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Background: Pyroptosis is a form of programmed cell death triggered by the rupture of cell
membranes and the release of inflammatory substances; it is essential in the occurrence and
development of cancer. A considerable number of studies have revealed that pyroptosis is
closely associated to the biological process of several cancers. However, the role of pyroptosis
in lung adenocarcinoma (LUAD) remains elusive. The purpose of this study was to explore the
prognostic role of pyroptosis-related genes (PRGs) and their relationship with the tumor
immune microenvironment (TIME) in LUAD.

Methods: Gene expression profiles and clinical information were downloaded from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A
prognostic PRG signature was established in the training set and verified in the
validation sets. Functional enrichment and immune microenvironment analyses related
to PRGs were performed and a nomogram based on the risk score and clinical
characteristics was established. What is more, quantitative real-time PCR (qRT-PCR)
analysis was applied in order to verify the potential biomarkers for LUAD.

Results: A prognostic signature based on five PRGs was constructed to separate LUAD
patients into two risk groups. Patients in the high-risk group had worse prognoses than those
in the low-risk group. The signature was identified as independent via Cox regression analyses
and obtained the largest area under the curve (AUC = 0.677) in the receiver operating
characteristic (ROC). Functional enrichment and immune microenvironment analyses
demonstrated that the immune status was significantly different in the two subgroups and
that immunotherapy may be effective for the high-risk group. Furthermore, qRT-PCR analysis
verified that serum PRKACA and GPX4 could serve as diagnostic biomarkers for LUAD.

Conclusion: Overall, a risk signature based on five PRGs was generated, providing a
novel perspective on the determinants of prognosis and survival in LUAD, as well as a basis
for the development of individualized regimes.
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1 INTRODUCTION

According to the latest global cancer statistics, lung cancers remain
one of the most commonly diagnosed cancers, and they have the
highest incidence of deaths worldwide (Sung et al., 2021). Lung
adenocarcinoma (LUAD) is the most common histological subtype
of non-small cell lung cancer (NSCLC), which also occupies almost
80% of lung cancer cases (Gridelli et al., 2015). Despite progress in
surgery, targeted therapy, chemotherapy, and radiotherapy, the 5-
year overall survival (OS) rate for lung cancer remains only around
21% (Siegel et al., 2021). Currently, therapeutic regimens for
individual LUAD patients are based mainly on specific factors
such as radiomic features, tumor-node-metastasis (TNM) staging,
tumor subtypes, and the differentiation grade. With the rapid rise in
precision medicines, novel therapeutic schedules, especially
immunotherapies and targeted therapies, have been proposed to
prolong the lives of LUAD patients (Bronte et al., 2010; Saito et al.,
2018). However, only a portion of patients have received benefits
from them, leaving an urgent need to explore potential biomarkers
for efficient and prognostic predictions.

Pyroptosis, also known as inflammatory “necrosis,” is an
inflammatory caspase-dependent cell death type triggered by the
cell rupture and the release of many proinflammatory factors,
including IL-1β, IL-18, ATP, and HMGB1 (Fang et al., 2020;
Tang et al., 2020). It has been demonstrated that the process of
pyroptotic cell death is mediated mainly through GSDMD
(gasdermin D)-dependent activation regulated by caspase 1/4/5/11
(Shi et al., 2015). Activated caspases cleave the hinge region between
the N- and C-terminal domains of GSDMD, releasing the segment
with lethal activity and leading to pyroptosis (Ding et al., 2016).
Several studies have indicated that pyroptosis was both a friend and a
foe of cancers (Nagarajan et al., 2019; Xia et al., 2019; Fang et al.,
2020). On the one hand, the inflammatory mediators released and
several signaling pathways are bound up with the tumorigenesis and
their chemotherapeutic drugs resistance. On the other hand, as a type
of programmed cell death, pyroptosis can suppress the emergence
and progression of tumors. In NSCLC, a high level of GSDMD
expression was shown to be linked with invasive features, including
more advanced TNM stages and larger tumor sizes (Burdette et al.,
2021). Recent studies have identified pyroptosis-related gene (PRG)
signatures for the prognosis of ovarian cancer and gastric cancer
(Shao et al., 2021; Ye et al., 2021), while the performance of PRGs in
LUAD has not yet been clarified.

Given the existing findings, we know that pyroptosis is critical to
the development of tumors and to antitumor processes; however, its
precise functions in LUAD have not been explored as extensively. In
the present work, we aimed to construct a scoring model based on
PRGs to predict the prognosis of LUAD and explore the latter’s
relationship with immune checkpoint genes (ICGs), hoping to find
additional therapeutic targets.

2 MATERIALS AND METHODS

2.1 Data Acquisition and Processing
The lung adenocarcinoma RNA-seq (FPKM) data and the
corresponding clinical information were obtained from the

TCGA database (https://portal.gdc.cancer.gov/). The cohort
consisted of 497 tumor tissues and 54 normal tissues, with the
complete clinical information of 486 patients (tumor = 439,
normal = 47) extracted as a training set. The Ensemble IDs
were transformed into gene symbols via the use of the
“rtracklayer” and “dplyr” R packages, and the pieces of clinical
information were merged into a single matrix for further analysis.
To increase the reliability of the study, two Gene Expression
Omnibus (GEO) datasets, i.e., GSE31210 and GSE50081 (both
using the GPL570 platform), which contained the microarray-
based expression data of LUAD patients and the relevant clinical
information (n = 536), were extracted for validation from the
GEO website (https://www.ncbi.nlm.nih.gov/geo/). In this study,
we also identified 79 ICGs from a review of the literature (Pardoll,
2012; Hu et al., 2021), most of which were ligands, receptors or
important molecules in immune checkpoint pathways
(Supplementary Table S1).

2.2 Identification of Differentially Expressed
Pyroptosis-Related mRNAs
A total of 33 PRGs were extracted from prior reviews (Ye et al.,
2021) and are presented in Supplementary Table S2.
Differentially expressed PRGs (DE-PRGs) were identified in
the training cohort between normal and tumor tissues, using
the “limma” R package with thresholds of p < 0.05.

2.3 Establishment and Validation of the
Pyroptosis-Related Prognostic Gene
Signature
To identify the prognostic genes among all PRGs, we further
employed Cox regression analysis with the “survival” R package
to assess the links between each gene and survival status in the
training cohort. To avoid omissions, we set 0.2 as the cut-off
p-value, and seven survival-related genes were screened for
further analysis. Subsequently, multivariate Cox regression
analysis was conducted to narrow down the candidate genes
based on the lowest Akaike information criterion (AIC).
Ultimately, five PRGs and their coefficients were retained. A
prognostic risk score was created for each patient via the
following formula: Risk score = ∑Coef (PRGs) * Exp (PRGs),
where Exp (PRGs) is the relative expression of the candidate
PRGs, and Coef (PRGs) is the regression coefficient. Based on the
median value of the risk score, patients in the training set were
divided into the high-risk group and the low-risk group. The OS
between the two groups was compared by means of
Kaplan–Meier analysis with the “survival” and “survminer” R
packages. The predictive performance of the model was further
validated in two GEO datasets (GSE31210 and GSE50081).
Samples in the validation cohort were separated into high-risk
and low-risk groups based on the formula for the risk score
derived from the training dataset, respectively. The receiver
operating characteristic (ROC) curve was used to assess the
prognostic performance through the “timeROC” R package.
The area under the curve (AUC) of each cohort was calculated
for detailed evaluations.
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2.4 Independent Prognostic Analysis of the
Risk Score
We extracted the clinical information (age, gender, AJCC stage,
TNM stage, tobacco history, and anatomical location) of patients
in the training cohort. These elements were analyzed in company
with the risk score in our regression model, employing univariate
and multivariable Cox regression models. Furthermore, a time-
dependent ROC curve was used to evaluate the predictive
accuracy for OS by different clinicopathological factors and
risk scores by means of the “survivalROC” package.

2.5 Development of a Predictive Nomogram
A nomogram incorporating the signature and clinical parameters
was developed via the “rms” R package to predict the overall
survival of LUAD patients. Then, the calibration curves and ROC
curves were plotted to assess the predictive accuracy of the
nomogram.

2.6 Functional Enrichment Analysis of PRGs
Depending on the median risk score, patients in the training
cohort were stratified into two subgroups. The differentially
expressed genes (DEGs) between the low- and high-risk
groups were filtered at the specific threshold (|log2FC| ≥ 1 and
FDR < 0.05). To clarify the biological functions of the prediction
model, gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were performed,
based on the DEGs, by applying the “clusterProfiler” R
package with the criteria of p < 0.05 and FDR < 0.05. The
“gsva” R package was also employed to conduct the ssGSEA
to calculate the scores of infiltrating immune cells and to assess
the activity of immune-related pathways.

2.7 Evaluation of the Immune Status
Between the Two Subgroups
To further explore the link between the prediction model and the
immune system, the single-sample gene set enrichment analysis
(ssGSEA) method was utilized to quantify the overall immune
status of the two subgroups by analyzing the expression profiles of
the 29 immune signature gene sets. Subsequently, the ESTIMATE
algorithm was performed to calculate stromal and immune
scores, determining the levels of stromal and immune cell
tumor infiltration. Thereafter, correlations between the risk
score and several key ICGs, such as PD-L1, CTLA4, LAG-3,
and so on, were evaluated. Spearman correlation analyses were
used to examine the relationship among the risk score, the
stromal and immune scores, and the expression of ICGs.

2.8 Protein Levels of NRGs in the HPA
Database
The Human Protein Atlas (HPA) is a database containing all of
the human proteins in cells, tissues and organs, where all images
of tissues are stained via immunohistochemistry. To compare the
protein expression levels related to the prognostic signature, we

extracted the immunohistochemical images of the candidate
PRGs from the HPA database (https://www.proteinatlas.org/).

2.9 Cell Lines and Cell Culture
Three LUAD cells—namely A549, H1299, and H1650—and one
normal epithelial cell line (HBE) were purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China) and
cultured in an RPMI-1640 medium (HyClone, Logan, UT,
United States) with 10% fetal bovine serum at 37°C in a
humidified atmosphere with 5% CO2.

2.10 Real-Time Quantitative
Reverse-Transcriptase Polymerase Chain
Reaction Analysis
Total RNA was extracted by TRIzol reagent (Thermo Fisher
Scientific, Carlsbad, CA, United States) according to the
protocol and reverse-transcribed to cDNA through the use
of random primer amplification. Real-time qRT-PCR analysis
was carried out using Platinum SYBR Green qPCR SuperMix-
UDG kits (Life Technologies, Gaithersburg, MD,
United States). Primers used for the qRT-PCR analysis were
performed as follows. Glyceraldehyde 3-phosphate
dehydrogenase (GADPH) levels were used to normalize
PRKACA and GPX4 expression. Relative expression was
calculated using the ΔΔCt method.

Statistical Analysis
All statistical analyses were performed using R language (Version
4.1.0). The Kaplan–Meier method with a two-sided log-rank test
was performed to compare the OS of patients between the two
subgroups. To determine the independent risk characteristics,
univariate and multivariate Cox analyses were applied.
Correlation coefficients between two non-bivariate normally
distributed variables were computed via Spearman analyses.
The hazard ratios (HRs) and the 95% confidence intervals of
the aforementioned elements were estimated in order to quantify
the strength of these associations. All statistical tests were two-
tailed. The overall flowchart is shown in Figure 1.

3 RESULTS

3.1 Defining the Differentially Expressed
PRGs in LUAD
The expression of the 33 PRGs in LUAD and normal lung tissues
was first obtained by means of the TCGA dataset. Following
differential expression analysis of the training set, 27 PRGs were
either upregulated or downregulated in LUAD. More definitely,
the expression of IL6, NLRC4, CASP5, IL1B, CASP1, NLRP3,
NLRP1, PYCARD, IL18, PRKACA, TNF, and NOD1 was raised,
while the expression of AIM2, TIRAP, PLCG1, GSDMD, CASP4,
GPX4, CASP8, GSDME, PJVK, CASP3, CASP6, GSDMA,
GSDMB, NLRP7, and GSDMC was declined in LUAD in
comparison with normal tissues (Figure 2A, FDR < 0.05).
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3.2 The Establishment and Verification of a
Pyroptosis-Related Prognostic Model
Univariate Cox regression analysis was first applied in order to
verify the candidate PRGs associated with prognosis (p < 0.2)
(Figure 2B), and multivariate Cox regression analysis further
identified five PRGs, namely IL6, NOD1, NLRC4, PRKACA, and
GPX4, based on the lowest AIC (1,059.83) (Figure 2C). The
formula is shown as follows: risk score = (−0.019 * expression
level of IL6) + (−0.110 * expression level of NOD1) + (−0.205 *
expression level of NLRC4) + (−0.059 * expression level of
PRKACA) + (−0.005 * expression level of GPX4). We
classified the LUAD cases into low-risk (n = 220) and high-
risk (n = 219) groups depending on the median risk score. The
risk score distribution, survival status, and gene expression
pattern of the two groups are presented in Figure 3A. As the
risk score raised, the patients’ risk of death also increased and the
survival time reduced. The Kaplan–Meier analysis revealed that

LUAD patients in the high-risk group had shorter OS (Figure 3C,
p = 1.496e-05), with AUCs of 0.683, 0.659, and 0.776 in the 1-
year, 3-year, and 5-year ROC curves, respectively (Figure 3D).

3.3 Validation of the Signature in Two GEO
Datasets
To evaluate the accuracy and stability of the prognostic signature,
two GEO datasets (GSE31210 and GSE50081, both based on
GPL570, Supplementary Table S3) were performed as external
validations. Patients in the validation cohort were classified into
low-risk and high-risk groups depending on the formula for the
risk score derived from the training cohort, respectively
(Figure 3B). Similarly, in the validation cohort, better OS
belonged to the patients with low-risk scores (Figure 3E, p =
4.737e-05), with AUCs of 0.68, 0.619, and 0.625 in the 1-year, 3-
year, and 5-year ROC curves, respectively (Figure 3F).

Gene Forward primer Reverse primer

GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC
PRKACA CAAGGAGACCGGGAACCACTA CATTCAGGGTGTGTTCGATCTG
GPX4 GAGGCAAGACCGAAGTAAACTAC CCGAACTGGTTACACGGGAA

FIGURE 1 | The flowchart of the study.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8527344

Gong et al. A Pyroptosis-Related Gene Signature

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


3.4 Risk Factors Predictive of Survival in
LUAD
Univariate and multivariate Cox regression analyses were applied
to evaluate whether the risk score derived from the signature
could function as an independent prognostic factor, using the
“survival” package. As shown in Figure 4A, the AJCC stage (p <
0.001), T stage (p < 0.001), N stage (p < 0.001), M stage (p =
0.043), and risk score (p < 0.001) were significantly related to OS
in the univariate Cox regression analysis, with only the AJCC
stage (p = 0.001) and risk score (p < 0.001) also being significantly
related to OS in the multivariate Cox regression analysis
(Figure 4B). Furthermore, a time-dependent ROC curve was
performed to testify as to the predictive accuracy. According to
the results, the AUC of the risk score was 0.677, which was higher
than the AUC of the T stage, N stage, and M stage and similar to
the AUC of the AJCC stage (Figure 4C), indicating that the
prognostic risk model was relatively reliable. To sum up, the
prediction model could be regarded as an independent prognostic
factor for LUAD patients.

3.5 Construction of a Predictive Nomogram
To predict the patients’ survival time accurately, nomograms are
usually applied by calculating the nomogram score based on each
prognostic elements included in the nomogram (Balachandran
et al., 2015). In this study, we established a nomogram to evaluate

the probabilities of 1-year, 3-year, 5-year, and 10-year survival by
using the risk score and other clinicopathological elements, like
gender, AJCC stage, TNM stage, tobacco history, and anatomical
location (Figure 5A). Calibration curves were also plotted and
showed a high degree of consistency between the actual and the
predicted 1-year, 3-year, 5-year, and 10-year survival when
compared to the reference line (Figure 5B). Then, we
observed that the AUC of the nomscore calculated from the
nomogram was 0.711, which was greater than the riskscore (AUC
= 0.677) (Figure 5C). Furthermore, the AUC of the nomscore in
the 1-year, 3-year, 5-year, and 10-year ROC curves reached 0.726,
0.759, 0.885, and 0.923 (Figure 5D). These results suggested that
the prediction efficiency would be more accurate and reliable
when the risk score was jointed with other clinicopathological
parameters.

3.6 Functional Enrichment Analysis
To further elucidate the biological functions and pathways of DE-
PRGs in pyroptosis, the “limma” R package was applied in order
to extract the DEGs between the two groups. FDR < 0.05 and |
log2FC | ≥ 1 were statistically significant. Altogether, 820 DEGs
were identified in the TCGA cohort. Among them, 343 genes
were highly expressed in the high-risk group, while the other 477
genes were low expressed. Subsequently, based on the DEGs, GO
enrichment analysis and KEGG pathway analysis were
performed. The top GO terms were “hormone metabolic

FIGURE 2 | Establishment of the prognostic model. (A) The boxplot showed the differentially expressed PRGs between normal and tumor tissues of LUAD. (B,C)
Univariate and multivariate Cox regression identified the PRGs associated with prognosis.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8527345

Gong et al. A Pyroptosis-Related Gene Signature

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FIGURE 3 | The accuracy of the prognostic model. (A,B) The gene expression pattern; distribution of risk scores between the two groups; distribution of survival
status in the training cohort (A) and validation cohort (B). (C,E) K-M survival curves of OS in the training cohort (C; p = 1.496e-05) and validation cohort (E; p = 4.737e-
05). (D,F) The ROC curve representing patients’ survival for different numbers of years in the two cohorts, AUC of 1-year, 3-year, and 5-year OS were 0.683, 0.659, and
0.776 (respectively) in the training cohort (D), and were 0.68, 0.619, and 0.625 (respectively) in the validation cohort (F).

FIGURE 4 | Evaluation of the prognostic accuracy of the model and other clinicopathological characteristics. (A,B) Univariate and multivariate Cox regression
analyses of the risk score and other clinical parameters (age, gender, AJCC stage, anatomic location, tobacco history, T, N, and M). (C) ROC curves for the risk score
(AUC = 0.677) and other clinical features.
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FIGURE 5 | Construction and assessment of a nomogram. (A) The nomogram of 1-year, 3-year, 5-year, and 10-year OS on basis of the risk model and other
clinical features. (B) Calibration plots used for evaluating the consistency between the actual and the predicted 1-year, 3-year, 5-year, and 10-year OS. (C) ROC curves
for the nomscore (AUC = 0.711) and other elements. (D) The ROC curves of nomscore for predicting OS. The AUC of 1-year, 3-year, 5-year, and 10-year OSwere 0.726,
0.759, 0.885, and 0.923 respectively.

FIGURE 6 | Functional enrichment analyses depending on the signature. The bubble graphs for GO enrichment analysis (A) and KEGG pathway analysis (B) were
displayed. The bigger the bubble, the richer the genes, and the darker the red, the more pronounced the difference.
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process” in the biological process (BP), “neuronal cell body” in
the cellular component (CC), and “receptor ligand activity” in the
molecular function (MF), respectively (Figure 6A). According to
KEGG analysis, “neuroactive ligand−receptor interaction,”
“cytokine−cytokine receptor interaction,” “steroid hormone
biosynthesis,” and “chemical carcinogenesis—DNA adducts”
were the main pathways (Figure 6B). On the whole, the
results implied that the DEGs were mainly correlated with the
immune response, receptor interaction, and chemical
metabolism.

3.7 Comparison of the Tumor Immune
Microenvironment Between Groups
Based on the ESTIMATE algorithm, we successfully obtained
the immune scores, stromal scores, and estimate scores. The
immune scores were distributed between −934.47 and
3,190.06 and represented a significant difference between
the subgroups (Figure 7A, p < 0.001). Thereafter, we
applied ssGSEA to quantify the immune activation level
between the two subgroups by analyzing the expression
profiles of the 29 immune signature gene sets. As shown in
Figure 7B, the levels of immune cell infiltration, especially of
B cells, CD8+ T cells, neutrophils, T helper 1 (Th1) cells,
tumor-infiltrating lymphocytes (TILs), and regulatory T

(Treg) cells, were generally lower in the high-risk group
than in the low-risk group. Moreover, the levels of 13
immune pathways displayed a similar distribution between
the two groups. Furthermore, from the previous literature, 79
ICGs were extracted (Supplementary Table S1). After
removing the HLA related genes, 60 genes remained, in
which 51 out of 60 ICGs have expression values. The
results of the Spearman correlation analyses between the
risk score and the ICGs revealed that the signature may be
closely related to immunotherapy. As shown in Figure 7C,
most of the ICGs were highly expressed in the low-risk group,
except for PVR, which may be a promising therapeutic target.
We then validated our results through the use of clinical
specimens from the HPA. The OS and the histological
expressions of PRKACA and GPX4 in normal and tumor
tissues were exhibited, in accordance with the results front
(Figures 8A,C–E,G,H).

3.8 qRT-PCR Analysis
We validated this result by applying the qRT-PCR analysis to
three LUAD cell lines and a normal lung cell line. We found
that the mRNA expression level of PRKACA was higher in the
normal cell line than in the cancer cell lines, and for GPX4 it
was the opposite, consistent with our results above
(Figures 8B,F).

FIGURE 7 | Analysis of the immune status of LUAD. (A) The correlation between the risk score and the immune score was displayed (p < 0.001). (B) Differential
distribution of enrichment scores of 16 immune cells types and 13 immune-related pathways between the low-risk (blue box) and high-risk (red box) groups via ssGSEA.
(C) Boxplots of the expression level of ICGs between the two subgroups (low-risk: blue; high-risk: red). Only the expression level of PVR was positively correlated to the
risk score.
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4 DISCUSSION

Lung cancer is one of the leading causes of cancer morbidities and
the most common cause of cancer-related deaths worldwide
(Sung et al., 2021). For early-stage LUAD patients, surgery is
the recommended treatment (Vansteenkiste et al., 2014), whereas
chemotherapy, radiotherapy, immunotherapy, and targeted
therapy are recommended for advanced LUAD patients
(Hirsch et al., 2017). Several studies have demonstrated a
strong association between TMB and the clinical benefits of
receiving immunotherapy (Proto et al., 2019; Samstein et al.,
2019). Moreover, TIME is closely correlated with the efficacy of
immunotherapy (Frankel et al., 2017; Lei et al., 2020), suggesting
that immunotherapy may be more effective for high-risk patients
based on the risk model.

Pyroptosis is a type of programmed cell death triggered by a
family of inflammatory caspases that plays as a double-edged
sword in the tumorigenesis and therapeutic mechanisms, which
has been newly recognized in recent years. Pyroptosis was found
to release inflammatory factors and stimulate normal cells,
leading to transformation into tumor cells (Karki and
Kanneganti, 2019). Having said that, pyroptosis can also
promote tumor cell death and restrain proliferation and
migration of cancer cells, making pyrolysis itself a hopeful
prognostic and therapeutic target for cancer (Zheng and Li,
2020). A pyroptosis-related signature has been established to
predict prognosis in ovarian cancer (Ye et al., 2021). While, the

role of PRGs in LUAD has not yet been identified; thus, our study
aimed to explain it.

In the present study, 33 PRGs were systematically analyzed
to identify those associated with OS. Following the differential
expression analysis, univariate Cox regression analysis, and
multivariate Cox regression analysis, five optimal mRNAs,
namely IL6, NOD1, NLRC4, PRKACA, and GPX4, were
screened out for the pyroptosis-related prognostic
signature. In our study, GPX4 and PRKACA were found to
be elements of the prediction model. Previous literature
indicated that GPX4, an antioxidant enzyme that
participate in repairing oxidative damage to lipids, was an
important negative regulator of the pyroptotic cell death
pathway (Kang et al., 2018; Russo and Rathinam, 2018;
Kajarabille and Latunde -Dada, 2019). PAKACA is a
catalytic subunit alpha of protein kinase A activated by
cAMP that closely related to the progression of tumor
(Chao et al., 2021). Increased transcription of PRKACA has
been detected in patients of breast cancer that resistant to
trastuzumab, which becomes a routine treatment for HER2-
positive breast cancer (Moody et al., 2015). This suggests that
PRKACA may perform as a biomarker for cancer and a
prognostic indicator. The five PRGs’ signature was testified
to be an independent indicator for LUAD prognosis.
Following this, a prediction model depending on the PRGs’
signature was constructed. The AUC of the signature could
reach 0.776 in the training set when predicting 5-year survival.

FIGURE 8 | Validation of PRKACA and GPX4. (A,E) The prognostic differences of PRKACA (p = 1.586e-02) and GPX4 (p = 4.586e-03) between the high-risk and
low-risk groups were investigated. (B,F) Relative mRNA levels of PRKACA and GPX4 were displayed via qRT-PCR. PRKACA was highly expressed in normal tissues,
and GPX4 showed the opposite. (C–D,G–H) Protein expression of the two candidate genes in the HPA database. (C–D) Protein expression of PRKACA. (G–H) Protein
expression of GPX4.
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Until now, the mechanism of pyroptosis has not been fully
discovered. What we know is that as tumors progress, multiple
cell death modes may be concurrent and interact with one
another (Fritsch et al., 2019). Generally, pyroptosis features
the release of many proinflammatory factors and the rupture
of cell plasma membranes (Zheng and Li, 2020). We analyzed the
DEGs between two subgroups and discovered they were mainly
involved in receptor ligand activity and metabolic processes,
implying that dying cells may induce complex metabolic
processes. According to the GO and KEGG analyses results,
we have reason to suppose that pyroptosis plays a vital role in
the regulation of the tumor microenvironment.

Cancer immunotherapies targeting immune checkpoints have
been proven to improve OS in various cancers (Dyck and Mills,
2017; Li et al., 2019). Thus, exploring novel targets and
developing new schemes for antitumor therapy are always
main tasks within current medicine. In this study, we hoped
to discover the association between the signature and TIME.
Based on the ESTIMATE algorithm and ssGSEA, we could
speculate that in the high-risk group there is an overall lesion
of immune functions. Previous researches revealed that Treg cells
were recruited into the human tumor microenvironment and
inhibited T cell immunity to abolish the therapeutic efficacy of
PD-L1, CTLA-4, and the TGF-β blockade, regardless of whether
they were live or apoptotic (Zou, 2006; Maj et al., 2017; Principe
et al., 2021). Surprisingly, the level of Treg cells was higher in the
low-risk group than in the high-risk group, which indicated that
immunotherapy may be effective for the high-risk group.
Furthermore, we detected the correlation between the risk
score and the expression levels of ICGs. The results
demonstrated that the level of poliovirus receptor (PVR,
CD155) was higher in the high-risk group. PVR, a member of
the nectin-like family of adhesion molecules, has been proved to
decrease the expansion and function of tumor antigen-specific
CD8+ T cells. PVR also has a high affinity to TIGHT, which is a
promising new target for cancer immunotherapy (Shibuya et al.,
1996; Kucan Brlic et al., 2019; Chauvin and Zarour, 2020).
According to these findings, immunotherapy based on PVR
may be promising for LUAD patients applicable to the model.

Despite the prognostic value of the signature, this study still
encountered several limitations which must be considered. First,

our report was retrospective and based on public databases,
devoid of certain crucial clinicopathological information.
Second, the way in which pyroptosis modulates the precise
process of LUAD is unclear. Moreover, further biochemical
experiments, such as immunohistochemistry, cell function
experiments, and so on, need to be conducted to confirm the
findings.

5 CONCLUSION

In conclusion, a prognostic signature of five PRGs was established
in LUAD and validated in the GEO datasets to explore the role of
pyroptosis in tumor malignancy. These PRGs were also
associated with TIME, as well as helping to predict potential
therapeutic regimens for LUAD. Further studies are necessary in
order to verify these results in our study.
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