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Abstract

For a broad range of research and practical applications it is important to understand the

allegiances, communities and structure of key players in society. One promising direction

towards extracting this information is to exploit the rich relational data in digital social net-

works (the social graph). As global social networks (e.g., Facebook and Twitter) are very

large, most approaches make use of distributed computing systems for this purpose. Distrib-

uting graph processing requires solving many difficult engineering problems, which has lead

some researchers to look at single-machine solutions that are faster and easier to maintain.

In this article, we present an approach for analyzing full social networks on a standard lap-

top, allowing for interactive exploration of the communities in the locality of a set of user

specified query vertices. The key idea is that the aggregate actions of large numbers of

users can be compressed into a data structure that encapsulates the edge weights between

vertices in a derived graph. Local communities can be constructed by selecting vertices that

are connected to the query vertices with high edge weights in the derived graph. This com-

pression is robust to noise and allows for interactive queries of local communities in real-

time, which we define to be less than the average human reaction time of 0.25s. We achieve

single-machine real-time performance by compressing the neighborhood of each vertex

using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing.

These techniques reduce query times from hours using industrial desktop machines operat-

ing on the full graph to milliseconds on standard laptops. Our method allows exploration of

strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It

has been deployed in software that is actively used by social network analysts and offers

another channel for media owners to monetize their data, helping them to continue to pro-

vide free services that are valued by billions of people globally.

Introduction

Social media data provides a record of global human interactions at a scale that is hitherto

unprecedented. These interactions are an invaluable resource for analyzing social allegiances,

discovering entities with shared interests, and identifying key players in communities. The size
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of social networks (e.g., Facebook or Twitter), with hundreds of millions of users and billions

of connections, makes social media analysis hard, and often requires big computing and data

centers to extract the desired information.

In this article, we focus on the problem of discovering communities in full social networks,

such as Facebook and Twitter in real-time. We define real-time to be less than the average

human reaction time, which is 0.25s [1]. On social media, people connect with other people

(e.g., by being a “friend” or “following” somebody) forming a social graph. Discovering com-

munities in the social graph has a large number of practical applications, which include

• Security, where analysts explore a network looking for groups of potential adversaries;

• Social sciences, where queries can establish the important relationships between individuals

of interest;

• E-commerce, where queries reveal related products or users;

• Marketing, where companies seek to optimize advertising channels or celebrity endorsement

portfolios.

These applications do not disrupt user experience in the way that sponsored links or feed

advertising do, offering an alternative means for social media providers to continue to offer

free services.

A concrete example of a commercial application of community detection using Twitter

data is strategic support to a company that wants to trade in a new geographic region. To enter

a new geography a company must understand the competitors, customers and marketing

channels in that region. Our system allows them to extract this valuable information by pro-

viding the Twitter handles for their existing products, key people, brands and endorsers. In

real-time, they can receive the accounts closely related to their company filtered by that mar-

ket. The output is automatically structured into groups (communities) such as media titles,

sportspeople and other related companies. Analysts examine the results, and our real-time sys-

tem allows them to interactively explore the network by changing the input accounts. We

show a high-level illustration for an alcoholic drinks brand in Fig 1.

In this article, we consider community detection with three practical restrictions: (1) com-

putations need to be in real-time, (2) can run on a single laptop and (3) can handle very

large graphs. A system that satisfies these constraints is vital to analysts who wish to interac-

tively explore and analyze community structures in large graphs. To achieve our objective of a

Fig 1. Example application of a real-time community detection system. Diageo want to explore the market (competitors, customers, associations etc.) around their

brand. They feed in information about themselves (“seeds”). In this example the seeds are the company itself (Diageo) and some of their major brands (Smirnoff,

Baileys and Guinness). Our systems finds accounts that are similar/related to the seeds and then structures the similar accounts into communities.

https://doi.org/10.1371/journal.pone.0188702.g001
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large-scale, real-time community detection system that runs on a laptop, we combine global

and local approaches to community detection: First, we use local community detection to

identify an interesting region of a graph, and then we apply global community detection to

help understand that region. In the experimental section we describe several concrete applica-

tions, one of which is understanding the local community around and the structure of the US

Republican party. In this case an analyst could query the Twitter graph with the accounts

‘Donald Trump’, ‘Marco Rubio’, ‘Ted Cruz’, ‘Ben Carson’ and ‘Jeb Bush’ (data from December

2015). The system finds the local community around these query vertices, which in this case

happens to be the right wing of US politics. The returned results indicate the sub-communities

that exist within the US right wing. On seeing these, an analyst may decide that they are specif-

ically interested in one subgroup. In this case one such subgroup are gun / rifle lobbyists and

could run a follow up query using ‘the national rifles association’, ‘gun owners of America’ and

‘the national association of gun rights’, which are three accounts surfaced by the original

query.

Background, key challenges and contribution

A social media network is a structure that comprises a graph and a collection of metadata

describing the vertices V and/or edges E of the graph. A community has no formal mathemati-

cal definition, but is generally agreed to be is a collection of vertices C� V that share many

more edges than would be expected from a random subset of vertices [2]. In the context of the

Twitter graph, a vertex V is a Twitter account and an (undirected) edge E between Vi, Vj exists

if Vi Follows Vj or Vj Follows Vi. Here, and in the remainder of the paper, we capitalize Follows

when describing the Twitter specific meaning of this word. A community might be the set of

Twitter accounts belonging to machine learning researchers. In addition to the Twitter graph,

the Twitter network also includes metadata associated with the accounts (e.g., name, descrip-

tion) and edges (e.g., creation time, direction).

In this article, we develop a robust real-time algorithm for community detection for which

we focus exclusively on the properties of the graph, i.e., no metadata of the Twitter/Facebook

network is required. In particular, we propose that robust associations between social network

accounts can be reached by considering the similarity of their neighborhood graphs [3]. The

neighborhood graph of a vertex consists of the set of all vertices that are directly connected to it,

irrespective of the edge direction. Neighborhood graphs of Digital Social Networks (DSNs)

can be very large; In Twitter, the largest have almost 100 million members (as of June 2016).

Our proposition of exploiting the neighborhood graphs relies on the existence of homophily
in social networks: The homophily principle states that people with similar attributes are more

likely to form relationships [4]. An important assumption that we make is that the DSNs we

study are representative of the underlying social networks. In reality the underlying networks

and the DSNs themselves are multiplex (Twitter users retweet and comment in addition to

Following). Interactions occur over multiple channels and modeling only a simplex network is

known to introduce inaccuracies [5]. We choose this approach as communication density in

the additional layers of our experimental networks are orders of magnitude more sparse than

the layer we study (the median number of retweets from a Twitter user in our dataset is zero,

comments are even more sparse). Accordingly, we feel that the assumption that social media

accounts with similar neighborhood graphs are likely to have similar attributes is valid for

these datasets.

Our real-time system exhibits the following properties:

1. It produces high quality communities from very noisy data. Quality is defined using the

community axioms described in the community axioms section [6].

Community detection in full social networks
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2. It is robust to failure and does not require engineering support.

3. It is parsimonious with the time of its users. Specifically we mean returning results in real-

time and having sub-linear time complexity with the size of the network (Discussed in

detail in the Time Complexity section).

The first constraint leads us to use the neighborhood graph as the unit of comparison

between vertices. The neighborhood graph is generated by the actions of large numbers of

independent users in contrast to features like text content or group memberships, which are

usually controlled by a single user. The second requirement leads us to search for a solution

that does not require large computing resources and can run on a laptop. The third property

prescribes a real-time system.

Currently, no tool exists that provides real-time analysis of large graphs on a single com-

modity machine. Existing methods to analyze local community structure in large graphs either

rely on distributed computing facilities or incur excessive run-times making them impractical

for exploratory and interactive work [7, 8].

In this article, we introduce a novel real-time analysis tool for detecting communities in

large graphs using only a laptop. We focus on a dataset of 700 million Twitter users. However,

our approach is more generally applicable as it relies only on the general graph structure, not

on Twitter-specific data. We provide additional results using Facebook data to demonstrate

the general applicability.

For real-time community detection, we need to solve two core challenges:

1. The graph must be fit into the memory of a laptop.

2. Many neighborhood graphs containing up to 100 million vertices must be compared in

milliseconds.

To address the first challenge, we compress the neighborhood graphs. We achieve this by

using fixed-length minhash signatures, which vastly reduces the size of the graph. Choosing

appropriate length minhash signatures squeezes the graph into memory. Minhash signatures

allow for an efficient comparison of neighborhood graphs by means of the Jaccard similarity,

which can be efficiently computed for minhash signatures. To solve the second challenge and

achieve real-time querying we use the elements of the minhash signatures as the basis to build

a Locality Sensitive Hashing (LSH) data structure. LSH facilitates querying of similar accounts

in constant time.

The combination of minhashing and LSH allows analysts to enter an account or a set of

accounts and in milliseconds receive the set of most related accounts. From this set we use the

minhash signatures to rapidly construct a weighted graph and apply the WALKTRAP commu-

nity detection algorithm before visualizing the results [9].

Our novel system is practical and combines proven techniques in an innovative way: (1)

Minhashing and LSH are applied to the neighborhood graph [10, 11]; minhashing is normally

only used to compare very similar sets. (2) We show that minhashing is effective for commu-

nity detection when applied to a broad range of neighborhood graph similarities. (3) We

develop an agglomerative clustering algorithm and an original update procedure for minhash

signatures in this setting. The novel combination of these techniques allows our system to per-

form robust real-time community detection on a laptop using graphs that exceed 100 million

vertices.

The contributions of this article are:

1. We establish that robust associations between social media users can be determined by

means of the Jaccard similarity of their neighborhood graphs.

Community detection in full social networks
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2. We show that the approximations implicit in minhashing and LSH minimally degrade per-

formance and allow querying of very large graphs in real-time.

3. System design and evaluation: We have designed and evaluated an end-to-end system for

extracting data from social media providers, compressing the data into a form where it can

be efficiently queried in real-time.

4. We demonstrate how queries can be applied to a range of problems in graph analysis, e.g.,

understanding the structure of industries, allegiances within political parties and the public

image of a brand.

Our code base is publicly available at https://github.com/melifluos/LSH-community-

detection, which includes instructions for replicating our experiments.

Related work

Existing approaches to large-scale, efficient, community detection have three flavors: More

efficient community detection algorithms, innovative ways to perform processing on large

graphs and data structures for graph compression and search. Table 1 shows related

approaches to this problem and which of our three constraints they satisfy. The table highlights

that there is currently only one way to do real-time community detection on large graphs

(Twitter WTF [19]). However, this method requires a large computing infrastructure and does

not run on a laptop. Algorithms that do run on a laptop are not real-time capable and may not

even perform community detection on large graphs.

Community detection algorithms. Community detection methods have been developed

in areas as diverse as neuronal firing [21], electron spin alignment [22] and social models [6].

[23] and [24] both provide excellent and detailed overviews of the diverse community detec-

tion literature. Approaches can be broadly categorized into local and global methods.

Global methods assign every vertex to a community, usually by partitioning the vertices.

Many highly innovative schemes have been developed to do this. Modularity optimization

[12] is one of the best known. Modularity is a metric used to evaluate the quality of a graph

partition. Communities are determined by selecting the partition that maximizes the modular-

ity. An alternative to modularity was developed in [9] who innovatively applied random walks

on the graph to define communities as regions in which walkers become trapped (WALK-

TRAP). In [13], random walks are combined with efficient coding theory to produce

Table 1. Comparison of related work. SCM stands for runs on a Single Commodity Machine.

Method Real-time Large graphs SCM

Modularity optimization [12] ✘ ✘ ✔
WALKTRAP [9] ✘ ✘ ✔
INFOMAP [13] ✘ ✘ ✔
Louvain method [14] ✘ ✔ ✔
BigClam [6] ✘ ✔ ✔
Graphlab [15] ✘ ✔ ✘
Pregel [16] ✘ ✔ ✘
Surfer [17] ✘ ✔ ✘
Graphci [18] ✘ ✔ ✔
Twitter WTF [19] ✔ ✔ ✘
LEMON [20] ✘ ✔ ✔
Our Method ✔ ✔ ✔

https://doi.org/10.1371/journal.pone.0188702.t001
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INFOMAP, a technique that provides a new perspective on community detection: Communi-

ties are defined as the structural sub-units that facilitate the most efficient encoding of infor-

mation flow through a network. All three methods are well optimized for their motivating

networks, but do not scale to modern DSNs.

The availability of data from the Web, DSNs and services like Wikipedia has focused

research attention on algorithms that scale. An early success was the Louvain method that

allowed modularity optimization to be used to perform community detection on large graphs

(they report 100 million vertices and 1 billion edges). However, the method was not intended

to be real-time, and the reported 152 minute runtime on a biopteron 2.2k with 24GB of mem-

ory is too slow to achieve real-time performance, even allowing for nearly a decade of hard-

ware advances [14]. Another noteworthy technique applied to very large graphs is Bigclam [6].

Bigclam is a multiple membership model, meaning that each vertex can be assigned to more

than one community. This differs from the Louvain method, which assigns each vertex to a

single community. As vertices can belong to more than one community, Bigclam can be said

to detect overlapping communities. However, in common with the Louvain method, Bigclam

is not a real-time algorithm that could facilitate interactive exploration of social networks.

In contrast to global community detection methods, local methods do not assign every ver-

tex to a community. Instead they find vertices that are in the same community as a set of input

vertices (seeds). For this reason they are normally faster than global methods. Local commu-

nity detection methods were originally developed as crawling strategies to cope with the rap-

idly expanding web-graph [25]. Following the huge impact of the PageRank algorithm [26],

many local random walk algorithms have been developed. Kloumann et al. [27] conducted a

comprehensive assessment of local community detection algorithms on large graphs. In their

study Personal PageRank (PPR) [28] was the clear winner. PPR is able to measure the similar-

ity to a set of vertices instead of the global importance/influence of each vertex by applying a

slight modification to PageRank. PageRank can be regarded as a sequence of two step pro-

cesses that are iterated until convergence: A random walk on the graph followed by (with

small probability) a random teleport to any vertex. PPR modifies PageRank in two ways: Only

a small number of steps are run (often 4), and any random walker selected to teleport must

return to one of the seed vertices. Recent extensions have shown that finding the local commu-

nity around a vertex can be improved by seeding (using as the teleport set) PPR with the neigh-

borhood graph of that vertex [2] and that PPR can be used to initiate local spectral methods

with good results [20].

Random walk methods are usually evaluated by power iteration; a series of matrix multipli-

cations requiring the full adjacency matrix to be read into memory. The adjacency matrix of

large graphs will not fit in memory. Therefore, distributed computing resources are used (e.g.,

Hadoop). While distributed systems are continually improving, they are not always available

to analysts, require skilled operators and typically have an overhead of several minutes per

query.

A major challenge when applying both local and global community detection algorithms to

real-world social media networks is performance verification. Testing algorithms on a held-

out labeled test set is complicated by the lack of any agreed definition of a community. Much

early work makes use of small hand-labeled communities and treats the original researchers’

decisions as gold standards [29–31]. Irrespective of the validity of this process, a single (or

small number) of manual labelers can not produce ground-truth for large DSNs. [32] proposed

a solution to the verification problem in community detection. They observe that in practice,

community detection algorithms detect communities based on the structure of interconnec-

tions. However, results are verified by discovering common attributes or functions of vertices

within a community. [32] identified 230 real-world networks in which they define ground-
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truth communities based on vertex attributes. The specific attributes that they use are varied,

and some examples include publication venues for academic co-authorship networks, chat

group membership within social networks and product categories in co-purchasing networks.

Graph processing systems. A complimentary approach to efficient community detection

on large graphs is to develop more efficient and robust systems. This is an area of active

research within the systems community. General-purpose tools for distributed computation

on large scale graphs include Graphlab, Pregel and Surfer [15–17]. Purpose-built distributed

graph processing systems offer major advances over the widely used MapReduce framework

[33]. This is particularly true for iterative computations, which are common in graph process-

ing and include random walk algorithms. However, distributed graph processing still presents

major design, usability and latency challenges. Typically, the run times of algorithms are domi-

nated by communication between machines over the network. Much of the complexity comes

from partitioning the graph to minimize network traffic. The general solution to the graph

partitioning problem, placing roughly equal numbers of nodes on each machine while mini-

mizing the number of inter-machine edges, is NP-hard and remains unsolved. These concerns

have led us and other researchers to buck the overarching trend for increased parallelization

on ever larger computing clusters and search for single-machine graph processing solutions.

One such solution is Graphci, a single-machine system that offers a powerful and efficient

alternative to processing on large graphs [18]. The key idea is to store the graph on disk and

optimize input/output (I/O) routines for graph analysis operations. Graphci achieves substan-

tial speed-ups compared to conventional systems, but the repeated disk I/O makes real-time

operation impossible. Twitter also use a single-machine recommendation system that serves

“Who To Follow (WTF)” recommendations across their entire user base [19]. WTF provides

real-time recommendations using random walk methods similar to PPR. This is achieved by

loading the entire Twitter graph into memory. Following their design specification of 5 bytes

per edge 5 × 30 × 109 = 150 GB of RAM would be required to load the current graph, which is

an order of magnitude more than available on a laptop, which serves as our target platform.

Graph compression and data structures. The alternative to using large servers, clusters

or disk storage for processing large graphs is to compress the whole graph to fit into the mem-

ory of a single machine. Graph compression techniques were originally motivated by the desire

for single machine processing on the Web Graph. Approaches focus on ways to store the dif-

ferences between graphs instead of the raw graph. Adler et al. [34] searched for web pages with

similar neighborhood graphs and encoded only the differences between edge lists. The seminal

work by Boldi et al. [35] ordered web pages lexicographically endowing them with a measure

of locality. Similar compression techniques were adapted to social networks by Chierichetti

et al. [36]. They replaced the lexical ordering with an ordering based on a single minhash value

of the out-edges, but found social networks to be less compressible than the Web (14 bits ver-

sus 3 bits per edge). While the aforementioned techniques achieve remarkable compression

levels, they pay the price of slower access to the data [19].

Minhashing is a technique for representing large sets with fixed-length signatures that

encode an estimate of the similarity between the original sets. When the sets are sub-graphs

minhashing can be used for lossy graph compression. The pioneering work on minhashing

was by Broder [37] whose implementation dealt with binary vectors. This was extended to

counts (integer vectors) by Charikar et al. [38] and later to continuous variables [39]. Efficient

algorithms for generating the hashes are discussed by Manasse et al. [40]. Minhashing has

been applied to clustering the Web by Haveliwala et al. [41], who considered each web page to

be a bag of words and built hashes from the count vectors.

Two important innovations that improve upon minhashing are b-Bit minhashing [42] and

Odd Sketches [43]. When designing a minhashing scheme there is a trade off between the size

Community detection in full social networks
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of the signatures and the variance of the similarity estimator. Li et al. [42] show that it is possible

to improve on the size-variance trade off by using longer signatures, but only keeping the lowest

b-bits of each element (instead of all 32 or 64). Their work delivers large improvements for very

similar sets (more than half of the total elements are shared) and for sets that are large relative

to the number of elements in the sample space. Mitzenmacher et al. [43] improved upon b-bit

minhashing by showing that for approximately identical sets (Jaccard similarities� 1) there

was a more optimal estimation scheme.

Locality Sensitive Hashing (LSH) is a technique introduced by Indyk and Motwani [44] for

rapidly finding approximate near neighbors in high dimensional space. In the original paper a

parameter ρ governs the quality of LSH algorithms. A lower value of ρ leads to a better algo-

rithm. There is a great deal of work studying the limits on ρ. Of particular interest, Motwani

et al. [45] use a Fourier analytic argument to provide a tighter lower bound on ρ, which was

later bettered by O’Donnell et al. [46] who exploited properties of the noise stability of boolean

functions. The latest LSH research uses the structure of the data, through data dependent hash

functions [47] to get even tighter bounds. As the hash functions are data dependent, unlike

earlier work, only static data structures can be addressed.

Data

In this article we focus on Twitter data because Twitter is the most widely used Digital Social

Network (DSN) for academic research and the data is relatively easy to obtain. At the time of

writing the Twitter Follower graph consists of roughly one billion vertices (Twitter accounts)

and 30 billion edges (Follows).

To collect data we use the Twitter REST API to crawl the network. Every time a new

account is crawled we check the number of Followers in the account metadata and if it is

greater than 10,000, we download the full Follower list. While 10,000 is an arbitrary number,

accounts with more than 10,000 Followers tend to have public profiles (Wikipedia pages or

websites), which are required to verify any results.

Our data set is a snapshot of the Twitter graph from December 2015. We found 675,000

accounts with over 10,000 Followers. They are Followed by a total of 1.5 × 1010 Followers, of

which 7 × 108 are unique. We learn minhash representations of the 675,000 largest accounts

using the Following patterns of all 7 × 108 accounts in the dataset. Any queries or results

returned in the experimentation section are restricted to the 675,000 hashed accounts.

To show that our method generalizes to other social networks, we also present results using

a large Facebook Pages engagement graph containing 450 million vertices (FB accounts) and

700 million edges (Page likes/comments).

It is not possible to crawl the Facebook network in the same way as Twitter and so to collect

data from Facebook we matched the Twitter accounts with greater than 10,000 Followers to

Facebook Page accounts using a combination of automatic account name matching and man-

ual verification. Facebook Page likes are not available retrospectively, but can be collected

through a real-time stream. Having identified the set of accounts on Facebook corresponding

to the large Twitter accounts, we used the Facebook API to collect the interaction streams of

each page over a period of two years. Due to privacy concerns neither the Twitter nor the Face-

book datasets can be made publicly available in their raw forms and so for reproducibility we

provide additional results on a public email network dataset [48]. The network is a directed

network of email communication from a large European research organization. Each vertex is

an employee and they are uniquely labeled by their department (further details and the data

are available at http://snap.stanford.edu/data/email-Eu-core.html)
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Downloading large quantities of social media data is an involved subject and we include

details of how we did this in S1 File for reproducibility.

Method

In the following, we detail our approach to real-time community detection in large social net-

works with the restriction that it runs on a single laptop. Our method consists of two main

stages: In stage one, we take a set of seed accounts and expand this set to a larger group con-

taining the most related accounts to the seeds. This stage is depicted by the box labeled “Find

similar accounts” in Fig 1. Stage one uses a very fast nearest-neighbor search algorithm. In

stage two, we embed the results of stage one into a complete weighted graph where each vertex

is connected to every other vertex. The edge weights are given by the Jaccard similarity of the

two accounts they connects. This form of graph is known as an intersection graph in the mathe-

matics literature, where it is a well studied object [49–51]. We apply a global community detec-

tion algorithm to the intersection graph and visualize the results. Stage two is depicted by the

box labeled “Structure and visualize” in Fig 1.

In the remainder of the paper we use the following notation: The ith user account (or inter-

changeably, vertex of the network) is denoted by Ai, and N(Ai) gives the set of all accounts

directly connected to Ai (the neighbors of Ai). The set of accounts for which we want to dis-

cover communities in the network are provided by a user into the system and are called

“seeds”. They are denoted by S = {A1, A2, . . ., Am} while C = {A1, A2, . . ., An} (community) is

used for the set of accounts that are returned by stage one of the process.

Stage 1: Seed expansion

The first stage of the process takes a set of seed accounts as input (provided by the user), orders

all other accounts by similarity to the seeds and returns an expanded set of accounts similar to

the seed account(s). For this purpose, we require three ingredients:

1. A similarity metric between accounts

2. An efficient system for finding similar accounts

3. A stopping criterion to determine the number of accounts to return

In the following, we detail these three ingredients of our system, which will allow for real-

time community detection in large social networks on a standard laptop.

Similarity metric. The property of each account that we choose to compare is the neigh-

borhood graph. The neighborhood graph is an attractive feature as it is not controlled by an

individual, but by the (approximately) independent actions of large numbers of individuals.

The edge generation process in Digital Social Networks (DSNs) is very noisy, producing

graphs with many extraneous and missing edges. As an illustrative example, the pop stars Emi-

nem and Rihanna have collaborated on four records and a stadium tour (“Love the Way You

Lie” (2010), “The Monster” (2013), “Numb” (2012), and “Love the Way You Lie (Part II)”

(2010), the Monster Tour (2014)). Despite this clear association, at the time of writing Eminem

is not one of Rihanna’s 40 million Twitter followers. However, Rihanna and Eminem have a

Jaccard similarity of 18%, making Rihanna Eminem’s 6th strongest connection. Using the

neighborhood graph as the unit of comparison between accounts mitigates against noise asso-

ciated with the unpredictable actions of individuals. The metric that we use to compare two

neighborhood graphs is the Jaccard similarity.
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The Jaccard similarity is given by

JðAi;AjÞ ¼
jNðAiÞ \ NðAjÞj
jNðAiÞ [ NðAjÞj

; ð1Þ

where N(Ai) is the set of neighbors of ith account. The Jaccard similarity has two attractive

properties for this task. First, it is a normalized measure providing comparable results for sets

that differ in size by orders of magnitude. Second, minhashing can be used to provide an unbi-

ased estimator of the Jaccard similarity that is both time and space efficient.

Efficient system to find similar accounts. To efficiently search for accounts that are simi-

lar to a set of seeds we represent every account as a minhash signature and use a Locality Sensi-

tive Hashing (LSH) data structure based on the minhash signatures for approximate nearest

neighbor search.

Computing Jaccard similarities. Computing the Jaccard similarities in Eq (1) is very

expensive: Each set of neighbors can have up to 108 members, and calculating intersections is

super-linear in the total number of members of the two sets being intersected. Multiple large

intersection calculations can not be processed in real-time. There are two alternatives: Either

the Jaccard similarities are pre-computed for all possible pairs of vertices, or they are esti-

mated. Using pre-computed values for all n = 675,000 Twitter accounts with more than 10,000

Followers would require caching 1

2
nðn � 1Þ � 2:5� 1011 floating point values requiring

approximately 1 TB and exceeding the specifications of a laptop. Therefore, we decide to effi-

ciently estimate the Jaccard similarities using minhashing.

The minhashing compression technique of Broder [52] generates unbiased estimates of the

Jaccard similarity in O(K), where K is the number of hash functions in the signature. Theoreti-

cal guarantees for minhashing require that min-wise independent permutations of the sets can

be efficiently generated. In practice, this is not true and hash functions are used that approxi-

mate the minwise independent permutations. This is achieved by first indexing the universe of

elements to be hashed. The indices are mapped through a hash function and the value of mini-

mum occupied index for each set is taken as the minhash. Using hash functions to simulate

permutations leads to slightly weaker, but still practically useful guarantees [52]. The estimate

ĴðAi;AjÞ of the Jaccard similarity J(Ai, Aj) is attained by exploiting that the probability of a

minhash function hk is equal for two sets Ai, Aj is given by the Jaccard coefficient

JðAi;AjÞ ¼ pðhkðAiÞ ¼ hkðAjÞÞ 8k ¼ 1; . . . ;K : ð2Þ

Therefore, we obtain an estimate of J(Ai, Aj) by estimating the probability p(hk(Ai) = hk(Aj)).
For this, we create a signature vectorH, which is made of K independent hashes hk, k = 1, . . ., K
and calculate the Monte-Carlo Jaccard estimate Ĵ as

Ĵ ðAi;AjÞ ¼
I
K

ð3Þ

where we define

I ¼
XK

k¼1

dðhkðAiÞ; hkðAjÞÞ ; ð4Þ

dðhkðAiÞ; hkðAjÞÞ ¼
1 if hkðAiÞ ¼ hkðAjÞ

0 if hkðAiÞ 6¼ hkðAjÞ

8
<

:
: ð5Þ
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As each hk is independent, I* Bin(J(Ai, Aj), K). The estimator is fully efficient, i.e., the variance

is given by the Cramér-Rao lower bound

varðĴ Þ ¼
Jð1 � JÞ
K

; ð6Þ

where we have dropped the Jaccard arguments for brevity. Eq (6) shows that Jaccard coeffi-

cients can be approximated to arbitrary precision using minhash signatures with an estimation

error whose variance scales as O(1/K).

Memory and space improvements of minhashing. We use all 700 million Twitter

accounts are used to compute the minhash signatures. However, the memory requirement of

minhash signatures is only Kn integers, where K is the number of hash functions and n is the

number of considered Twitter accounts. Therefore, it fits into the RAM of a laptop: For

K = 1000 independent hash functions and the n = 675,000 largest Twitter accounts, only�

4GB are required. In comparison to calculating Jaccard similarities of the largest 675,000 Twit-

ter accounts with� 4 × 1010 neighbors minhashing reduces expected processing times by a

factor of 10,000, and storage space by a factor of 1,000. Note that our method allows to add

new accounts quickly by simply calculating one additional minhash signature without needing

to add the pairwise similarity to all other accounts.

Algorithm 1 Minhash signature generation
Require: M  number of Accounts
Require: K  size of signature
Require: N(Account)  All neighbors
1. T 2 NM�K  1 ⊳ Initialise signature matrix to 1
2. index  1
3. for all Accounts do
4. P permuteðindexÞ 2 N1�K ⊳ Permute the Account index K times
5. for all N(Account) do
6. T [i] min(T [i], P) ⊳ Compute the element-wise minimum of the
signature
7. end for
8. index = index + 1
9. end for
10. return T ⊳ Return matrix of signatures

Efficient generation of minhash signatures. Minhash signatures allow for rapid estima-

tion of the Jaccard similarities. However, care must be taken when implementing minhash

generation. Calculation of the signatures is expensive: Algorithm 1 requires O(NEK) computa-

tions, where N is the number of neighbors, E is the average out-degree of each neighbor and K
is the length of the signature (i.e., the number of independent hash functions for estimating

the Jaccard similarity). For our Twitter data these values are N = 7 × 108, E = 10, K = 1,000. A

naive implementation can run for several days. We have an efficient implementation that takes

one hour allowing signatures to be regenerated overnight without affecting operational use

(see S1 File for more details).

Locality Sensitive Hashing (LSH). Calculating Jaccard similarities based on minhash sig-

natures instead of full adjacency lists provides tremendous benefits in both space and time

complexity. However, finding near neighbors of the input seeds is an onerous task. For a set of

100 seeds and our Twitter data set, nearly 70 million minhash signature comparisons would

need to be performed, which dominates the run time. Locality Sensitive Hashing (LSH) is an

efficient system for finding approximate near neighbors [44].

LSH works by partitioning the data space. Any two points that fall inside the same partition

are regarded as similar. Multiple independent partitions are considered, which are invoked by
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a set of hash functions. LSH has an elegant formulation when combined with minhash signa-

tures for near neighbor queries in Jaccard space, which is illustrated in Fig 2. The minhash sig-

natures are divided into bands containing fixed numbers of hash values. LSH exploits that

similar minhash signatures are likely to have identical bands. An LSH table can then be con-

structed that points from each account to all accounts that have at least one identical minhash

band. In Fig 2, accounts A1 and A2 have an identical Band 1 and so will be grouped together.

We apply LSH to every input seed independently to find all candidates that are ‘near’ to at least

one seed.

In our implementation, we use 500 bands, each containing two hashes. For every query

account the LSH table is used to lookup similar (high Jaccard coefficient) accounts. Each lookup

is O(1) and so the total runtime is O(S) where S is the number of seeds in the query. The results

are stored as a set (the candidates set) so that any duplicates resulting from separate queries are

removed. Table 2 shows typical system runtimes for three scenarios: a naive implementation,

using just minhashing and using LSH and minhashing. As most accounts share no neighbors,

the LSH step dramatically reduces the number of candidate accounts and the algorithm runtime

by a factor of roughly 100. LSH is essential for the real-time capability of our system.

Sorting similarities. LSH produces a set of candidate accounts that are related to at least

one of the input seeds. In general, we do not want every candidate returned by LSH. Therefore,

we select the subset of candidates that are most associated with the seed set defined by the user.

Fig 2. Illustration of LSH applied to minhash signatures. Each row represents a signature. The signatures have been banded up, so that each band contains two

hashes. Accounts A1 and A2 will be grouped as similar candidates since they have identical signatures in Band 1.

https://doi.org/10.1371/journal.pone.0188702.g002

Table 2. Typical runtimes and space requirements for systems performing local community detection on the Twit-

ter Follower network of 700 million vertices and 20 billion edges and producing 100 vertex output communities.

System Typical runtime (s) Space requirement (GB)

Naive edge list 8,000 240

Minhash signatures 1 4

LSH with minhash 0.25 5

https://doi.org/10.1371/journal.pone.0188702.t002
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We experimented with two sequential ranking schemes: Minhash Similarity (MS) and

Agglomerative Clustering (AC). In both cases accounts are ranked based on their distance to

the center of the seeds X. The jth component of the distance is given by

Xj ¼
1

n

Xn

i¼1

DðAj; SiÞ ; j ¼ 1; . . . ;M: ð7Þ

where D ¼ 1 � J ð8Þ

andM is the number of accounts in the dataset. At each step AC and MS augment the results

set Cwith A�, the closest account to X with A� =2 C. However, MS uses a constant value of X

based on the n input seeds while AC updates X after each step. Fig 3 illustrates the ranking pro-

cess. A set of seeds are shown with their center ringed. A� denotes the closest account to the

center.

Fig 3. Sorting similarities of LSH candidates. The diagram shows a set of seed accounts (X) bounded by an ellipse in Jaccard space.

Outside of the ellipse are a set of LSH candidate accounts (+). At each iteration the candidate account (A�) closest (according to the Jaccard

distance) to the center (X) of the seeds is added to the list of returned values.

https://doi.org/10.1371/journal.pone.0188702.g003
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Algorithm 2 Agglomerative Clustering Algorithm (AC)
Require: Initial seeds S
1. Define candidate members �A ¼ LSHðSÞ
2. C0 = S
3. repeat
4. Compute community centre Xð�A;CtÞ, see (7)
5. Select next Account: A� = argminAi =2 C X(Ai, Ct)
6. Grow community: Ct+1  Ct [ A�, �A  �AnA�
7. until Stopping criterion is met

At each iteration of Algorithm 2 C and X are updated by first setting C = S and then adding

the closest account given by

A�t ¼ arg min Aj=2Ct

Xn

i¼1

DðAj; ðCtÞiÞ ð9Þ

leading to

Ctþ1 ¼ Ct [ A�:

The new center Xn+1 is most efficiently calculated using the recursive online update equation

Xtþ1ðA;Ctþ1Þ ¼
nXðA;CtÞ þ DðA�;CtÞ

nþ 1
; ð10Þ

where n is the size of Ct and the scalar operations are broadcast over each element of X(A, Ct).

Stopping criterion. Both AC and MS are sequential processes and will return every candi-

date account unless a stopping criterion is applied. Many stopping criteria have been used to

terminate seed expansion processes. The simplest method is to terminate after a fixed number

of inclusions. Alternative methods use local maxima in modularity [53] and conductance [54].

In the context of our application, we choose a different criterion: coverage. We refer to the

number of unique neighbors of a set of accounts as the coverage of that set.

The reason for choosing coverage as the stopping criterion is driven by one application of

our work: To help define an optimal set of influencers to endorse a brand. In this context, we

want to answer questions like: “What is the smallest set of athletes that have influence on over

half of the users of Twitter?”. This is captured by the coverage. However, computing the cover-

age is combinatorial and requires calculating large numbers of unions over very large sets.

However, it can be efficiently approximated using minhash signatures. We exploit two proper-

ties of minhash signatures to do this: The unbiased Jaccard estimate through Eq 3 and the

property that the minhash signature of the union of two sets is the element-wise minimum of

their respective minhash signatures. Therefore, the properties of minhash signatures allow us

to efficiently compute the coverage and use it as a stopping criterion to rank LSH candidates

without losing real-time performance.

Efficient coverage computation. The coverage y is given by

y ¼
�
�
�
�

[n

i¼1

NðAiÞ
�
�
�
�; ð11Þ

the number of unique neighbors of the output vertices. Every time a new account A is added

we need to calculate |N(C) [ N(A)| to update the coverage. This is a large union operation and

expensive to perform on each addition. Eq (12) allows us to rephrase this expensive computa-

tion using the Jaccard coefficient (available cheaply via the minhash signatures), which we sub-

sequently use for a real-time iterative algorithm. Using Eq (1) and the inclusion-exclusion
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principle

jN A [ Cð Þj ¼ jN Að Þ [ N Cð Þj ¼
jNðAÞj þ jNðCÞj

1þ JðA;CÞ
: ð12Þ

As minhash signatures are composable sketches, community C =
S
i Ai can be represented

by a minhash signature

HðCÞ ¼ fh1ðCÞ; h2ðCÞ; . . . ; hKðCÞg ð13Þ

where hkðCÞ ¼ min
j
ðhkðAjÞÞ; k ¼ 1; . . . ;K: ð14Þ

We use Eq (12) to update the unique neighbor count, once the next account to add to the

community A� is determined according to Eq (9). Then, the neighbor count of the new (aug-

mented) community is

jNðCtþ1Þj ¼
jNðCtÞj þ jNðA�Þj

1þ JðCt;A�Þ
: ð15Þ

The right hand side of Eq (15) contains three terms: |N(Ct)| is what we started with, |N(A�)|
is the neighbor count of the newly added account A� and J(Ct, A�) is a Jaccard calculation

between the previous community Ct and the new account A�. The minhash signature of a com-

munity is obtained via Eq (13). Hence, we can calculate the coverage with negligible additional

computational overhead.

The process is then stopped after T iterations where T is the smallest integer s.t.

jNðCTÞj > nc ð16Þ

with nc the required coverage, which is specified on a task by task basis.

Stage 2: Community detection and visualization

Stage 1 expanded the seed accounts used to query the system to include a larger set of similar

accounts. Starting from the seeds, this was achieved by (1) finding a large group of candidates

using LSH that were related to any of the seeds and (2) filtering down to the accounts most

closely associated to the whole seed set.

In Stage 2, the vertices returned by Stage 1 are used to construct an intersection graph

where the edge weights are given by the Jaccard co-efficients of the neighborhood graphs. Fig

4 depicts the process of transforming the original unweighted graph into an intersection

graph. A shows the vertices (red larger circles) that are returned by stage one and their Follow-

ers (gray smaller circles). B shows a bipartite graph in which each red vertex is connected to its

Followers. The specific representation used is a minhash signature that captures the Jaccard

similarity between sets of Followers. The Jaccard similarities obtained through minhash signa-

tures are interpreted as edge weights in C, thereby producing a complete intersection graph in

which every red vertex is connected to every other by a weighted edge. The edge weights are

calculated for all pairwise associations from the minhash signatures through Eq 3. This process

effectively embeds the original graph in a metric Jaccard space [37]. Community detection is

run on the weighted graph.

The final element of the process is to visualize the community structure and association

strengths in the region of the input seeds. We experimented with several global community

detection algorithms. These included INFOMAP, Label Propagation, Betweenness Centrality,

Leading Eigenvector, Spinglass and Modularity Maximization [13, 55–58]. The Jaccard
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similarity graph is a complete weighted graph and most community detection algorithms are

designed for binary sparse graphs. As a result, all methods with the exception of label propaga-

tion and WALKTRAP were too slow for our use case. Label Propagation had a tendency to

select a single giant cluster, thus adding no useful information. Therefore, we chose WALK-

TRAP for community visualization.

Time complexity

To analyze the complexity of the end-to-end process we use |S| seed accounts, |C| output

accounts, minhash signatures of size K and Ca LSH candidates. Here we first analyze the sim-

plest case of MS with a fixed number of (|C|) output values and then discuss how this is modi-

fied by applying AC and a dynamic stopping criteria.

The end to end process diagram is visualized in Fig 5. The first step is to run |S| LSH queries

with O(|S|) runtime. The results are returned as Python sets and finding the union is O(∑s Cs)

Fig 4. Visualizing the intersection graph generation. Interesting vertices are depicted as larger red nodes, and the neighbors as smaller, more numerous gray nodes.

A shows a complete social network. B depicts the overlapping bipartite neighborhood graphs of the three interesting vertices in A. C summarizes the social network in

A by an inferred network using the Jaccard similarity measure of the set of neighboring vertices as edge weights. Vertices connected by high weights are more likely to

be in the same community.

https://doi.org/10.1371/journal.pone.0188702.g004

Fig 5. The full process diagram. A set of seeds is queried using LSH and Minhash Similarity. The weighted adjacency matrix for the top 100 results is estimated using

minhash signatures. The WALKTRAP community detection algorithm is applied to the weighted adjacency matrix, and the results are visualized.

https://doi.org/10.1371/journal.pone.0188702.g005
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where Cs is the number of candidates associated only with seed s (runtimes are implementation

dependent and for python data structures are given in https://wiki.python.org/moin/

TimeComplexity). For each candidate we calculate the average minhash similarity between the

candidate and all of the seeds, which is O(K|S|Ca). The values are sorted in O(Ca log Ca) and

the top |C| are retained as the output vertices. Finding all pairwise Jaccard similarities is

O(|C|2 K). The reported runtimes of Walktrap for a graph G(V, E) are O(|E||V|2) [9]. We apply

Walktrap to the complete Jaccard graph, which has V = C and |E| = |C|2/2 leading to a runtime

of O(|C|3). Putting this all together we have a complexity of

OðjSj þ
X

s

Cs þ KjSjCa þ Ca logCa þ jCj
2K þ jCj3Þ

Many of these values are user dependent, typical orders of magnitude for the Twitter data

are |S| = 10, |C| = 100, Ca = 1000, K = 1000, Cs = 100. In which case the runtime reduces to

OðjCj2K þ jCj3Þ:

For very large graphs the only values that change are Ca and Cs. For Ca> Cs>> C the run-

time becomes

Oð
X

s

Cs þ KjSjCa þ Ca logCaÞ:

Applying AC instead of MS introduces additional complexity. In Algorithm 2 there are

three stages that are repeated until the stopping criteria is met: (1) Recomputing the center, (2)

Finding the nearest account to the center (3) augmenting the result set. Calculating the dis-

tance to the center is O(K|S|Ca) for the first iteration and then applying Eq (10) is O(Ca) for

each subsequent iteration. Augmenting the result set is O(1). This leads to an AC time com-

plexity of

OðjSj þ
X

s

Cs þ KjSjCa þ Ca logCa þ jCj
2K þ jCj3 þ jCjCaÞ

Finally adding a check of the stopping criteria requires evaluating Eq 15 at each iteration.

This is dominated by the Jaccard calculation in the denominator J(Ct, A�). For MS this intro-

duces an additional O(|C|K) term. However for AC we are calculating D(Ct, A�) = 1 −D(Ct, A�)
in Eq 10 anyway and so there is no additional time complexity.

Space complexity

The space complexity is dominated by the need to read the LSH table and the minhash table

into memory. The minhash table has O(NK) space complexity where N is the number of

accounts to be hashed. In the worst case every account hashes to every other accounts and the

LSH table has O(N2) space complexity for a complete graph. For the sparse complex networks

that we are interested in this reduces to O(N) as each vertex only hashes to members of the

community that contains it and community size does not scale with the size of the network

[59]. This leads to a space complexity of O(NK).

Ground-truth communities

Generally, community detection algorithms are based on the structure of the graph [60]. To

provide a quantitative assessment of our method we require ground-truth labeled communi-

ties. However, no ground truth exists for the size of social networks we consider in this article.
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Therefore, in the following, we will provide a methodology for generating such a ground truth.

The methodology itself must be verified, and we provide an extensive evaluation of the quality

of the derived ground-truth based on the four axioms for good community structures [32]:

1. Compactness

2. Dense interconnectivity

3. Good separation from the rest of the network

4. Internal homogeneity

However, while communities are detected using these properties, verification typically

requires associating each vertex with some functional attributes, e.g., fans of Arsenal football

club or Python programmers, and showing that the discovered communities group attributes

together [32]. The practice of relating community membership with personal attributes is jus-

tified by the homophily principle of social networks [4], which states that people with similar

attributes are more likely to be connected.

We reverse the process of verification by generating ground truth from personal attributes.

To generate attributes we match Twitter accounts with Wikipedia pages and associate Wikipe-

dia tags with each Twitter account. Wikipedia tags give hierarchical functions like ‘football:

sportsperson:sport’ and ‘pop:musician:music’. It is not possible to match every Twitter

account, and our matching process discovered 127 tags that occur more than 100 times in the

data. Many of them were too vague to be useful such as ‘news:media’ or ‘Product Brand:

Brands’. We selected 16 tags that had relatively high frequencies in the data set and evaluated 7

metrics for each that are related to the four axioms. Separability and conductance measure

how well-separated a community is from the rest of the graph. Density and size measure the

compactness and density. Cohesiveness, clustering and conductance ratio measure how inter-

nally homogeneous a community is. The mathematical formulation of these metrics and

details of how they were calculated is provided in the supplementary material.

The corresponding results are shown in Table 3. Table 3 is sorted by density, and the bold

rows are visualized in Figs 6, 7, 8 and 9. The density is the most important factor to distinguish

Table 3. Properties of ground-truth communities sorted by edge density. CR stands for Conductance Ratio. High values of clustering, density and separability and low

values of CR, conductance and Cohesiveness indicate good communities.

Community Size Clustering Cohesiveness Conductance CR Density Separability

Mixed Martial Arts 751 6.49E-02 4.29E-01 5.10E-01 1.19 3.06E-02 4.80E-01

Adult Actors 352 7.20E-02 1.29E-01 7.70E-01 5.98 2.94E-02 1.50E-01

Cycling 371 6.43E-02 4.51E-01 7.04E-01 1.56 2.50E-02 2.11E-01

Baseball 616 3.64E-02 1.49E-01 7.87E-01 5.29 1.63E-02 1.35E-01

Basketball 786 3.84E-02 3.30E-01 7.71E-01 2.34 1.60E-02 1.48E-01

American Football 1295 2.24E-02 3.82E-01 7.40E-01 1.94 9.33E-03 1.75E-01

Athletics 530 3.48E-02 4.13E-01 8.47E-01 2.05 8.21E-03 9.01E-02

Hotel Brand 836 2.20E-02 4.53E-01 8.37E-01 1.85 6.16E-03 9.71E-02

Airline 363 2.30E-02 4.41E-01 9.46E-01 2.15 4.35E-03 2.84E-02

Cosmetics 332 3.34E-02 4.87E-01 9.56E-01 1.96 3.55E-03 2.32E-02

Football 4111 3.69E-02 3.95E-01 7.07E-01 1.79 2.93E-03 2.07E-01

Alcohol 388 1.72E-02 2.34E-01 9.52E-01 4.06 2.66E-03 2.53E-02

Travel 2038 1.27E-02 4.25E-01 8.29E-01 1.95 2.50E-03 1.03E-01

Model 2096 2.62E-02 4.04E-01 9.01E-01 2.23 1.90E-03 5.50E-02

Electronics 689 1.40E-02 4.38E-01 9.75E-01 2.23 8.78E-04 1.30E-03

Food and Drink 2974 1.76E-02 4.57E-01 9.06E-01 1.98 7.69E-04 5.18E-02

https://doi.org/10.1371/journal.pone.0188702.t003
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good from bad communities, varying by two orders of magnitude across the data. This is fol-

lowed by how well separated (separability) the community is from the rest of the network,

which is inversely correlated with conductance by design (see S1 File). High clustering is also a

useful indicator of community goodness for the best communities, but it is less useful for sepa-

rating communities that consist of many sub-units (e.g., Team Sports) from very bad commu-

nities (e.g., Food and Drink). Cohesiveness is generally not useful as most communities

contain at least one well separated sub-unit.

Fig 6. Mixed martial arts (MMA) community. The MMA community is relatively homogeneous and densely

interconnected with high clustering and good separability from the rest of the network. The only disconnected region

is the yellow region, which has been magnified to show that it is made up of Olympic judo competitors. This

community is well detected by all methods.

https://doi.org/10.1371/journal.pone.0188702.g006

Fig 7. Basketball community. The basketball community has attributes similar to the baseball and American football communities: All are densely

connected and well separated from the rest of the network. The individual team structure is not apparent in the graph. Instead the two large clusters

show teams from the Eastern and Western Conferences. The small peripheral clusters are mostly major college teams. We have magnified an area

showing players of the Womens National Basketball Association.

https://doi.org/10.1371/journal.pone.0188702.g007
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Fig 8. Alcohol community. This is a low-density community with poor clustering. It is divided into broad classes of drinks such as beer, spirits and

wine. We have magnified an area of the cider sub-community.

https://doi.org/10.1371/journal.pone.0188702.g008

Fig 9. Hotels network. The hotels community has low conductance indicating that it is not well separated from the rest of the network. It also has high

cohesiveness indicating it contains components that appear to be the true modular units. The two clearly visible subcomponents are the Four Seasons

brand in blue to the left and the hotels of Las Vegas, which is magnified.

https://doi.org/10.1371/journal.pone.0188702.g009
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To establish a clearer view of the density and homogeneity of the ground-truth we visualize

the communities using network diagrams and dendrograms. Network diagrams are generated

in Gephi [61]. The layout uses the Force Atlas 2 algorithm. Colors indicate clusters generated

using Gephi’s modularity optimization routine. The node (and label) sizes indicate the

weighted degree of each node and are scaled to be between 5 and 20 pixels. The network dia-

grams reveal any substructure present within the ground-truth. They contain too much infor-

mation to easily see the individual accounts. Therefore, we magnify small subregions and

display Twitter profile images for accounts within them. A weakness of the network diagrams

is that different edge weights are hard to perceive.

To provide a visual representation of the general strength of interaction we generated den-

drograms (Fig 10) for each ground-truth community. Dendrograms are agglomerative: All

accounts with a Jaccard distance less than the y-value are fused together into a super-node.

Any subgroups containing more than 10 nodes with no two nodes separated by a Jaccard dis-

tance greater than 0.85 have been colored to indicate sub-communities.

Fig 10. Dendrograms showing the strength of interconnection within communities. The vertical axes show the Jaccard distances. Blue areas are weakly

connected. In each colored region, no two nodes are separated by a Jaccard distance greater than 0.85. The dendrograms are agglomerative: All accounts with a

Jaccard distance less than the y-value are fused together into a super-node. The fusing process is sequential and the x-axis indicates the order of fusing with the

first nodes to agglomerate at the right. The bottom-right subfigure shows team sports (here: Basketball). There are any highly connected sub-groups. The

Bottom-left subfigure shows the most clearly defined communities (here: Mixed Martial Arts) containing sub-communities mostly due to nationality. The top-

right subfigure shows industrial groups (here: Alcohol) with limited interactions. The top-left subfigure shows industrial groups (here: Hotels) with small highly

connected groups due to sub-brands.

https://doi.org/10.1371/journal.pone.0188702.g010
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Fig 6 shows the Mixed Martial Arts (MMA) community. From Table 3 we see that this

community is densely connected, strongly clustered and very well separated from the rest of

the network. The gold region in the bottom-right subfigure of Fig 10 is a massive cluster where

the distance between any two nodes is less than 0.8. It depicts MMA fighters, mostly fighting

in the Ultimate Fighting Championship (UFC). There is a single well-separated sub-commu-

nity, which is magnified in Fig 6 showing Olympic judo fighters. MMA is the best community

in our study. The Cycling, Adult Actor and Athletics communities are similar in structure to

MMA (see Table 3).

Fig 7 shows that the basketball community (largely NBA players) exhibits two large com-

munities (the two NBA conferences). The individual team structure within the divisions is

apparent from the fine banding in the bottom-right subfigure of Fig 10 where many well-con-

nected sub-clusters, each with a distance of less than 0.85 between all pairs of nodes, are visible.

We have magnified a small disconnected region of Fig 7, which shows players of the Women’s

National Basketball Association (WNBA). Other team sports (Baseball, football and American

football) exhibit similar structural properties.

Fig 8 shows that the alcohol industry is split into four major groups representing the differ-

ent classes of alcoholic drinks (wine, beer, cider and spirits). We have magnified a region of

the network that contains mostly English craft ciders. The top-right subfigure of Fig 10 shows

that the alcohol network is mostly poorly connected with only two colored regions indicating

well connected sub-communities. From Table 3 it can be seen that the alcohol network exhib-

its a low link density and separability, indicating that the community lacks distinction from

the rest of the network. This is a consistent pattern for other communities drawn from indus-

trial segmentations (Food and Drink, Electronics, Model).

Fig 9 shows an example of the final group of ground-truth communities: industrial groups

with prominent sub-communities. In this case the major sub-communities are the Four Sea-

sons Hotel group and hotels located in Las Vegas (magnified). The top-left subfigure of Fig 10

shows that while the hotel network is generally poorly connected, there are sizable highly inter-

connected sub-communities. Table 3 shows that the hotel community exhibits low clustering

(most accounts are disconnected), high cohesiveness (there are well connected sub-groups)

and a low conductance ratio. The travel, airlines and cosmetics communities all share these

traits (see Table 3).

In summary, we identified four types of ground-truth communities and evaluated their

quality based on the four axioms. We found that the community types differ greatly in quality.

The group containing mixed martial arts, cycling, athletics and adult actors satisfies the four

axioms and form a good set of ground-truth for algorithm evaluation. The group comprising

team sports (American football, baseball, basketball and football) satisfy three of the four axi-

oms (they are not homogeneous). The remaining two community types only contain sub-

groups that satisfy any of the axioms.

Experimental evaluation

Our approach to real-time community detection relies on two approximations: minhashing

for rapid Jaccard estimation and locality sensitive hashing to provide a fast query mechanism

(based on minhashing). We assess the effect of these approximations, and demonstrate the

quality of our results in three experiments:

1. We measure the sensitivity of the Jaccard similarity estimates with respect to the number of

hash functions used to generate the signatures. This will justify the use of the minhash

approximation for computing approximate Jaccard similarities.
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2. We compare the runtime and recall of our process on ground-truth communities against

the Personal Page Rank (PPR) algorithm (state of the art) on a laptop.

3. We visualize detected communities and demonstrate that association maps for social net-

works using minhashing and LSH produce intuitively interpretable maps of the Twitter

and Facebook graphs in real-time on a laptop.

Experiment 1: Assessing the quality of Jaccard estimates

We empirically evaluate the minhash estimation error using a sample of 400,000 similarities

taken from the 250 billion pairwise relationships between the Twitter accounts in our study.

We compare estimates using Eq (3) to exact Jaccards obtained by exhaustive calculations on

the full sets using Eq (1). Fig 11 shows the estimation error (L1 norm) as a function of the

number of hashes comprising the minhash signature. Standard error bars are just visible up

until 400 hashes. The graph shows an expected error in the Jaccard of just 0.001 at 1,000

hashes. The high degree of accuracy and diminishing improvements at this point led us to

select a signature length of K = 1,000. This value provides an appropriate balance between

accuracy and performance (both runtime and memory scale linearly with K).

In a practical application, we are interested in finding accounts that are similar to seed

accounts. We then rank other accounts based on similarity. Local community detection algo-

rithms add accounts in similarity order. Therefore, approximating the true ordering is an

important property.

In a concrete case, we looked at the Nike Twitter account as a seed and computed the Jac-

card similarities to other Twitter accounts using a) ground truth (which is expensive to com-

pute) and b) our proposed estimation using minhash signature of length K = 1,000. A top-ten

ranked list of Jaccard similarities is given in Table 4 for the Nike Twitter account (based on the

true Jaccard). Possible matches include sports people, musicians, actors, politicians, educa-

tional institutions, media platforms and businesses from all sectors of the economy. Of them,

our approach identified four of Nike’s biggest competitors, five Nike sub-brands and a major

retailer of Nike products as the most associated accounts. This is consistent with our assertion

Fig 11. Expected error from Jaccard estimation using minhash signatures as a function of the number of the

hashes used in the signature. The error bars show twice the standard error using 400,000 data points.

https://doi.org/10.1371/journal.pone.0188702.g011
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that the Jaccard similarity of neighborhood sets provides a robust similarity measure between

accounts. We found similar trends throughout the data. This observation is consistent with the

experience of analysts at Starcount, a London-based social media analytics company, who are

using the tool. Table 4 also shows how the size of the minhash signature affects the Jaccard esti-

mate and the corresponding rank of similar accounts. We measure the Spearman rank correla-

tion between the true Jaccard similarities (column R) and those calculated from signatures of

length 100 (column R̂100) and 1000 (column R̂1000) to be 0.89 and 0.97 respectively. The close

correspondence of the rank vector using signatures of length 1,000 and the true rank supports

our decision to use signatures of containing 1,000 hashes.

Experiment 2: Comparison of community detection with PPR

In the following, we move from assessing a single component (minhashing) to system-wide

experimentation: We evaluate the ability of our algorithm to detect related entities by measur-

ing its performance as a local community detection algorithm seeded with members of

ground-truth communities. As a baseline for comparison we use the PPR algorithm. PPR has

been identified as the state of the art method for expanding communities from small seed sets

by Kloumann and Kleinberg [27] who conducted a comprehensive assessment of local com-

munity detection algorithms on large graphs. In their study, Personal PageRank (PPR) [28]

was the clear winner. In addition, they found that the improvement in performance of PPR

asymptotes after three step random walks. Our PPR implementation uses the ground-truth

seeds as the teleport set and runs for three iterations returning a ranked list of similar accounts.

To produce MS and AC results the seeds are input to an LSH query, which produces a set

of candidate near-neighbors. For each candidate the Jaccard similarity is estimated using min-

hash signatures and the candidates are sorted by either the MS or AC procedures.

In all cases, we sequentially select accounts in similarity order and measure the recall after

each selection. The recall is given by

recall ¼
jC \ Ctruej

jCtruej � jSj
ð17Þ

with S the initial seed set, Ctrue as the ground truth community and C as the set of accounts

added to the output. For a community of size |C| we do this for the |C| − |S| most similar

accounts so that a perfect system could achieve a recall of one.

Table 4. Twitter accounts with the highest Jaccard similarities to @Nike. J and R give the true Jaccard coefficient and Rank, respectively. Ĵ and R̂ give approximations

using Eq (3) where the superscript determines the number of hashes used. Signatures of length 1,000 largely recover the true Rank.

Twitter handle J R Ĵ 100 R̂100 Ĵ 1000 R̂1000

adidas 0.261 1 0.22 2 0.265 1

nikestore 0.246 2 0.25 1 0.255 2

adidasoriginals 0.200 3 0.18 3 0.222 3

Jumpman23 0.172 4 0.13 7 0.166 4

nikesportswear 0.147 5 0.18 4 0.137 5

nikebasketball 0.144 6 0.16 5 0.127 7

PUMA 0.132 7 0.13 6 0.132 6

nikefootball 0.127 8 0.08 17 0.110 9

adidasfootball 0.112 9 0.09 16 0.113 8

footlocker 0.096 10 0.08 17 0.096 11

https://doi.org/10.1371/journal.pone.0188702.t004
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Twitter dataset. In our experimentation with the Twitter dataset we randomly sample 30

seeds from each of the 16 ground-truth communities listed in Table 3. It is impossible to pro-

vide a fully like-for-like comparison with PPR: Running PPR on the full Twitter graph (700

million vertices and 20 billion edges) that we extract features from requires cluster computing

and could return results outside of the hashed accounts. The alternative is to restrict PPR to

run on the directly observed network of the 675,000 largest Twitter accounts, which could

then be run on a single machine. We adopt this latter approach as it is the only option that

meets our requirements (single machine and real-time).

We compare MS and AC to PPR operating on the directly observed network of the 675,000

largest accounts.

The results of this experiment are shown in Fig 12 with the Area Under the Curves (AUC)

given in Table 5. Bold entries in Table 5 indicate the best performing method. In all cases, both

MS and AC give superior results to PPR.

Fig 12. Twitter dataset average recall (with standard errors) of Agglomerative Clustering (yellow), Personal PageRank (red) and Minhash

Similarity (blue) against the number of additions to the community expressed as a fraction of the size of the ground-truth communities given in

Table 3. The tight error bars indicate that the methods are robust to the choice of seeds.

https://doi.org/10.1371/journal.pone.0188702.g012
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Fig 12 shows the average performance (including standard errors) over five randomly cho-

sen input sets of 30 accounts from Ctrue. The confidence bounds are tight indicating that the

methods are robust to the choice of input seeds. Fig 12 is grouped according to the four types

of ground-truth communities we discovered, where each type of ground-truth community

exhibits different properties. Performance of all methods is considerable affected by the quality
of the communities. Communities with good values of the metrics given in Table 3 in general

have superior recall across all methods. The third row of Fig 12 contains the best communities

as measured by the metrics in Table 3. For this group recalls are as high as 80% (Cycling, using

agglomerative clustering). The worst group of communities are the transnational industrial

communities in the second row. The lowest recall in row three (Athletics, using PPR) is still

higher than the highest recall in the second row of results (Alcohol, using agglomerative clus-

tering). The best performing method for every community in row three of the results is

agglomerative clustering. The reason for this is that AC is an adaptive method that can incor-

porate information from early results. The downside of an adaptive method is that pollution

from false positives can rapidly degrade performance. This can be seen in the steep decrease in

gradient of the AC curves for basketball, baseball and adult actors. The fourth row of the table

contains team sports. Team sports also have good metrics in Table 3, but differ markedly in

structure from the communities in row three. The team sport communities have well-defined

multi-modal sub-structures generated by the different teams. Both AC and MS are unimodal

procedures that store the center of a set of data points. For a multi-modal distribution the

mean may not be close to the distribution and so false positives will occur. As AC incorporates

false positives into the estimation procedure for all future results MS outperforms AC for all

team sport communities. Of the communities in the first and second rows of Fig 12 AC is best

performing in 50% and MS is best performing in 50%. These communities are all diffuse, but

some have a single densely connected region that can be found well by AC.

Email dataset. The email dataset contains 1005 vertices (email accounts), each of which

is in exactly one of 42 communities (research departments of a large European research insti-

tute) and is available at http://snap.stanford.edu/data/email-Eu-core.html. Many of the

Table 5. Twitter dataset area under the recall curves (Fig 12). Bold entries indicate the best performing method.

Minhash similarity (MS) is the best method in 8 cases, Agglomerative Clustering (AC) in 8 cases and Personalised

PageRank (PPR) in none. A perfect community detector would score 0.5.

Tags PPR MS AC

travel 0.186 0.240 0.230

airline 0.040 0.151 0.180

hotel brand 0.160 0.294 0.285

cosmetics 0.055 0.086 0.143

food and drink 0.072 0.099 0.082

electronics 0.035 0.069 0.059

alcohol 0.069 0.199 0.229

model 0.078 0.110 0.109

mixed martial arts 0.317 0.363 0.386

cycling 0.278 0.330 0.445

athletics 0.219 0.285 0.365

adult actor 0.269 0.347 0.397

american football 0.240 0.371 0.240

baseball 0.203 0.379 0.378

basketball 0.252 0.380 0.353

football 0.202 0.233 0.212

https://doi.org/10.1371/journal.pone.0188702.t005
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communities are very small and so we only consider the largest 15 (those having more than 25

members). Due to the size of the dataset we use minhash signatures of length 100 instead of

1,000 and only seed the communities with 5 seeds.

Fig 13 shows the average performance (including standard errors) over five randomly cho-

sen input sets of five email accounts from Ctrue. The confidence bounds are tight indicating

that the methods are robust to the choice of input seeds. Table 6 gives the area under the curves

of Fig 13. Again MS and AC outperform PPR in all cases, but this time MS is the best method

for the majority of communities (10 cases), while AC is only best in five.

No mapping is provided from community labels to research departments and so for this

dataset it is not possible to interpret the results in relation to the semantics of the community

label.

Discussion. Much of the difference in performance of these methods derives from their

respective ability to explore the graph: PPR is really a global algorithm that has been modified

to find local relationships. After three iterations PPR uses first, second and third-order connec-

tions. First-order connection methods just use edges that directly connect to the seed nodes

(neighbors). Second-order methods also give weight to the connections of the first-order

nodes (neighbors of neighbors) and so on for third-order connections. The ability to explore

higher-order connections is the principal reason identified by Kloumann [27] for the state-of-

Fig 13. Email dataset average recall (with standard errors) of Agglomerative Clustering (yellow), Personal PageRank (red) and

Minhash Similarity (blue) against the number of additions to the community expressed as a fraction of the size of the ground-

truth communities given in Table 3. The tight error bars indicate that the methods are robust to the choice of seeds.

https://doi.org/10.1371/journal.pone.0188702.g013

Community detection in full social networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0188702 January 17, 2018 27 / 37

https://doi.org/10.1371/journal.pone.0188702.g013
https://doi.org/10.1371/journal.pone.0188702


the-art performance of PPR. They also note that after two iterations most of the benefit is real-

ized, and that after three iterations there is no more improvement.

Our implementations of MS and AC are effectively second-order methods since they oper-

ate on a derived graph where the edge weight between two vertices is calculated from the over-

lap of the respective neighborhoods. MS and AC outperform PPR because they are based on

many more second-order connections than PPR: They run on a compressed version of the full

graph instead of a sub-graph. PPR is expected to perform better given more computational

resources, but the additional complexity, run time, latency or financial cost required for any

scaled up/out solution will violate our system constraints.

Runtime analysis. Table 7 gives the mean and standard deviation of the algorithm run

times averaged over the 16 communities. MS is the fastest method by two orders of magnitude.

Average human reaction times are approximately a quarter of a second. Therefore, MS delivers

a real-time user experience [1]. As MS is the only method capable of operating in the real-time

domain. Since this is a system requirement, we choose the MS procedure for experiment 3 and

in our operational prototype.

Experiment 3: Real-time graph analysis and visualization

In the following, we provide example applications of our real-time community detection sys-

tem to graph analysis. Users need only provide a set of seeds, wait for a fraction of a second,

and the system discovers the structure of the graph in the region of the seeds. Users can then

interactively explore the discovered communities by providing different seeds based on what

Table 6. Email dataset area under the recall curves (Fig 13). Bold entries indicate the best performing method. Min-

hash similarity (MS) is the best method in 10 cases, Agglomerative Clustering (AC) in 5 cases and Personalized PageR-

ank (PPR) in none. A perfect community detector would score 0.5.

Tags PPR MS AC

4 0.162 0.271 0.204

14 0.344 0.461 0.473

1 0.121 0.382 0.372

21 0.206 0.306 0.298

15 0.186 0.396 0.274

7 0.346 0.450 0.447

0 0.127 0.332 0.384

10 0.178 0.345 0.318

17 0.267 0.496 0.503

9 0.057 0.210 0.150

19 0.123 0.359 0.383

11 0.156 0.354 0.361

6 0.007 0.102 0.030

23 0.044 0.103 0.072

13 0.139 0.357 0.306

https://doi.org/10.1371/journal.pone.0188702.t006

Table 7. Clustering runtimes averaged over communities.

Method Mean(s) Std.Dev.

PPR 12.58 8.83

MS 0.23 0.08

AC 18.6 22.0

https://doi.org/10.1371/journal.pone.0188702.t007
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previous outputs reveal about the graph structure. Figs 14 and 15 show results on the Facebook

Page Engagements network while Figs 16, 17, 18 and 19 use the Twitter Followers graph.

Each diagram is generated by the procedure shown in Fig 5: Seeds are passed to the MS pro-

cess, which returns the 100 most related entities. All pairwise Jaccard estimates are then calcu-

lated using the minhash signatures. The resulting weighted adjacency matrix is passed to the

WALKTRAP global community detection algorithm. The result is a weighted graph with

community affiliations for each vertex. In our visualizations, we use the Force Atlas 2 algo-

rithm to lay out the vertices. The thickness of the edges between vertices represents the

pairwise Jaccard similarity, which has been thresholded for image clarity. The vertex size rep-

resents the weighted degree of the vertex, but is logarithmically scaled to be between 1 and 50

pixels. The vertex colors depict the different communities found by the WALKTRAP commu-

nity detection algorithm.

We show some results using the Facebook Pages engagement graph to demonstrate that

our work is broadly applicable across digital social networks. However, there are some key dif-

ferences between the Facebook Pages engagement graph and the Twitter Followers graph. As

Following is the method used to subscribe to a Twitter feed, Follows tend to represent genuine

interest. In contrast, Facebook engagement is often used to grant approval or because a user

desires an association. In addition, the Twitter graph corresponds to actions occurring as far

back as 2006 (relatively few edges are ever deleted), while the Facebook graph corresponds

only to events since 2014, when we began collecting data. As a result, the Twitter data set con-

tains significantly more data, but with less relevance to current events.

Fig 14. Communities around seeds from the US republican party in December 2015. Seeds are “Donald Trump”, “Marco Rubio”, “Ted Cruz”, “Ben Carson” and

“Jeb Bush”. The vertex size depicts degree of similarity to the seeds. Edge widths show pairwise similarities. Colors are used to show different communities.

https://doi.org/10.1371/journal.pone.0188702.g014
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Fig 15. Visualization the Twitter Follower graph around global pop music. Seeds are “Justin Bieber”, “Lady Gaga” and “Katy Perry”. Vertex size depicts degree of

similarity to the seeds. Edge widths show pairwise similarities. Colors represent different communities.

https://doi.org/10.1371/journal.pone.0188702.g015

Fig 16. The major social networks. Seeds are Twitter, Facebook, YouTube and Instagram.

https://doi.org/10.1371/journal.pone.0188702.g016
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Fig 17. The many faces of RedBull.

https://doi.org/10.1371/journal.pone.0188702.g017

Fig 18. Visualisation of the Twitter graph around European sport brands. Vertex size depicts degree of similarity to the seeds. Edge widths show pairwise

similarities. Colors represent different communities. Seeds are Adidas and Puma.

https://doi.org/10.1371/journal.pone.0188702.g018
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Our work uses the vast scale and richness of social media data to provide insights into a

broad range of questions. Here are some illustrative examples:

• How would you describe the factions and relationships within the US Republican party?

This is a question with a major temporal component. Therefore, we use the Facebook Pages

graph. We feed “Donald Trump”, “Marco Rubio”, “Ted Cruz”, “Ben Carson” and “Jeb Bush”

as seeds into the system and wait for 0.25 s for Fig 14, which shows a densely connected core

group of active politicians with Donald Trump at the periphery surrounded by a largely dis-

connected set of right-wing interest bodies. Note that our data set is from 12/2015, and Don-

ald Trump’s community structure will have changed significantly by now.

• Which factions exist in global pop music? We feed the seeds “Justin Bieber”, “Lady Gaga”

and “Katy Perry” into the system loaded with the Facebook Pages engagement graph and

wait for 0.25 s for Fig 15, which shows that the industry forms communities that group gen-

ders and ethnicities.

• How are the major social networks used? We feed the seeds “Twitter”, “Facebook”, “You-

Tube” and “Instagram” into the system loaded with the Twitter Followers graph and wait for

0.25 s for Fig 16, which shows that Google is highly associated with other technology brands.

Instagram is closely related to celebrity while YouTube and Facebook are linked to sports

and politics.

• How is the brand RedBull perceived by Twitter users? We feed the single seed “RedBull”

into the Twitter Followers graph and wait for 0.25 s for Fig 17, which shows that RedBull has

strong associations with motor racing, sports drinks, extreme sports, gaming and football.

Fig 19. US sports brands. Seeds are Nike, Reebok, UnderArmour, Dicks.

https://doi.org/10.1371/journal.pone.0188702.g019
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• How does sports brand marketing differ between the USA and Europe? We use the Twit-

ter Followers graph. “Adidas” and “Puma” are the seeds for the European brands while

“Nike”, “Reebok”, “UnderArmour” and “Dicks” are used to represent the US sports brands.

Figs 18 and 19 show the enormous importance of football (soccer) to European sports

brands, whereas US sports brands are associated with a broad range of sports including

hunting, NFL, basketball, baseball and mixed martial arts (MMA).

In all cases, the user selects a group of seeds (or a single seed) and runs our system, which

returns a figure and a table of community memberships in real-time (i.e., within 0.25 s).

Analysts can then use the results to supplement the seed list with new entities or use the table

of community members from a single WALKTRAP sub-community to explore higher

resolution.

Similar tasks are traditionally conducted with techniques that are expensive and difficult

to scale, e.g., telephone polling and focus groups, which often take months to return results.

In contrast, our system provides an automatic analysis in the fraction of a second and at mini-

mal cost, which allows for interactive community detection and exploration in large social

networks.

Conclusion and future work

We have presented a real-time system to automatically detect communities in large social net-

works. The system is computationally and memory efficient that it runs on a standard laptop.

This work represents a technical advance leading to performance gains that are useful in prac-

tice and contains a rigorous evaluation on large social media data sets. The key contributions

of this article are to demonstrate that (1) using the Jaccard similarity of neighborhood graphs

provides a robust association metric between vertices of noisy and sparsely connected social

networks; (2) Working with minhash signatures of the neighborhood graph dramatically

reduces the space and time requirements of the system with acceptable approximation error;

(3) Applying Locality Sensitive Hashing allows for approximate local community detection on

very large graphs in real-time with an acceptable approximation error. For interactive and

real-time community detection, we have demonstrated that our system finds higher quality

communities in less time than the state-of-the-art algorithm operating under the constraints

of a laptop. Our work has clear applications for interactive knowledge discovery processes that

currently rely upon slow and expensive manual procedures, such as focus groups and tele-

phone polling. In general, our system offers the potential for organizations to rapidly acquire

knowledge of new territories and supplies an alternative monetization scheme for data owners.

In this article, we focused on digital social networks, but our method is applicable to all

large networks including bipartite networks. The user-item bipartite networks that are studied

in the field of recommender systems would be particularly amenable to this treatment, where

items could be compactly modeled as minhash signatures of the users who have purchased

them.

We leave two extensions for future work: First, currently, we treat the input social network

as binary. In many settings, information is available to weight the edges. This might include

message counts, the time since a connection was established or the type of connection. Effi-

cient methods already exist for working with minhashes of weighted sets [40]. Therefore, an

interesting progression of this work is to incorporate data with edges that can contain counts,

weights and categorizations. The second extension incorporates some of the latest develop-

ments in the theory of minhashing. b-bit minhashing and Odd Sketches provide two promis-

ing approaches to extend our system to even larger graphs [42, 43]. Both offer the best cost/

benefit trade-off when sets are very similar (Jaccard similarity� 1) or when sets contain most
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of the elements in the sample space. DSN data typically contains sets that are very small relative

to the sample space and with Jaccard similarities�0.5. As an example, our Twitter data has a

sample space containing 7 × 108 elements with a typical set containing 104 elements. The

strong theoretical bounds of these algorithms do not hold in these DSN-typical settings. There-

fore, a cost/benefit analysis would be required before implementing either in an extension.

Supporting information

S1 File. Supporting material describing the the data acquisition methodology and given
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(PDF)
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