motorized chair with
three degrees of freedom [18] while the Cody robot provides a solution to keep bedridden
patients clean [19].

In the field of mobile robotics applied to monitoring the elderly, Samsung proposes
Bot Care [20], a small robot that aims to ensure that the owner is in an optimal state of
health by analyzing data such as breathing, heart rate, activity levels, stress, quantity and
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quality of sleep, and so forth, alerting emergency services if necessary. Researchers at the
Technical University of Valencia, Spain, have developed a similar low-cost robot that is
able to recognize emotions, remember medication schedules and analyze information from
biometric sensors such as wristbands that measure vital signs [21]. Another example is
the PAL Robotics’ TIAGo robotic assistant [22]. Its functions include giving pills at the
programmed time, monitoring physical condition and vital signs, and locating keys and
mobile phones. It can also advise when it is time to eat, carry objects, recommend healthy
dishes, assist the elderly person at bedtime, tuck them in or help them into bed.

2.2. Smart Home

The term smart home is defined in the literature according to the field of application
to which it refers. Attempting to group and generalize the definition, Ehsan Kamel and Ali
M. Memari [23] determined that a smart home is a dwelling in which data related to the
home environment and its residents are obtained from sensors, electrical devices or home
gateways, and transferred using communication tools and networks for the purpose of
monitoring devices and executing units, either to help decide actions or for the execution
of so called services, these being the activities carried out by the smart home. Although
there is no unified and definitive criterion for the differentiation of a smart home based on
services, many authors agree on the following fields: health, well-being, security (internal
agents), safety (external agents), entertainment and energy management [24]. In most cases,
the name of the service speaks for itself. However, a distinction can be made between
wellness and health, with the former referring to trying to act before an illness occurs and
the latter to monitoring the user’s vital signs to provide data to medical staff, promoting
telemedicine. With regard to safety, a clarification is made in brackets. Internal agents
refer to those found inside the home (leaving the iron plugged in or the cooker on) While
external agents detect intruders.

The project described in this paper focuses on health and well-being, even though
it has additional functions. As already mentioned, it is oriented towards the care of the
elderly. Similar projects found in the literature include the following: in 2015, Tokyo Denki
University proposed a home health monitoring system for elderly people living alone.
This system focuses on monitoring three daily activities to differentiate between urination,
kitchen activities and personal grooming activities. Sensors such as infrared for movement
and flow sensors for the other activities are used for this purpose [25]. In 2017, the SMARTA
project was launched by the LAM (Movement Analysis Laboratory). The main objective of
this project was to develop and test a personal health monitoring system that integrates
standard sensors, innovative wearable and environmental sensors. By studying these data,
anomalies in everyday activities could be detected. Some of the vital parameters monitored
included ECG, blood pressure, oxygen saturation and ear temperature, among others.
In terms of environmental monitoring, they focused on the use and status monitoring
taps, dishwashers and refrigerators [20,26]. In 2016, a doctoral thesis was defended at
the University of Seville on integrating a service robot in a smart home using the UPnP
(Universal Plug and Play) protocol [27]. Another similar project proposed the integration of
the CSRA (Cognitive Service Robotics Apartment) mobile robot with an anthropomorphic
top into a smart home. In this project, the aim was to achieve a human-machine interface
as homogeneous as possible for access to sensors, actuators and services. For this purpose,
the RSB (Robotic Service Bus) middleware was proposed, a new event based, message
oriented middleware in a logically unified bus with a hierarchical structure [28,29]. In 2016,
SmartSEAL was also proposed, an interconnection system for the SEAL research project,
which focuses on developing solutions for home automation in the field of energy control,
user adaptability and security enhancement [30]. This project starts by assuming that
there are a large number of commercial communication standards for each device and
that, in many cases, the integration between these devices is complex (interoperability and
integration problems in heterogeneous systems). Although the use of assistive robots for
integration is not mentioned in this case, what is really interesting is the use of ROS as
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middleware for the integration. For this, it proposes an architecture based on three types of
nodes to differentiate between translator nodes to translate between protocols, cooperative
nodes to pool elements from different manufacturers and the database manager node.
Further information on this protocol can be found in [30].

To conclude the review of related articles, it is worth mentioning Reference [31], which
presents an ROS based Integration of Smart Space and a Mobile Robot as the Internet of
Robotic Things involving the new concept of IoRT (Internet of Robotic Things). This term
encompasses and combines the terms robotic cloud and IoT. It shows how the key features
of robotic technology, manipulation, intelligence and autonomy are related to scenarios in
which IoT is applied. To do this, compatible communication protocols are used to connect
the robot (or robots) with the smart space [32]. This project aims to demonstrate how a
smart home can provide motion assistance through robots that do not have vision systems,
image processing and intensive calculations for decision making, to prove that sensors
mounted on the robot can be replaced by others found in the environment [31]. One of
the most interesting projects that has used ROS as middleware dates back to 2017 [33]. In
this project, a general architecture was designed and implemented for the integration of
different elements with reasoning capable planning modules for application to a smart
office. This project is important because it implements a similar idea to the one proposed
in our project, including the same mobile robot (Turtlebot). It is important to mention that
this system has been tested in an environment emulating a smart office. In the case of the
HIMTAE Project, the environment is an elderly person’s house, which can become more
complex. However, future work in this article reflects a number of practices to investigate
that may be interesting to carry out our system, such as having different coordinated ROS
masters or attempting mutual cooperation of different elements (an event addressed in the
HIMTAE/RobWell Project [33].

2.3. Wearables in Affective Computing

Emotional assessment and regulation has been one of the promising wearable ap-
plications since the pioneering works of Picard and Healey, and the presentation of their
affective sensing device at the first IEEE International Symposium on Wearable Computers
in October 1997 [34]. According to these authors, wearables allow continuous emotional
state estimation as they can be in close, long term physical contact with the user, enabling
measurement of their condition on a scale of observations per person per minute rather
than in a period of months or even years through current metrics and methods. As Pentland
later pointed out in Social Physics [35]. This specific characteristic could also enable long
term data gathering for an individual “in the wild”, rather than the usual short-term data
gathering for a group of people in the laboratory.

After these initial basic technology research works (Technology readiness level -TRL- 1),
it was just a matter of time for the technological offer to reach the maturity level re-quired
for the proposal of research projects for evaluating the feasibility of using these systems
as feedback sources for human-robot interaction (TRL 2–3). In this regard, the Universal
Emotion Recognizer (UER) used in the psychophysiological control architecture for human-
robot coordination proposed by Sarkar in 2002 [36] can be considered as the first integrated
device for personal emotional assessment after demonstrating its potential for inferring
the emotional state of a particular individual after her observed physical expressions in
a given perceivable context. Later works by this team at Vanderbilt University proposed
the development of personal robots designed to act as understanding companions to
humans [37], boosting research in the application of psychophysiology measurements for
Human-Robot Interaction [38].

When devices such as the first FitBit were introduced, authors such as Swan clearly
identified the potential of these wearables for developing new patient driven health care
services, including those related to patient quantified self-tracking for health applications
and emotional support [39].
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With the advent of Ambient Intelligence (AmI) [40] and Ambient Assisted Living
-AAL- [41], initial requirements for user-centered design of Ambient Assisted Emotional
Regulation systems [42] were proposed after the usability analysis of this first generation
of commercially available smart wearable devices [43].

The electronics industry quickly reacted to the consumers’ expectations, increasing the
availability and diversity of new electronic sensors specially conceived for integration in the
second generation of these devices [44]. Besides the “classical” MeMs-based accelerometers,
inertial units (integrating triaxial magnetometers, gyroscopes and accelerometers), pulse
sensors and biopotential front-ends developed by the main industry stakeholders, enabling
the design and commercialization of advanced experimental wearable devices [45] intended
for sampling biosignals at higher frequencies with better resolution [46].

The adoption of open operating systems, APIs and SDKs contributed to the spread of
these technologies, boosting the development of new systems and solutions [47], that later
lead to the advent of the era of the Internet of Wearable Things (IoWT) [48]. The design
of this new generation of devices (TRL 9) considered not only functional requisites but
also others such as aesthetics and usability [49] to extend their use to other population
groups such as the elderly [50–52] raisings user awareness on other emerging topics such
as privacy related to lifelogging [53].

As happened previously with the spread of smartphone use, after the introduction of
these advanced devices, research was then oriented toward the development of health care
solutions [46,54,55]. Initially, most of them were centered on clinical assessment of chronic
conditions [56] and neurodegenerative diseases such as Parkinson’s disease [45,57–59]
or Multiple Sclerosis [60–66]. These studies contributed to the knowledge related to
subrogated alterations in the user’s condition (e.g., balance, gait or sleep patterns, etc.)
useful for diagnostic and screening purposes. Besides these clinical results, these research
activities have made other technical and non-technical factors visible, affecting the final
outcomes of these projects.

Among the technical factors directly related to the success of these studies, device
power consumption, battery duration and recharge time have arisen as critical topics
to be resolved by manufacturers to reduce system down time, since battery charging
disables data acquisition in most devices [44,67,68]. Other factors affecting the quality
of the experience of smart wearables [69] include material wear, battery deterioration,
interface miscommunication, data inaccuracy, tracking limitations, software glitches and
dysconnectivity [70].

User engagement and motivation have also been found to be critical [71], particularly
in the absence of meaningful feedback [72] as happens in blind studies [73–75].

2.3.1. Wearables and Emotional Biomarkers

Most of emotion or affective estimation projects are based upon the analysis of subro-
gated physiological responses related to the different dimensions of the emotional model
proposed by Russell: valence and arousal [76].

When looking for emotional biomarkers, typical in lab experiments have involved
recording psychophysiological responses of experimental subjects after the presentation
of certain stimuli, either relevant or not. Tonic responses are measured as baseline values
or resting levels of each signal in the absence of relevant stimuli while phasic responses
gather the effect of certain stimuli in relation to the baseline values (i.e., increase/decrease,
slope, etc.). In opposition to these, spontaneous or non-specific responses are measured
when there is no known stimulus presented [38], being the typical kind of data acquired
“in the wild”, as in this project.

Since the initials works on affective computing by Picard and Healey, researchers have
tried to acquire the same biosignals set as that used in lab conditions, including respiration
(chest expansion measured with resistive/hall sensors), skin conductivity (GSR galvanic
skin response), temperature, photoplethysmography (BVP, blood volume pressure), heart
rate (measured after the BVP signal/ECG) [34,36,42,77,78] and muscular activity (though
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the acquisition of the electromyogram, EMG,) [34,36], brain activity (through the electroen-
cephalograph, EEG) [36,79] gait analysis [80] and others (inertial parameters, light level,
etc.) [81–83]. An extensive review can be found in Saganowski et al. 2020 [84]. These
sensors are intended to record the physiological biomarkers related to the level of arousal
at both autonomic and central levels.

• Heart Rate. Heart rate is controlled by the autonomic nervous system, which com-
prises both sympathetic and parasympathetic (vagal) branches, whose action is nor-
mally balanced. When exposed to a stressor, this balance is lost, increasing the activity
of the sympathetic branch, which leads to higher heart rates. In order to have a
continuous indicator of this regulation, heart rate variability analysis is performed by
studying the frequency contents of the spectral representation of the Inter-Beat-Interval
time series (IBI) [85]. Mean and median frequency values of the power spectral density
(PSD) of the IBI spectrum have been proposed as indicators [36]. Special care should
be taken when performing the spectral transformation since this series is not evenly
sampled by nature. Time-domain parameters such as RMSSD, NN50 and pNN50 are
also considered [42,77,78,86,87].

• Respiration. As happens with heart rate, the respiration rate is also controlled by
the autonomic nervous system, and thus is susceptible to be used as a subrogated
indicator of the onset of stress and anxiety [34,57,85].

• Photoplethysmography. Easily acquired by means of non-invasive sensors, blood
volume pressure (BVP) has been widely used in affective detection experiments and
instantaneous heart rate calculation [34,42,57].

• Electromyography. Anxiety and stress can lead to increased muscled tension, as in the
masseter [34] and the cervical trapezius [36], being muscle electrical activity (usually
quantified as the root-mean value of the EMG signal) a subrogated measurement of
these anxiety and stress levels [57].

• Skin Temperature. As above, finger blood capillaries vasoconstrict because of anxiety
and stress, reducing the effective blood flow, which leads to decreased skin tempera-
ture, which is simple to measure using small mass thermistors [36,77].

• Galvanic Skin Response. Stress and anxiety lead to an increase in sweating activ-
ity, which reduces the electrical resistance of the skin, which can be determined by
injecting a minimal known DC-current and then measuring the voltage across the
electrodes [34,36,42,77].

• Gait analysis. Although gait analysis has been widely used for studying neurological
degeneration related to Parkinson’s disease, Multiple Sclerosis and Alzheimer’s, only
a few works have tried to find correlations of gait indicators with the emotional state
of the subjects studied [80,88].

• Brain activity. Through there are some works related to emotion detention in-the-
wild based on electroencephalogram (EEG) analysis, there are some serious concerns
limiting the practical application of these methods. Most of them are related to
the reduced signal-to-noise-ratio achieved in real life conditions due to the small
amplitude of the recorded signals and their susceptibility to artifacts (i.e., eyeblinks,
heartbeats, jaw and forehead muscle tension) and electromagnetic perturbations [79].

• Other. With the advent of smartphone integrated sensors, some studies have taken
advantage of them to build huge lifelogging datasets including signals from the built-
in inertial sensors (accelerometer, gyroscope ad magnetometers), compass sensors,
environmental parameters sensors such as sound and light levels and air pressure,
humidity, and temperature as well as other as location and phone state [81–83].

2.3.2. Recommended Devices

As mentioned before, most of these recent studies have used commercial devices, the
best suited for these purposes being the relatively old E4 from Empatica and the no-longer
available Microsoft Band 2 [84].
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Despite this, it is probable that new devices, including these as well as other advanced
sensors, will be made commercially available in the short term due to market trends.
According to the latest forecast from Gartner, worldwide end-user spending on wearable
devices will total $81.5 billion in 2021 (an 18.1% increase from $69 billion in 2020). It is
interesting that other form factors are being considered for these devices such as ear-worn
devices (forecast to reach $39.2 billion in 2021) and smart patches (forecast to reach almost
$6 billion in 2021). This latter category, first introduced in this last report, is expected to
include sensors enabling long term non-invasive monitoring capabilities as advanced by
devices such as BioStampRC [62] and the more recent BioStamp nPoint.

Society has experienced several changes in the way technology is understood nowa-
days. The community of Artificial Intelligence (AI) is responsible for this transition to-
wards a modern society [89]. Many works integrate advances in mood recognition using
Machine Learning algorithms in laboratory settings [11,12]. One main drawback of the
before-mentioned works is the procedure used to gather the data, which is counterproduc-
tive to the goal of this project: monitoring well-being during daily activities. Normally, the
sensors used hinder daily activities. There is also another problem to tackle in this work:
emotion monitoring. Traditional methods rely on retrospective reports which normally are
subject to recall bias. As pointed out by Shiffman et al. [90] the aforementioned approach
limits the ability to precisely characterize, understand and change behavior in real world
conditions. One solution for this is the so-called Ecological Momentary Assessment (EMA),
which eases the patients’ mental burden, since traditional tests for the assessment are too
long to be asked repeatedly during the day. In addition to this, the growing capabilities
of smartphones and wearable devices makes the use of the EMA approach much more
feasible as a solution for monitoring mental illness, treatment, self-management, and inter-
vention applications, thus expanding the coverage of mental health services by deploying
economically friendly solutions.

The above-described method of gathering information on mental well-being has been
used in several works. In [91], a system is proposed to monitor potential depressive
patterns in the elderly living alone. Emotional state is collected from diverse sources such
as: surveys, smart watches and EMA questionnaires. As mentioned above, the power of
EMA methods to obtain emotional information can expand the boundaries of this research
area to daily life applications. For example, in [92] a system which gathers information
in the context of person’s activities can detect long-term stress patterns. Stress detection
during daily real-world driving tasks through advances in intelligent systems is described
in [14]. Techniques such as Machine Learning were also applied in [10] making it possible
to monitor the elderly’s moods via intelligent sensors on a wristband.

2.4. Contributions

For the contributions of the proposed systems, the order of presentation of the related
works will be followed. In the case of assistive robotics, a small robot that is capable of
navigating autonomously around the house, avoiding both static and dynamic obstacles is
proposed. The contribution comes from the ability to act on the user’s mood. The aim of
this system (robotic platform) is to be able to navigate to the user to offer different options
depending on the predicted mood. Some of the proposed systems [20] theoretically detect
stress or have some form of music therapy implemented. However, this project proposes
a robotic system that, based on the data collected through psychological questionnaires,
is personalized to offer the most accurate coaching strategies. In addition to this, another
contribution comes from integration. One of the main objectives is connectivity and
cooperation between the systems. In this way, the aim is to achieve communication and
interaction with the kitchen robot and for the home automation system to be able to feed off
the information provided by the robots (and vice versa). Some of the related works present
systems that include sensors from different manufacturers [30] and Turtlebot robot [33],
but they do not talk about the cooperation of all these systems. Another important point to
note in comparison to other systems is that low-cost commercial sensors are being used. In
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addition, being a system dedicated to elderly people, it was proposed to do it locally as
cloud solutions were dangerous due to the loss of internet connectivity.

On the other hand, a method for acquiring data related to the user’s mood in everyday
environment is also proposed. A data acquisition system based on a smartphone and the
Empatica E4 medical device is proposed. In the case of the Empatica E4, it is a device
that is unobtrusive to the conduct of everyday life. In addition, tests and questionnaires
are answered through a developed Android application where users can organize their
answering schedule. The ultimate idea is to get data from a few users but over a long
period of time for each user.

3. Materials and Methods
3.1. Proposed System Design
3.1.1. Hardware Architecture

The proposed system consists of different elements. As in any control system, a dis-
tinction can be made between sensors, control and actuators. In the hardware architecture
of the proposed system, the different nodes (sensor, control and actuator) are composed of
the elements shown in Table 1.

Table 1. General description of the system elements.

General Elements Description

Sensors

Smart home Commercially available and self-built sensors for
monitoring the user’s daily activity.

Empatica E4 A medical device, such as an activity bracelet, for the
acquisition of physiological signal data.

Robotic
Platform
Sensors

Hokuyo UST-10LX LIDAR sensor for robot mapping and
navigation.

Set of proprioceptive sensors installed in the iClebo
Kobuki base (bumpers, gyroscope...).

Control
Raspberry Pi Computational node that executes the logic of the home

automation section. It also serves as an integration node.

Intel NUC
Computational node that executes the logic of the

integration software application. Artificial intelligence
algorithms for coaching strategies.

Intel NUC Robot controller

Actuator
Robotic

Platform

A robotic system that will navigate autonomously
through the house and interact with the user by providing

them with coaching strategies.
Smart home Elements such as shutter motors, lights and smart plugs.

All these elements are represented in Figure 1. It should be noted that all these
elements will be dealt with in depth in later sections.

3.1.2. Software Design

The main problem with commercial devices is that, even though the devices may
comply with the open Zigbee standard, each manufacturer has his own gateway and user
application (Ikea, LIDL, Xiaomi, Philips, etc.). This makes it impossible to use devices with
another brand’s gateways and the aim of this project was to integrate devices of different
brands. One of the main software tasks was thus to provide inter-device interoperability
and transparency.
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Figure 1. Hardware schematic of the system (only some representative elements of each subsystem are shown).

As can be seen in Figure 2, the system is composed of a variety of software components
for different domains. The elements that need specific software are as follows: robotic
platforms, home automation system, positioning system, data acquisition system for
predicting affective state and integration software. Of all these elements most are in
the process of development or improvement, except for the indoor positioning system,
which is currently under development. The rest of the systems are listed below with a
brief description:

• Robotics platforms. Of the robotic platforms in Figure 1, only the emotional coaching
platform will be explained because the other platform is being developed by the in the
HIMTAE Project in the Carlos III University of Madrid. The teleoperated mapping,
autonomous navigation, autodocking and power management software to determine
its performance in continuous operation has already been implemented and tested.
Further features and enhancements are under development.

• Smart home. The software that will run all the home automation logic is the Home
Assistant operating system [93], selected because of its integration tools and the
associated community for troubleshooting. It will run a Node-RED server and a
Mosquitto MQTT broker. In addition, it also allows the use of the CC2531 USB dongle.

• Acquisition system for affective state prediction. As can be seen in Figure 1, at the
hardware level, this system consists of an Empatica E4 medical device and a smart-
phone. Two Android applications are used for the extraction of the data used in mood
prediction. The first one, E4 RealTime, is the official application offered by Empatica
for the extraction of physiological data. There is also a self-developed application for
conducting tests and questionnaires to relate physiological data to mood states. The
final idea is that this whole process will take place in a single application.

• General integration system. This is the system in charge of carrying out the integration
between the elements. There will only be differentiation at the level of sensors and
actuators, regardless of the brand or manufacturer. This whole system will be devel-
oped on Ubuntu 16.04 and ROS. The use of ROS to carry out this task is justified by
the fact that the integration, in some cases, is direct. Furthermore, being structured in
nodes, the topics and following the publisher/subscriber policy makes development
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more accessible. The development of this application is not yet complete. For the time
being, the integration paths have been basically developed and tested in a lightweight
way. For example, the integration between Node-RED and ROS has been tested, as
has the integration between elements with ROS, the integration between Zigbee and
Node-RED elements with MQTT and between Android and Node-RED using MQTT.
The integration application is currently in the conceptual development phase.

Figure 2. Software schematic of the system.

3.2. Home Automation
3.2.1. Sensor Environment

In the introduction, we talked about the different types of smart homes associated
with health and wellbeing. This leads to starting the selection of sensors according to
the activities to be monitored. Elements belonging to other fields can also be added such
as security (from both external and internal agents), entertainment or energy saving, all
depending on the user’s needs.

The sensor environment consists of a set of commercial and self-developed sensors
whose main function is to monitor the environment surrounding the user in the least
intrusive way possible. When we talk about intrusiveness, in this case we refer to possible
works or modifications to the home. One of the objectives to keep in mind is that most
sensors should be small, unobtrusive and wireless. Obviously, this is not going to be
achieved in all cases as there are sensors that will require mains power. This monitoring
is carried on mental and physical health (smart some oriented towards wellbeing and
health). At this point, one can think directly of the typical activity bracelets that provide
information on physiological parameters. While it is true that these are a valuable source
of information for the prediction of the user’s affective state, there are many other sources
in the home environment; for example, the frequency of personal grooming, opening the
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windows, raising the blinds to let the sun in, the time spent in bed or on the couch, and so
forth (Table 2).

Table 2. Proposed monitoring activities and devices.

Activity Devices

Sleeping hours, physical activity, frequency of
toilet visit Activity wristband

Social interaction monitoring Telephone call screening device (landline) or
call logging services (mobile)

Drug consumption Electronic pill dispenser
Proper nutrition Fridge monitoring
Personal hygiene Water flow detectors

Movement between rooms Motion detectors and positioning system
Occupancy of armchairs/chairs Pressure detectors

Bed occupancy Load cells
Proper condition of the house Temperature/Humidity sensor

TV viewing Smart TV service integration
Opening of drawers, doors, windows... Switch and windows/doors sensor

Use of household appliances Power consumption sensors

With the information obtained from these sensors, it will be possible to extract the
necessary information about the user’s well-being and health. This would cover the health
and wellness smart home part. In addition to this, there will be additional elements for
security like gas, fire and water leaks detectors. The use of smart light bulbs and smart
plugs is also proposed to achieve greater home automation and improve the household
energy performance.

So far only a few commercial sensors have been tested in the system in addition to
those offered by the Kobuki’s Iclebo base. It should be noted that the Iclebo base sensors
are included in this case as they are interconnected sensors in the system although they will
not be dealt with in depth. However, everything related to the robotics platform (sensors,
actuators and software) will be dealt with in depth later on. Table 3 shows the sensors that
we plan to include in the system. As some devices are not yet available, we have decided to
perform a test setup with the commercial sensors presently available. The column headed
“Inc.” specifies the sensors included in the test system (“Y”) and those which are not (“N”).

Table 3. Home automation system devices.

Sensor Name Model Protocol Description Inc.

Mi Motion Sensor YTC4041GL Zigbee PIR sensor from Xiaomi Y
IKEA PIR Sensor Zigbee PIR sensor from IKEA Y

Temp/Hum Aqara WSDCGQ11LM Zigbee Temperature/Humidity sensor from Aqara Y
Mi Window/Door Sensor YTC4039GL Zigbee Window/Door sensor from Xiaomi Y

LIDL Window/Door sensor TY0203 Zigbee Window/Door sensor from LIDL Y
Heiman Gas Detector HS1CG Zigbee Natural gas detector from Heiman N

Aqara Leak Water Detector SJCGQ11LM Zigbee Leak water detector from Aqara N
Xiaomi Smoke Detector JTYJ-GD-03MI/BB Zigbee Fire and smoke detector from Xiaomi N

Smart Plug Xiaomi ZNCZ04CM Zigbee Smart Plug from Xiaomi Y
Smart Plug LIDL HG06337 Zigbee Smart plug from LIDL Y

Smart Bulb LED1836G9 Zigbee Smart Bulb E27 806 lumens from IKEA. Y
Sonoff POW IM171130001 WiFi Consume monitoring fom Sonoff N

Broadlink RM-Mini3 RM-MINI3 IR Universal IR gateway N

Robotic Platform Sensor TURTLEBOT II WiFi Robotic base sensor, LIDAR Hokuyo UST-10LX and
Orbecc Astra Y

Flow Sensor Own development WiFi Flow water sensor for kitchen and bathroom use. N

Seat Sensor Own development WiFi Sensor for monitoring the user’s time spent in a
seated position N
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Table 3. Cont.

Sensor Name Model Protocol Description Inc.

Bed Weight Sensor Own development WiFi Sensor for monitoring user’s weight and time in bed N

Large Consumption Sensor Own development WiFi Sensor for high power consumption devices in the
home. The PZEM-004T shall be used. N

Thermocouple vitro/stove Own development WiFi Sensor for monitoring the use of the cooker or hobs N
Telephone Sensor Own development WiFi Sensor to monitor social interaction via landline phone N

Indoor Positioning System Own development WiFi Indoor location system with decaWave N

As can be seen in Figure 2, the communication protocols to be used are Zigbee, WiFi,
MQTT and IR. Most of the commercial sensors have been selected with Zigbee protocol for
power consumption reasons. If the system is to be as non-intrusive as possible, wireless
devices should be selected. The Figure 3 shows the plan of the house where the system has
been tested.

Figure 3. (a) Map of proposed elements in the final system. (b) Map of test system elements.

3.2.2. Computer Platform for Home Automation

As can be seen in Figures 1 and 2, the single-board low-priced Raspberry Pi 4 Model B
is the computational node in charge of home automation. It was selected for its extensive
use with Home Assistant and its good cost/performance ratio.

In this type of device, the operating system is usually mounted on a removable SD
card. The problem is that in previous experiences with systems like those proposed in this
article, it was seen that the memory card ended up being corrupted, so it was proposed
to add an external SSD type memory. This requires an expansion board that allows the
SSD memory to be integrated with the Raspberry Pi (Raspberry Pi Foundation, Cambridge,
UK). For this case, the ONE M.2 case has been selected, which allows the integration of
both elements (SSD and Raspberry Pi). The SSD memory selected was the Kingston A400
M.2 (Kingston Corporation, Fountain Valley, CA, USA).

As already mentioned, most of the sensors use the Zigbee protocol. In order to
coordinate all elements of the system, a Zigbee Gateway is needed. Normally, each
manufacturer offers a gateway for their branded products; however, the use of these
gateways would make the system more closed and proprietary, not to mention that most of
them offer solutions in the cloud and an internet connection is always needed. To overcome
this problem, we propose the use of a generic CC2531 USB dongle (Texas Instruments,
Dallas, TX, USA). It is a USB device on which a CC2531, a SoC for IEEE 802.15.4, ZigBee and,
RF4CE related applications, are mounted. All the elements used can be seen in Figure 4.
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Figure 4. (a) Raspberry Pi, (b) Raspberry Pi Aluminum Case, (c) SSD Memory Disk, (d) USB Dongle cc2531.

The software used in this project is Home Assistant. This is a free, open-source
software that is widely used for home automation. Home Assistant is characterized by
the management of home automation locally. This provides greater security and speed
compared to cloud-based systems. This software has a multitude of add-ons developed for
the integration of different devices. It was therefore decided to install a Node-RED server,
a Mosquitto MQTT broker and the necessary Zigbee2MQTT software for the management
of the CC2531. Node RED is a programming tool that can be connected to hardware
devices, APIs and online services through a programming based on flows and blocks. In
this case it is used for integrating ROS. There is a node distribution in Node-RED called
node-red-contrib-ros that allows us to publish and subscribe to ROS topics. There is also
the Mosquitto MQTT broker. The MQTT protocol works according to the policy of the
publisher/subscriber with the broker as the central block of the structure. Basically, it is the
server that accepts the published messages and distributes them to the subscribing nodes.
The Zigbee2MQTT add-on uses this broker to publish sensor information in MQTT topics.
In this way, it will be easy to access this information from Node-RED and publish it in ROS.

3.3. Robotic Platform

The Turtlebot II commercial solution has been chosen for the robotic platform. This
is a mobile robotic base widely used in education and research. It is a differential type of
mobile robot with two support wheels located in a rhomboidal position. The mobile base
on which the robot is mounted is the Kobuki IClebo (YUJIN ROBOT Co., Ltd., Yeonsu-gu,
Incheon, Korea) (Figure 5b) which can power most of the systems (computer, sensors and
other devices).

Figure 5. (a) Hokuyo UST-10LX; (b) IClebo robotic base; (c) INTEL NUC computer.

As this platform should map and navigate autonomously around the house, a Hokuyo
UST-10LX LIDAR (Hokuyo Automatic Co., Ltd., Osaka, Japan) (Figure 5a) sensor was
added to the base. In addition, the element that carries out robotics computing tasks will
be a compact Intel NUC computer (Intel Corporation, Santa Clara, CA, USA) (Figure 5c),
characterized mainly by its small dimensions. Another of its advantages is the possibility
of being able to expand its features as required.

The robotic platform uses Ubuntu 16.04 as operating system and ROS as the software
robotics framework. The mapping and navigation stack offered by ROS [94] (Figure 6)
is used to map the home in which the robot is installed and autonomously navigate
once mapped.
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Figure 6. ROS navigation stack setup [95].

In addition to this, continuous operation experiments were carried out by monitoring
the battery status. The package used for robot initialization is turtlebot_bringup [96] with
a “.launch” file called minimal.launch, which launches the relevant nodes that publishes
the desired information on the battery in a topic. Figure 7 shows the topic containing the
battery information and field name. To interpret the evolution of the battery status, a node
will be created that subscribes to the topic shown in Figure 7. Each time, the information of
the desired data is updated, it will be saved in a text file together with its timestamp.

Figure 7. ROS nodes and topics from turtlebot_bringup.

The idea of a continuous operation experiment consists of autonomous navigation
to certain points in the house according to the time of day. The idea is to create time
circuits that start and end at the charging station (Table 4). In this way, it is tested whether
the autodocking algorithm provided by Kobuki is reliable enough to be applied for the
proposed purpose.
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Table 4. Navigation routines.

Breakfast

Bedroom 08:00
Bathroom 08:05

Livingroom 08:15
Kitchen 08:17

Bathroom 08:37
Livingroom 08:45

Docking Station 08:47

Snack

Livingroom 11:30
Kitchen 11:33

Bathroom 11:47
Livingroom 12:00

Docking Station 12:02

Lunch

Livingroom 13:30
Kitchen 13:33

Bathroom 14:00
Livingroom 14:10

Docking Station 14:12

Afternoon Snack

Livingroom 17:30
Kitchen 17:32

Bathroom 17:47
Livingroom 17:57

Docking Station 18:00

Dinner

Livingroom 20:30
Kitchen 20:33

Bathroom 21:02
Livingroom 21:10

Docking Station 21:12

Sleep

Livingroom 22:30
Bedroom 22:32
Bathroom 22:35
Bedroom 22:45

Docking Station 22:47

3.4. Mood Estimation
3.4.1. Acquisition and Processing of Physiological Signals

According to Figures 1 and 2, this section proposes a system consisting of a device
capable of sensing physiological variables and an application that proposes tests and
questionnaires. Physiological and activity measurements are performed by means of an
E4 wristband device from Empatica. This CE certified device, commercially available
but intended for research, enables data acquisition of accelerometry, skin temperature,
electrodermal activity and blood volume pulse signals for up to 32 h (in recording and
data-logging mode). Streaming mode is used (24 h battery autonomy) in conjunction with
a 4G internet connected smartphone, which is used as the gateway to the cloud storage
services provided by Empatica. Information about the Empatica E4 sensors can be found
in Table 5.

(a) Physiological Signal Processing and Feature Extraction

The different physiological signals were first preprocessed and filtered as summarized
in Table 6. Features were extracted using a sliding window approach with window size
of 60 s. This size has been widely reported as the appropriate value when working
with physiological signals [14,97,98]. We also set an overlap of 10% between consecutive
windows to reduce the boundary effect when signals are filtered.
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Table 5. Empatica E4 built-in sensors.

Signal E4 Built-In Sensor Range Resolution Sample Rate

Accelerometer 3-axis accelerometer −2 g
+2 g

8 bit
32 Hz

Temperature Infrared thermopile −40 ◦

+115 ◦C

14 bit
0.02 ◦C

4 Hz

Electrodermal Activity AC Current source
100 uA @ 8 Hz/100 uSiemens

0.01 µSiemens
100 µSiemens

14 bit
900 pSiemens

4 Hz

Heart Rate

Photoplethysmography
Blood Volume Pulse

4 LEDs (2 × Green, 2 × Red)
2 PhotodiodesTotal 15.5 mm2 sensitve area.

0.9 nW
64 Hz

Table 6. Signal preprocessing.

Signal Filtering

Accelerometer Band-pass filter (0.2 Hz–10 Hz)
3rd order Butterworth

Temperature Threshold @ 2 ◦C

Electrodermal Activity
Low-pass filter (0–1.5 Hz)

3rd order Butterworth
EDA, SCLR and SCR Extraction [99]

Heart Rate HR resampled at 1 Hz
Normalized to first 10 min/day [10]

(b) 3-axis Accelerometer (72 features)

Three-axis accelerometer signals were sampled at a frequency of 32 Hz, and then the
Euclidean norm of the acceleration vector was calculated before filtering the four time
series with a 3rd order Butterworth band-pass filter with a 0.2 Hz to 10 Hz bandwidth [100].
Afterwards, features in the time-domain [85,100,101] and in the frequency-domain were
extracted [102]. In Table 7, you can see the extracted characteristics of the accelerometer.

Table 7. Accelerometer features.

Domain Measurement Features Reference

Time

Maximum value of the rectified segment MAX 4

[100]

90th percentile of the rectified segment P90 4

Variance of the segment VAR 4

Mean Absolute Deviation of the segment MAD 4

Norm of the segment Norm 4

Different between maximum amplitude and mean of signal segment AMP 4

[101]
Minimum value of signal segment MIN 4

Standard deviation of signal segment STD 4

Root Mean Square of signal segment RMS 4

Means of the Absolute Values of the First Differences of the raw signal segment MAVFD 4

[85]
Means of the Absolute Values of the First Differences of the normalized signal segment MAVFDN 4

Means of the Absolute Values of the Second Differences of the raw signal segment MAVSD 4

Means of the Absolute Values of the Second Differences of the normalized signal segment MAVSDN 4
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Table 7. Cont.

Domain Measurement Features Reference

Frequency

Mean value of Power Spectral Density FM 4
[102]

Standard deviation of Power Spectral Density FSTD 4

25-percentile of Power Spectral Density FP25 4

[10]50-percentile of Power Spectral Density FP50 4

75-percentile of Power Spectral Density FP75 4

(c) Peripheral Skin Temperature (13 features)

The peripheral temperature signal is sampled at a frequency of 4 Hz. It is set a
threshold of 2 ◦C to discard incorrect gathered data when detecting an increase or decrease
on the skin temperature trespassing such threshold. Features in the time-domain [85,101,103]
and frequency-domain [102] are then extracted. In Table 8, you can see the extracted
characteristics of the skin temperature.

Table 8. Skin Temperature Features.

Domain Measurement Features Reference

Time

Mean temperature of the segment MT 1

[103]Slope of a fitted regression line of the segment SRL 1

Intercept of a fitted regression line of the segment IRL 1

Standard deviation of signal segment STD 1 [101]

Means of the Absolute Values of the First Differences of the raw
signal segment MAVFD 1

[85]

Means of the Absolute Values of the First Differences of the normalized
signal segment MAVFDN 1

Means of the Absolute Values of the Second Differences of the raw
signal segment MAVSD 1

Means of the Absolute Values of the Second Differences of the
normalized signal segment MAVSDN 1

Frequency

Mean value of Power Spectral Density (PSD) FM 1
[102]

Standard deviation of Power Spectral Density (PSD) FSTD 1

25-percentile of Power Spectral Density (PSD) FP25 1

[10]50-percentile of Power Spectral Density (PSD) FP50 1

75-percentile of Power Spectral Density (PSD) FP75 1

(d) Heart rate variability (27 features)

Since it was not possible to reliably reconstruct the tachogram after the IBI data read
from the E4, an HR time series provided by the manufacturer was used for heart rate
variability analysis. This instantaneous heart rate, sampled at 1Hz, was then normalized
on a daily basis, taking the first ten minutes from each day as baseline to compare data
from different participants. Features in both time-domain [85,100,101] and frequency-
domain [104] were then extracted. In Table 9, you can see the extracted characteristics of
the heart rate.
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Table 9. Heart rate features.

Domain Measurement Features Reference

Time

Maximum value of the rectified segment MAXHR 1

[100]

90th percentile of the rectified segment P90HR 1

Variance of the segment VARHR 1

Mean Absolute Deviation of the segment MADHR 1

Norm of the segment normHR 1

Mean value of signal segment Mean 1

[101]Minimum value of signal segment MIN 1

Standard deviation of signal segment STD 1

Means of the Absolute Values of the First Differences of the raw
signal segment MAVFD 1

[85]

Means of the Absolute Values of the First Differences of the normalized
signal segment MAVFDN 1

Means of the Absolute Values of the Second Differences of the raw
signal segment MAVSD 1

Means of the Absolute Values of the Second Differences of the
normalized signal segment MAVSDN 1

Mean of the Smooth HR SM 1

Mean of the First Differences MFD 1

Frequency

Very Low Absolute Spectral Power aVLF 1

[104]

Low Absolute Spectral Power aLF 1

High Absolute Spectral Power aHF 1

Total Absolute Spectral Power aTotal 1

Very Low Frequency Spectral Power in Percentage pVLF 1

Low Frequency Spectral Power in Percentage pLF 1

High Frequency Spectral Power in Percentage pHF 1

Low Frequency Spectral Power Normalize to Total Power nLF 1

High Frequency Spectral Power Normalize to Total Power nHF 1

Ratio of Low Frequency to High Frequency LFHF 1

Very Low Frequency Peak peakVLF 1

Low Frequency Peak peakLF 1

High Frequency Peak peakHF 1

(e) Electrodermal Activity (82 features)

The EDA signal, sampled at 4Hz by the E4, was low-pass filtered through a 3rd order
low-pass Butterworth filter at 1.5 Hz before extracting both, tonic (Skin Conductance Level,
SCL) and phasic (Skin Conductance Response, SCR) components [99]. Features in both
time [85,99] and frequency domains were calculated for each component [99,102]. In the
Table 10 you can see the extracted characteristics of the electrodermal activity.
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Table 10. Electrodermal activity features.

Domain Measurement Features Reference

Time

Mean MSC 3

[99]

Standard deviation SDSC 3

Maximum MASC 3

Minimum MISC 3

Dynamic range DRSC 3

Mean of the first derivative FMSC 3

Standard deviation of the first derivative FDSC 3

Mean of the second derivative SMSC 3

Standard deviation of the second derivative SDSC 3

Arc length ALSC 3

Integral INSC 3

Normalized average power APSC 3

Normalized root mean square RMSC 3

Area-perimeter ILSC 3

Energy-perimeter ELSC 3

High order skewness SKSC 3

High order kurtosis KUSC 3

Central moment MOSC 3

Means of the Absolute Values of the First Differences of the raw
signal segment MAVFD 1

[85]

Means of the Absolute Values of the First Differences of the normalized
signal segment MAVFDN 1

Means of the Absolute Values of the Second Differences of the raw
signal segment MAVSD 1

Means of the Absolute Values of the Second Differences of the
normalized signal segment MAVSDN 1

Frequency

Spectral power in bandwidths 0.1 to 0.2 F1SC 3

[99]Spectral power in bandwidths 0.2 to 0.3 F2SC 3

Spectral power in bandwidths 0.3 to 0.4 F3SC 3

Mean value of Power Spectral FMSCR 3
[102]

Standard deviation of Power Spectral Density FSTDSCR 3

25-percentile of Power Spectral Density FP25 3

[10]50-percentile of Power Spectral Density FP50 3

75-percentile of Power Spectral Density FP75 3

3.4.2. Mobile App for Ground Truth

The application was developed for the Android operating system. This APP asks the
user about two parameters: level of happiness and activity. To answer this question, the
user must select the level of two bars divided into discrete levels, with 0 being not at all
happy/active and 4 being very happy/active. The test interface can be seen in Figure 8a.
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Figure 8. (a) Mobile application to collect mood states labels (on the left); (b) Affection
state model [76].

As the aim is to carry out five tests during the day, the application was designed so
that the user could configure the times at which he/she wants to be notified to take the
test. The notification alerts the user with an uncertainty interval of +− 10 min. The data
extracted are as shown in Table 11.

Table 11. Information collected by the application.

Information Description

Happiness level Representation of the happiness level felt by the user at the time of
the test on a discrete scale divided into 5 levels (0–4).

Activity level Representation of the activity level felt by the user at the time of the
test on a discrete scale divided into 5 levels (0–4).

Test hours User-defined time register of time tests.

Reaction time Timestamp at which the application notifies that the test is to be
performed and timestamp at which the user accesses the notification.

All the information extracted through the application is saved in local files and Excel
sheets in the cloud. Each user is assigned an ID code to identify him/her, so that no
personal data is stored in the cloud. The designed application has two operation modes:
user mode and administrator mode. The user mode only has the interface necessary to
carry out the test, while the administrator mode allows the configuration of the test times
(Figure 9).

As a significant amount of data must be obtained to train a machine-learning-based
algorithm, labelled data are needed. In this paper, the EMA answer registered for each
patient is extended a number of minutes before and after. We start out on the assumption
that the preceding and subsequent physiological response stays in the body for this length
of time before and after answering EMA using windows of 30-, 60- and 120-min.

As the participants can answer the questionnaires out of the time slot assigned to it,
we can encounter the following situations: (1) the time between two consecutive answers
is less than half of the fixed window; (2) the first and the last EMA of the day may be close
to the time of the initial and final data collection. The procedure followed to solve these
situations consists of evenly separating the available data and using it for each of the former
situations, respectively. In Figure 10 we show an example of the explained situations.
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Figure 9. (a) Administrator mode main menu. (b) Administrator mode test time settings.

Figure 10. Illustration of the extrapolation of the mood states obtained from the EMA answers received in one day with a
60-min centered window for temperature signal. Red line represents the mood state assigned (−1 represents no mood state).
Situation A is when two consecutive EMA answers are given within an interval of time less than half the size of the EMA
window. Situation B is when there is no available data in the initial or last EMA answered.
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3.4.3. Signal Classification

The system introduced in this work is based on two elements: on the one hand, we
have a wristband type device that can be used to obtain information on physiological vari-
ables and, on the other hand, we have an android application that collects user responses
to the tests and questionnaires carried out [105]. This wristband is provided with sensors
to monitor blood volume pulse (BVP), electrodermal activity (EDA), and peripheral skin
temperature. It is also equipped with a 3-axis accelerometer and a built-in application to
derive the heart rate (HR) and interbeat interval (IBI) from the BVP signal.

The emotional state of the monitored person is collected following the model proposed
by Russel et al. [76], which is a multi-dimensional approach that defines emotions by two
dimensions: arousal (or activeness) and pleasure (or happiness), pleasure being the range
of negative and positive emotions; and arousal representing their active or passive degree,
as explained previously in Section 3.4.2. Therefore, each emotional state can be placed as
a point; in this case, a bidimensional space (see Figure 8b). The collection of those two
dimensions is done via a mobile app (see Figure 8a). The participant is asked to fill in
the happiness and activeness felt at a certain time on a 5-point Likert scale to quantify
his/her emotional well-being by asking only two concise questions, known as an Ecological
Momentary Assessment (EMA). The small mental burden of this technique makes it suitable
for the environment proposed in this work: emotion recognition during daily activities.
The user is asked to answer this questionnaire five times a day and more answers can be
included if required.

The extracted features from the signals and the emotional state collected with the
mobile APP define the classification problem proposed to estimate mood states. This
problem is following a supervised learning approach, being training data samples features
vectors extracted by a 60-s window for each of the signals mentioned before; and labels
the mood state collected by the APP as explained in Section 3.4.2. We refer to Figure 10
in the previous section to emphasize the integration of the mood state with the collected
physiological data. Figure 10 is an example of the logic followed to assign every vector a
label. The sliding window will be placed at every data point of which has a label value
different to −1 (as reflected in Figure 10). Once every feature vector is assigned with a
mood state, we proceed to train a Support Vector Machine (SVM) with the goal of mapping
feature vectors into mood states by minimizing a loss function.

3.5. Psychological Instruments

In addition to the experiments explained in the previous sections to monitor emotional
well-being, psychological questionnaires were also included. These questionnaires aimed at
measuring the levels of stress, anxiety, depression, and general well-being at the beginning
and end of the experiment. This is a positive aspect as the experimental setup (wearable
sensor, APP to answer EMA) did not cause stress to the participants. In addition to the
personal interviews at the beginning and end of the experiment, each participant answered
the first 20 questions of the STAI questionnaire. This questionnaire provides potential
insights into symptoms of depression. Frequency analysis was carried out to contrast the
correlation between the arousal (or activeness) and pleasure (or happiness) dimensions
with the anxiety levels registered. The results concluded that correlations between affective
dimensions and anxiety state were not statistically significant. Detailed information of the
tests during the data collection process is given below:

• A sociodemographic survey that provided information on age, gender, marital status
and knowledge of digital devices (mobile, computer, etc.).

• A short Inventory of Emotional Intelligence for the Elderly (EQ-I-M20) by Pérez-
Fuentes, Gázquez, Mercader and Molero [106]. This is an adaptation and validation
into Spanish of the Bar-On and Parker [107] instrument for the elderly consisting of
20 items on Likert scale. It is made up of the following factors: (a) Intrapersonal;
(b) Interpersonal; (c) Stress management; (d) Adaptability; and (e) General mood. It
has a Cronbach’s alpha value of 0.89 for reliability on the general scale.



Sensors 2021, 21, 6865 24 of 38

• CECAVIR (Quality of Life Assessment Questionnaire) prepared by Molero, Pérez-
Fuentes, Gázquez and Mercader [108] consisting of 56 items ranging from 1 to
5 composed of six quality of life dimensions: Health, Social and family relationships,
Activity and leisure, Environmental quality, Functional capacity and Satisfaction with
life. It has a Cronbach’s Alpha of 0.865 on the global scale.

• STAI, State Trait Anxiety Questionnaire [109]. It is a questionnaire made up of 40 items
with two scales. It can evaluate anxiety as a transitory state (Anxiety/state) and as
a latent trait (Anxiety/trait). The alpha coefficient for State Anxiety ranges between
0.90 and 0.93 and for Trait Anxiety between 0.84 and 0.87 [109].

• Hamilton scale on depressive/anxiety symptoms (1960) [110] made up of 14 items on
a Likert scale that ranges from 0 to 4 to evaluate somatic and respiratory symptoms,
depression, and so forth. A higher score indicatives anxiety/depressive symptoms
and provides information on psychic and somatic anxiety.

• Abbreviated Yesavage questionnaire (GDS) on depression in its Spanish version for
the elderly [111], a questionnaire that evaluates depression in people over 65 years of
age, made up of 15 items that score dichotomously (0–1). A total score over 5 indicates
depression. It has an internal consistency of 0.994.

• Mini-cognitive exam -MEC35- [112], the Spanish adaptation of the Mini-Mental State
Examination. It is an instrument that detects cognitive deterioration and examines
different cognitive functions: orientation, memory, attention, calculation, language
and construction, praxis and reasoning. The maximum score is 35 points, the optical
cut-off points for cognitive impairment being in a population over 65 years of age and
with a low educational level of 24 points.

• The Global Impairment Scale (GDS) by Reisberg, Ferris, de León and Crook (1982) [113],
assesses the seven different phases of Alzheimer’s disease: stage 1 (normal), stage 2
(subjective memory complaint), stage 3 (mild cognitive impairment), stage 4 (mild
dementia), stage 5 (moderate dementia), stage 6 (moderately severe dementia) and
stage 7 (severe dementia). The internal consistency is very good, presenting a Cron-
bach’s alpha of 0.82 [113].

• The Katz index [114], which assesses the level of dependence/independence of daily
activities. It has eight possible levels: (A) Independent in all its functions; (B) Inde-
pendent in all functions except one; (C) Independent in all functions except in the
bathroom or other; (D) Independent in all functions except in the bathroom, dress
and any other; (E) Independent in all functions except in the bathroom, dress, use of
the toilet and any other; (F) Independence in all functions except in the bathroom,
dress, use of the toilet, mobility and any other of the remaining two; (G) Depen-
dent in all functions; (H) Dependent in at least two functions, but not classifiable as
C, D, E or F. Levels A–B (0–1 points) indicate absence of disability or mild disabil-
ity, levels C–D (2–3 points) indicate moderate disability and E–G levels (4–6 points)
indicate severe disability.

• Psychological well-being Scale (Díaz, Rodríguez-Carvajal, Blanco, Moreno-Jiménez,
Gallardo and Valle, 2006) [115], an instrument that consists of 29 items that ranges
from 1 (totally disagree) to 6 (totally agree). It has six subscales that evaluates self-
acceptance, personal growth, purpose in life, positive relationships with others, envi-
ronmental mastery and autonomy. It is Cronbach’s alpha ranges between 0.70 and
0.83 in all dimensions (Díaz et al., 2006) [115].

• Scales on positive and negative affect (PANAS), translated into Spanish by Robles and
Páez [116] (2003), a scale composed of two factors of 10 items (ranging from 1 not
at all or slightly to 5 a lot) that measures positive and negative affect and presents a
Cronbach’s alpha of 0.92 for positive and 0.88 for negative affect (Robles and Páez,
2003) [116].

• NeO-FFI Questionnaire (Costa and McCrae, 1999) [117], a reduced version of the
well-known NEO-PI-R. The questionnaire consists of 60 items to assess personality
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according to the “big five” model (Neuroticism, Extraversion, Openness, Friendliness
and Responsibility).

3.6. Experimental Design for Mood Prediction

This study was carried out thanks to the dataset collected in [10]. Moreover, the
individual interviews performed with each candidate were used to collect demographic
information and the following questionaries were used to assess their mental health:
STAI [109], Hamilton anxiety scale [110], Yesavage geriatric depression scale [111], MEC-
35 [112], Ryff scale of psychological well-being [115], global deterioration scale [113], Katz
index [114], PANAS [116]. After the interview, the EMA App was installed in their personal
smartphone, and they received an Empatica E4 wristband. Data collection was collected
for 15 consecutive days. During this time, the participants were asked to wear the device
during the day and remove it before sleeping. They also received instructions on how to
answer the daily EMAs sent to their smartphones. After the data collection, they came
back to the laboratory and repeated the personal interview. They were asked to complete a
satisfaction survey and to return the E4 wristband. According to the questionnaires, they
did not show any symptoms of anxiety, mental disorder, or disability nor were there any
significant differences with respect to the first questionnaire, maintaining stable results.
Demographical information and the collected data are summarized in Table 12.

Table 12. Participants’ details.

P1 P2 P3 P4

Age 67 55 60 63

Gender Male Female Male Female

Days 9 15 14 14

Non-valid days 0 0 2 1

Total EMAs
(Daily avg.)

42
(4.67 ± 0.67)

57
(3.8 ± 0.75)

64
(5.33 ± 1.84)

46
(3.54 ± 0.93)

4. Results
4.1. Mood Prediction Resutls

We built a mood classifier using the support vector machine SVM (Support Vector
Machines) library libSVM [118] using a radial basis function (RBF). Parameters C and γ

were obtained by grid-search using cross-validation. The feature vectors were scaled in the
range [−1, 1].

We propose two experiments to assess the ability of our model to solve the proposed
problem of emotion recognition. Datasets were balanced due to lack of labels for certain
mood states. It was discarded all samples which represent less than 10% of the total
dataset. In addition, arousal and happiness dimension values were classified for the
original sampled datasets, that is, without dropping non-representative mood states. The
first experiment consists of splitting the dataset in two subsets, so that 75% of the samples
are used for training and the remaining 25% are used for testing (Figure 11). Additionally,
we include confusion matrices as a qualitative result (Figures 12–15).

The second experiment is named as leave-one(day)-out. It consists of using one full
day of data to test the model and the rest of days for training the classifier. The accuracy
was computed as the mean of all tested days (Figure 16). The leave-one(day)-out approach
shows an exciting interest in assessing the ability of the classifier to predict tomorrow’s
emotional well-being based on an historic data register.
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Figure 11. Accuracy metric obtained from predicting mood (a), arousal (or activeness) (b), and pleasure (or happiness) (c)
values. Error bars represent standard deviation.

Figure 12. Confusion matrix for patient P1 for windows (a) 30-, (b) 60-, (c) 120-min. Predicted mood states: Pleasure,
Sleepiness and Contentment.
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Figure 13. Confusion matrix for patient P2 for windows (a) 30-, (b) 60-, (c) 120-min. Predicted mood states: Pleasure,
Excitement, Arousal and Contentment.

Figure 14. Confusion matrix for patient P3 for windows (a) 30-, (b) 60-, (c) 120-min. Predicted mood states: Excitement,
Arousal and Depression.

Figure 15. Confusion matrix for patient P4 for windows (a) 30-, (b) 60-, (c) 120-min. Predicted mood states: Pleasure,
Excitement and Sleepiness.
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Figure 16. Accuracy metric obtained for the leave-one(day)-out experiment to predict pleasure (or
happiness) values. Error bars represent standard deviation. Red asterisk and Circle dots represent the
mean pleasure accuracy for datasets of 10 and 20 days respectively stated by R. Likamwa et al. [119].

4.2. Robotic Platform Continuous Operation Results

This section provides the results obtained on the charging and discharging patterns of
the robotic platform battery and the continuous operation experiments as well as the main
observations made during the process. The testing environment was a real house. It was
decided to perform the mapping in two different parts of the house to test the mapping
task (Figure 17).

Figure 17. (a) Map of the first zone of the house. (b) Map of the second zone of the house.

The scenario shown in Figure 17b was selected for the battery charging and discharg-
ing experiments and the continuous operation experiments with navigation according to
an hourly routine. To prove that the script developed to monitor the battery status worked
correctly, four experiments were carried out to see if the battery discharge profile resembled
the one provided by the manufacturer (Figure 18).
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Figure 18. Battery discharge profiles: (a) First and second experiments, (b) Third and
fourth experiments.
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Figure 19. Battery charge and discharge profile for a normal operating day. 

 

Figure 19. Battery charge and discharge profile for a normal operating day.
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Figure 19 shows the evolution of the battery status on a normal day without failures
at the time of the auto docking task. Figure 20a shows the first continuous operation
experiment and Figure 20b the second one.

Figure 20. (a) First continuous operation experiment. (b) Second continuous operation experiment.

5. Discussion
5.1. Mood Prediction

The first experiment consisted of dividing the dataset in 75%–25% proportions for
training and testing, respectively. We repeated this process ten times to ensure a certain
degree of confidence. Figure 11 shows the accuracy obtained from training a classifier to
predict mood mental states. We tried different EMA window of values 30, 60 and 120 min.
The highest accuracies achieved in this first experiment correspond to the metrics obtained
by patient three (P3) in estimating mood in 30-, 60-, 120-min windows: 83.44% ± 1.6;
86.68% ± 1.43; 88.75% ± 0.78, respectively. It is interesting to note that patient three (P3)
had the highest EMA-answering average, as reported in Table 12.

When inspecting a confusion matrix, one is seeking the main diagonal to obtain the
highest possible values. This would mean great precision of the trained algorithm. It can
be observed in Figures 12–15, that the highest values are under the main diagonal. Never-
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theless, there is also a certain degree of confusion among the different classes. Figure 12
shows confusion between contentment and pleasure in patient P1, between sleepiness and
pleasure. Figure 13 shows that the algorithm is misclassifying pleasure or arousal with
excitement in patient P2 and contentment is confused with pleasure or arousal. Figure 14
shows for patient P3 a confusion between arousal with excitement, and between depression
and excitement. Finally, Figure 15 confuses pleasure with excitement or sleepiness in
patient P2. By inspecting the circumplex model introduced by Russel [76], all the confused
aforementioned emotions are placed in the circle quite close to each other. As most of the
mood states contain a high pleasure value (representing positive moods), we can conclude
that to achieve a fine-grained algorithm able to fit data close to each other in the feature
space we would need to collect more samples, which would increase the complexity of
the algorithm. The case of patient P3, who confused depression with excitement, also
caught our attention. These two mood states are far from each other in Russel’s circumplex
model [76]. Future research will inspect the nature of the depressed- and excited-labelled
raw vectors and how they spatially fall into the dimensionally reduced feature space.

To validate the precision of our trained algorithm for this second experiment, we
compared it with the study by R. Likamwa et al. [119], which shares some similarities with
ours. To carry out this comparison, we learnt a model for the pleasure value, which is the
dimension used in [119]. We are conscious that to compare two learning algorithms one
should use the same dataset. However, the approach followed by [119] is exactly what
we are pursuing in this second experiment. This comparison is used to confirm that the
obtained results follow the correct direction. Moreover, the work in [119] uses periods
of 10 and 20 days (about 3 weeks) to train their models. We used the available number
of days for each participant, which as it can be observed it differs from those reported
by [119]. Figure 16 shows our results laying within the reported results by [119]. This led
us to conclude that, with a bigger dataset, that is, collecting more signals throughout more
days, higher accuracy metrics will be achieved.

5.2. Robotic Platform

The adaptation of Hokuyo UST-10LX for mapping and navigation of the robotic
platform is correct, as can be seen in Figure 17. The areas not so well defined on the map are
inaccessible to the robot, for example, the toilets in Figure 17. In the case of (b) there is no
defined area. This is because there is a step at the entrance to the bathroom that the robot
could not go beyond and thus could not map that area. as in the case in (a). In general,
good results were obtained in terms of mapping although the main disadvantage was that
it had to be teleoperated.

The shape is similar to that provided by the manufacturer as can be seen in the
discharge profiles in Figure 18. The main difference is that the manufacturer’s graphs show
9 h of operation for a single 4S2P battery while our two 4S2P batteries operated in a range
between 6 and 7 h. This result is not so strange if you consider that the manufacturer’s
curves have only the base consumption, while we in addition had a computer and Hokuyo
UST-10LX to explain the reduced autonomy.

The main difference between the curves in Figure 18a,b is that in the case of (a), the
battery was charged while the computer was on. This continuous consumption prevented
it from reaching full charge. In the case of (b), the base was completely switched off for
charging so that the start of the graphs in B is higher than in A and in addition the discharge
lasts longer.

The autonomous navigation tests using the Hokuyo UST-10LX were thus successful.
Using the ROS navigation stack, it was possible to navigate autonomously throughout
the house, avoiding both dynamic and static obstacles. The main navigation problem
was at the doors and there were times when the robot got stuck in doorways because its
navigation algorithm determined there was going to be an imminent collision.

On the other hand, the experiment with continuous operation was not very encourag-
ing. As can be seen in Figure 20, the main problem occurred in executing the autodocking
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task. The specification for the most successful autodocking is to have a clean area 2 meters
wide by 5 meters long around it. It should be noted that initially, an attempt was made to
reduce this space to see how reliable the algorithm was by reducing this specification and
it should be remembered that not every house has a clear space of 2 × 5 meters. The results
obtained are shown in Figure 20a. As can be seen, compared to Figure 20a, there were
many problems with autodocking. To remedy this, the station was relocated to a larger
area that met the specifications. From the results shown in Figure 20b, it can be seen that
the autodocking algorithm performed reasonably better. However, it was still flawed and,
at times, required human intervention.

6. Conclusions

Some conclusions can be drawn in the order of the descriptions of the systems. Starting
with a smart home, the system was in operation for 21 days without failures with the
devices connected continuously. It should be noted that there were periods in which the
system was without power due to power cuts and that the devices reconnected normally
after restarting Raspberry Pi. Based on this experience, it can therefore be concluded that
the system works satisfactorily and offers robustness connectivity.

It was also concluded that the robotic navigation and autodocking algorithms used
are not sufficiently robust. Although the navigation algorithm works well in most cases,
the robot needs human intervention when it fails. Some of the scenarios in which failures
occurred were when navigating through narrow doorways and corridors. The autodock-
ing algorithm runs normally if the surrounding conditions required by the algorithm to
function correctly are met (2 × 5 empty area in front) and when it fails manual intervention
is required. These results were observed during the evolution of the continuous opera-
tion experiments. In the discharge profiles shown in Figure 20, it can only be detected
that the system has failed due to an abnormal discharge profile. As discussed, the most
common faults causing this situation have been navigation in narrow areas and failures in
performing autodocking. To address navigation problems, we are currently working on
the implementation of semantic navigation algorithms to improve autonomous navigation
in a changing environment and on the use of computer vision to detect the docking station.

The model shows a promising ability to predict mood values by means of only
physiological data for the machine learning application for mood prediction. Experiments
show that a 120-min EMA window works significantly better in predicting mood values,
while the accuracy in predicting arousal, pleasure and mood values are comparable to, or
better than, other methods reported in the literature.

The performance metrics obtained for the experiment leave-one(day)-out exhibits
a path for future work, although its accuracy is similar to that found in other works.
Reference [119] reported that, to achieve a performance of over 80%, 40 to 60 days were
needed (about 2 months) so that our datasets need to be extended. The present system
is endowed only with physiological data. Future research can combine different data
modalities such as smartphone information (agenda events, screen use, etc.) or audio
signals to provide greater model robustness.

As the learnt mood models also need generalization and transferability it is proposed
to increase the complexity of the model’s classifier by using Deep Learning techniques as
more data are collected.

The experimental data in this work were collected during daily activities with no
restrictions on the participants’ behavior, which shows that our technology is viable for
daily life use. The results obtained seem to indicate that the recognition of the user’s
mood is sufficiently effective to be able to trigger the coaching actions that the team of
psychologists considers appropriate for each user in each situation.

In terms of applying these technologies, research in artificial intelligence and home
automation is especially relevant for therapeutic applications in mental health services.
The interventions were especially directed towards caring for the elderly. It should be
noted that our project focused on innovating by providing a responsible approach (under
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the supervision of a trained mental health professional) and taking into account the ethical
implications of incorporating artificial intelligence and home automation in people’s lives
(ecological sensors in the house so as not to interfere, the use of bracelets etc.). The most
important thing is that our project escapes from the laboratory since it allows the subjects
to carry out their daily activities by means of smart devices. Another of the fundamental
aspects is the daily monitoring, after a previous evaluation, to be able to evaluate moods
and mental states and to be able to make diagnoses where appropriate. From an ethical
and responsible perspective, this project will bring important benefits from the application
of robotics and artificial intelligence to mental health, which will allow new modes of
treatment, opportunities to involve hard-to-reach populations, improve adherence to
patient response and free up time for specialists through combined care models. That is
why we argue that the union of artificial intelligence and home automation is a promising
approach in the entire field of mental health, especially in innovative mental health care.
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