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Background.  Oral daily tenofovir (TFV) disoproxil fumarate/emtricitabine (TDF/FTC) for human immunodeficiency virus 
(HIV) pre-exposure prophylaxis (PrEP) is highly effective for HIVprevention, yet long-term effects are not fully understood. We in-
vestigated the effects of PrEP on the rectal microbiome in a cohort of men who have sex with men (MSM).

Methods.  This cross-sectional analysis included HIV-negative MSM either on PrEP (n = 37) or not (n = 37) selected from an 
ongoing cohort using propensity score matching. Rectal swabs were used to examine microbiome composition using 16S ribosomal 
ribonucleic acid gene sequencing, and associations between PrEP use and microbiota abundance were examined. Hair specimens 
were used to quantify TFV and FTC exposure over the past 6 weeks on a subset of participants (n = 15).

Results.  Pre-exposure prophylaxis use was associated with a significant increase in Streptococcus abundance (adjusted P = .015). 
Similar associations were identified using least absolute shrinkage and selection operator (LASSO) regression, confirming the 
increase in Streptococcus and also showing increased Mitsuokella, Fusobacterium, and decreased Escherichia/Shigella. Increased 
Fusobacterium was significantly associated with increasing TFV exposure.

Conclusions.  Oral TDF/FTC for PrEP is associated with rectal microbiome changes compared to well matched controls, spe-
cifically increased Streptococcus and Fusobacterium abundance. This study highlights the need for future investigations of the role of 
microbiome changes on HIV susceptibility and effectiveness of PrEP.

Keywords.  men who have sex with men (MSM); pre-exposure prophylaxis (PrEP); rectal microbiome.

Human immunodeficiency virus (HIV) transmission remains 
a global public health concern, with 1.8 million new HIV diag-
noses globally and 38 739 new diagnoses in the United States 
in 2017 [1, 2]. Oral daily tenofovir (TFV) disoproxil fumarate/
emtricitabine (TDF/FTC) is highly effective for the prevention 
of HIV-1 infection. This has been demonstrated in multiple 
placebo-controlled randomized clinical trials in men who have 
sex with men (MSM) [3], serodiscordant or other high-risk het-
erosexual men and women [4–7], and people who inject drugs 
[8]. Post hoc analyses of these and other studies have shown 

that efficacy is highly dependent upon adherence [9, 10], with 
minimum of 4 doses per week needed for protection among 
MSM [9]. Given its efficacy and general tolerability, uptake of 
oral PrEP has increased significantly since it was approved by 
the US Food and Drug Administration in 2012. Currently, there 
are an estimated 270 000 PrEP users in the United States [11].

One of the reasons PrEP has had such large uptake is that 
oral TDF/FTC has relatively few side effects and adverse events. 
However, it is not completely without risk. Known long-term risks 
associated with TDF/FTC for PrEP are nephrotoxicity and loss of 
bone mineral density, similar to those observed in HIV-positive 
persons using TDF/FTC as part of a combination antiretroviral 
treatment regimen [12–14]. Side effects, which are most commonly 
observed during the initial month of treatment and abate with con-
tinued use, include gastrointestinal upset, nausea, vomiting, or di-
arrhea; this is most common during the initial month of treatment 
and generally abates with continued use. Given the relatively recent 
approval of PrEP, other risks associated with long-term use of TDF/
FTC alone are still under evaluation.

Mucosal tissue concentrations of PrEP drugs after oral TDF/
FTC are 100-fold higher in the rectal mucosa compared with 
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cervicovaginal tissues and can remain detectable for 14  days 
[15]. Although this likely allows for its efficacy in preventing 
mucosal HIV transmission, it also raises the question of how the 
presence of TDF/FTC may interact with commensal intestinal 
bacteria at that site. The trillions of bacteria residing in the gas-
trointestinal tract, commonly termed the microbiome, have an 
increasingly appreciated role in health and disease [16, 17], in-
cluding in HIV acquisition and progression [18–23]. Dysbiosis, 
or changes in microbiome composition, has been associated 
with HIV infection and may not fully resolve with antiretroviral 
therapy (ART) [20, 24, 25], suggesting that ART itself could af-
fect dysbiosis. At least 2 studies have also shown microbiome 
differences by ART regimen among treated HIV-infected in-
dividuals [25, 26]. Dubé et al [27] recently found microbiome 
changes in a small longitudinal study of MSM initiating PrEP 
over 48 weeks, although this analysis was unable to account for 
sexual behavior.

In this study, we investigate rectal microbiome composition 
in a cohort of young MSM on PrEP compared to well matched 
controls, and we use hair analyses to examine TFV and FTC ex-
posure in relationship to the microbiome. More important, we 
matched controls using multiple clinical and behavioral factors, 
including sexual activity and substance use, which have been 
shown to independently affect dysbiosis in HIV [28, 29].

METHODS

Study Population

Participants were selected from an ongoing cohort study exam-
ining substance use and HIV in young HIV-positive and HIV-
negative MSM (The mSTUDY [National Institute on Drug 
Abuse]). The mSTUDY was approved by the UCLA Office of 
the Human Research Protection Program Institutional Review 
Board, and all subjects provided written informed consent at 
study entry. All participants in The mSTUDY complete bi-
annual visits consisting of history and examination, clinical 
laboratory tests, sexually transmitted infection screening, 
urine toxicology, specimen collection for biorepository, and 
detailed behavioral questionnaire. This cross-sectional study 
used specimens and data from HIV-negative mSTUDY parti-
cipants on PrEP or not on PrEP collected at the baseline study 
visit. There were 200 available specimens from HIV-negative 
participants enrolled between August 2014 and July 2017; of 
these, 74 were included in this study. Inclusion criteria for the 
PrEP group (n = 37) was based on clinician review of medi-
cations and confirmed by self-report using a series of PrEP-
related questions. Inclusion criteria for the control group was 
no self-report of current PrEP use and no history of PrEP or 
PEP in the last 6 months (n = 27 were excluded based on these 
criteria). From the remaining 136 eligible non-PrEP users, we 
selected a control group (n = 37) based on matching charac-
teristics (see Statistical Analysis).

Rectal Specimen Collection and Processing
Rectal swabs (FLOQSwabs; Copan Diagnostics, Murrieta, CA) 
were collected under direct mucosal visualization via anoscopy 
without preparatory enema then immediately frozen neat at 
−80°C until processing in bulk. Samples were lysed by trans-
ferring to Lysing Matrix E tubes (MP Biomedicals, Burlingame, 
CA) containing RLT lysis buffer (QIAGEN, Hilden, Germany) 
and bead-beated on a TissueLyser (QIAGEN). Deoxyribonucleic 
acid (DNA) was then extracted using the AllPrep DNA/RNA/
Protein kit (QIAGEN) per the manufacturer’s protocol.

16S Ribosomal Ribonucleic Acid Gene Sequencing and Microbiome 
Data Processing
Microbiome profiling was performed by sequencing the V4 
region of the 16S ribosomal ribonucleic acid (rRNA) gene as 
previously described [30, 31]. In brief, the V4 region was amp-
lified using Golay-barcoded primers 515F/806R in triplicate 
reactions. Negative controls from the DNA extraction and pol-
ymerase chain reaction (PCR) steps, as well as independent 
aliquots of a bacterial mock community, were processed in par-
allel to identify contaminant sequences and ensure data repro-
ducibility. The PCR products were pooled and sequenced on 
the Illumina MiSeq platform using 2 × 150 base pair v2 chem-
istry. Sequences were demultiplexed with Golay error correc-
tion using QIIME v1.9.1 [32]. Divisive Amplicon Denoising 
Algorithm (DADA2) version 1.8 was used for error correc-
tion, exact sequence inference, read merging, and chimera re-
moval [33]. The resultant amplicon sequence variant (ASV) 
table comprised 3 576 558 total merged read pairs (mean per 
sample = 48 332; range, 10 906 to 96 109) after removal of con-
taminant ASVs, defined as those with at least 10% of their total 
abundance derived from negative control samples. Rarefaction 
was performed at a depth of 10 906 reads for the corresponding 
analyses (zero-inflated negative binomial, alpha diversity). For 
all other analyses, counts were transformed to relative abun-
dances. Taxonomic assignment was done using RDP trainset 16 
[34]. All sequence data has been deposited into BioProject with 
the accession number PRNJA422134.

Hair Analysis for Drug Concentration

Scalp hair samples collected as part of the standard mSTUDY 
protocol were available from this study visit for n = 15 of the 
participants on PrEP. The TFV and FTC concentrations were 
quantified by validated liquid chromatography-tandem mass 
spectrometry methods with multiple reaction monitoring 
mode in the UCSF Hair Analytical Laboratory (HAL) using the 
proximal 1.5 cm of hair (representing approximately 6 weeks of 
drug exposure) [35].

Statistical Analyses

Control participants were selected using 1:1 propensity 
score (PS) matching of PrEP users to nonusers. Propensity 
scores were estimated using logistic regression; covariates 
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included in the PS model are detailed in Table 1. The PrEP 
users were then individually matched to nonusers using the 
“optimal” matching algorithm, which minimizes the av-
erage absolute distance across all matched pairs (R package 
“MatchIt”) [36]. To assess the quality of matches, we cal-
culated the standardized mean difference in each covariate 
after matching and tested for significant differences in any 
covariate between groups (Table 1).

Only genera with at least 1% relative abundance in 10% of 
samples were included for differential testing, resulting in a 
total of 29 genera. ZINB models were used to test for differ-
ential abundance in bacterial genera between groups with 
multinomial least absolute shrinkage and selection operator 
(LASSO) models used as a confirmatory analysis (R pack-
ages “pscl” and “glmnet”). Correction for multiple hypoth-
esis testing was performed using the Benjamini-Hochberg 
false discovery rate method. All statistical analyses were 
performed using R v3.4.3.

RESULTS

Participant Characteristics and Matching

A total of n = 74 HIV-negative participants were included in 
this cross-sectional study, with 37 participants on PrEP and 
37 matched control participants not on PrEP. The average age 
was 30.3 years with 32.4% Hispanic and 52.7% non-Hispanic 
black. Given the significant influence of clinical and behav-
ioral confounders on microbiome composition [28, 29], con-
trol participants were selected using 1:1 matching on age, 
race/ethnicity, obesity, substance use including methamphet-
amine, marijuana, alcohol, and tobacco, and receptive anal in-
tercourse frequency. Participant characteristics are described 
in detail in Table 1.

Rectal Microbiome Composition in Pre-Exposure Prophylaxis (PrEP) Users 
Compared to Non-PrEP Users

The median duration of PrEP use in our study population was 
41 weeks (interquartile range, 14–59 weeks). Adherence was 

Table 1.  Study Participant Characteristics

Participant Characteristics Control (n = 37) PrEP (n = 37) P Valuea SMD

Age [mean (sd), median] 30.1 (6.7), 29 29.8 (6.5), 28 .85 .05

Race/Ethnicity (n, %)   .90 .12

  Black Non-Hispanic 19 (51.4) 21 (56.8)   

  Hispanic 13 (35.1) 12 (32.4)   

  Other Non-Hispanic 5 (13.5) 4 (10.8)   

Obese (BMI >30 or waist >40 inches) (n, %) 17 (45.9) 13 (35.1) .88 .22

Duration of PrEP use (weeks) [mean (sd), median] NA 54.4 (56), 40.9 NA NA

Recent RAI (7 days) (n, %) 16 (43.2) 17 (45.9) .99 .05

Number of RAI acts (30 days) [mean (sd), median] 2.1 (5.5), 0 2.2 (4.5), 0 .91 .03

Methamphetamine useb (n, %)   .99 .07

  Daily 1 (2.7) 1 (2.7)   

  Weekly 0 (0.0) 0 (0.0)   

  Monthly/less 7 (18.9) 6 (16.2)   

  Never 29 (78.4) 30 (81.1)   

Marijuana use (n, %)   .77 .26

  Daily 11 (29.7) 9 (24.3)   

  Weekly 6 (16.2) 5 (13.5)   

  Monthly/less 13 (35.1) 12 (32.4)   

  Never 7 (18.9) 11 (29.7)   

Smoking (n, %)   .70 .20

  >1 pack/day 2 (5.4) 1 (2.7)   

  <1 pack/day 11 (29.7) 9 (24.3)   

  Nonsmoker 24 (64.9) 27 (73.0)   

Binge alcohol use (n, %)   .99 .06

  Weekly 1 (2.7) 1 (2.7)   

  Monthly/less 26 (70.3) 27 (73.0)   

  Never 10 (27.0) 9 (24.3)   

Antibiotic use in past monthc (n, %) 4 (10.8) 4 (10.8) .99 0

Abbreviations: BMI, body mass index; NA, not applicable; PrEP, pre-exposure prophylaxis; RAI, receptive anal intercourse; sd, standard deviation; SMD, standardized mean difference.
at tests were used for continuous variables, and Fisher’s exact tests were used for categorical variables.
bSubstance use data refers to past 6 month and was collected by self-report. Binge alcohol refers to >6 drinks at a time on more than 1 occasion.
cAntibiotics included single-dose azithromycin, ceftriaxone, or doxycycline only.
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assessed in all participants using self-report and clinician re-
view of medication records. We further examined adherence to 
PrEP by quantifying TFV and FTC levels in hair specimens in 
a subset of PrEP users (Table 2). Hair analysis in this case re-
cords cumulative exposure to PrEP drugs over a 6-week time 
period [35]. The average TFV level was 0.027 ng/mg hair, and 
FTC level was 0.42 ng/mg hair among the 15 participants with 
available hair specimens. Based on prior studies [35], these con-
centrations are associated with adherence of at least 4 doses per 
week in 73% of sampled participants. This is in agreement with 
the self-report adherence measures in this study, which showed 
78% participants reporting very good or excellent adherence. 
We examined rectal microbiome composition between partici-
pants on PrEP compared to matched participants not on oral 
PrEP using targeted 16S rRNA gene sequencing. Averaged rel-
ative abundances of bacterial genera between the 2 groups are 
shown in Figure 1A. No significant differences were seen in 
overall composition (Figure 1B) or alpha diversity (Figure 1C) 
between PrEP users and nonusers.

Pre-Exposure Prophylaxis Use Associates With Differential Abundance of 
Specific Bacterial Genera

To examine whether specific bacterial genera were associated 
with PrEP use, we used zero-inflated negative binomial models 
(Figure 2). After P value adjustment, only increased relative 
abundance of Streptococcus (Padj  =  .02) was associated with 
PrEP use. To further examine these findings, we used binomial 
LASSO regression analyses. Using this model, we also found 
that PrEP use was associated with increased Streptococcus, 
Fusobacterium, Mitsuokella, and decreased Escherichia/Shigella 
abundance (Figure 2). Similar analyses performed at the species 
level showed no significant associations (data not shown).

Correlations Between Tenofovir and Emtricitabine Levels and Specific 
Bacterial Genera

Finally, we examined correlations between specific bac-
terial genera and measured TFV and FTC levels in our 
subset of PrEP users with hair specimens. Despite the small 
sample size in this analysis, increasing TFV levels was sig-
nificantly associated with an increased relative abundance of 
Fusobacterium (Padj  =  .008), suggesting that there may be a 
dose-response relationship between PrEP exposure and in-
creased Fusobacterium abundance (Figure 3). A  similar as-
sociation was seen with FTC levels, although this finding did 
not reach statistical significance.

DISCUSSION

The clinical consequences of PrEP in young healthy adults is 
an area of particular interest because this method of HIV pre-
vention is highly effective and is a major focus of the new plan 
to End the HIV Epidemic in the United States [37]. In this 
study, we examined rectal microbiome changes between well 
matched MSM with and without PrEP use. No significant alter-
ations were seen in overall microbiome composition or diver-
sity; however, some specific taxa changes were noted in those 
on PrEP including increased Streptococcus, Fusobacterium, 
and Mitsuokella and decreased Escherichia/Shigella abundance. 
Moreover, Fusobacterium abundance correlated with long-term 
TFV exposure levels quantified by hair analysis.

Our study found significant increased abundance of 
Streptococcus in PrEP users compared with MSM not on 
PrEP (Figure 2). A  recent study similarly identified signifi-
cant associations between PrEP and Streptococcus abundance 
in the rectal microbiome of MSM [27], although it observed 

Table 2.  TFV and FTC Concentrations in Hair Samplesa

Hair Sample No. Duration of PrEP (Weeks) TFV Concentrationb (ng/mg Hair) FTC Concentration (ng/mg Hair)

1 32 0.026 0.582

2 10 0.026 0.477

3 57 0.014 0.121

4 25 0.050 0.619

5 NA BLQ BLQ

6 142 0.027 0.265

7 11 0.037 0.705

8 28 0.040 1.167

9 11 0.009 0.213

10 11 0.031 0.761

11 59 0.028 0.537

12 156 0.005 0.040

13 11 0.027 0.092

14 47 0.030 0.093

15 48 0.020 0.194

Abbreviations: BLQ, below lower limit of quantification; FTC, emtricitabine; NA, not available; PrEP, pre-exposure prophylaxis; TFV, tenofovir.
aHair samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry.
bOn average, a TFV value of 0.038 ng/mg hair is consistent with dosing 7 days per week, and 0.023 ng/mg hair is consistent with dosing 4 days per week [35]. In our small subset, 73% (11 
of 15) had TFV values indicating at least 4 days per week adherence to PrEP.
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decreased Streptococcus after initiation of PrEP in 4 of 8 par-
ticipants. Differences in our results and this study could be 
explained by study design (cross-sectional vs longitudinal), 
microbiome analysis method, and potential differences in 

confounders between study populations. Nonetheless, the 
similar identification of Streptococcus abundance with PrEP 
use in both studies suggests this may be an interaction worthy 
of further study.

We identified an increase in Fusobacterium abundance as-
sociated with PrEP use, which correlated with TFV levels in 
hair analysis (Figure 3). Among treated HIV-infected individ-
uals, increased Fusobacterium has been associated with poor 
immune recovery even after adjustment for MSM status [38]. 
Fusobacterium has similarly been associated with other intes-
tinal inflammatory conditions, including inflammatory bowel 
disease and proinflammatory gene expression in colorectal 
cancer [39, 40]. The mucosal immune consequence of these 
changes in the rectal microbiome in HIV-negative individuals 
on PrEP is not known. However, given the clinical associations 
between inflammation and HIV acquisition risk despite the use 
of TFV products [41], this may be an area of important further 
investigation.

The mechanism by which oral TDF/FTC for PrEP may 
alter the rectal microbiome composition is not clear. Multiple 
studies have recently highlighted the effects that multiple drug 
classes can have on gut microbiome variation, including com-
monly used medications such as metformin and nonsteroidal 
anti-inflammatory drugs [42–46]. One plausible explana-
tion is off-target antibacterial activity of TDF/FTC. A  recent 
high-throughput screen of drugs for anticommensal activity 
with 40 representative bacterial strains found that 24% of 
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human-targeted drugs have antibacterial activity including 40% 
of antiviral drugs [42]. Another recent in vitro study specifically 
examined unintended antibacterial effects of commonly used 
antiretroviral drugs. This study did not show activity with TFV 
or FTC; however, drugs were only tested against Escherichia coli 
and Bacillus subtilis [47]. In the vaginal compartment, micro-
biota have been associated with decreased concentrations of 
oral antiretroviral drugs [48], and direct interactions between 
commensal bacteria and topical TFV have been demonstrated 
[49, 50]. Even in the absence of direct antibiotic effects, these 
drugs may alter local cellular or bacterial metabolic activity or 
gene expression such that certain bacterial communities are 
favored.

Interactions with the microbiome can also alter systemic 
drug function, including response to cancer therapeutics [51], 
digoxin [52], metformin [46], and topical TFV gel [49, 50]. In 
the case of metformin, changes in the microbiome appear nec-
essary for drug activity in a study using germ-free mice [46]. 
Klatt et  al [49] showed that specific vaginal bacteria such as 
Gardnerella vaginalis metabolize TFV leading to decreased ef-
ficacy of TFV gel microbicide for HIV prevention in women. 
Taneva et  al [50] similarly found that Lactobacillus crispatus 
and G vaginalis decreased TFV bioavailability and anti-HIV ac-
tivity, respectively, in women using TFV gel. Because our study 
was cross-sectional and modest in size, we could not examine 
the relationship between the microbiome and PrEP effective-
ness. However, defining the role of the microbiome in PrEP 
efficacy may be an important consideration in future clinical 
trials of PrEP therapeutics. Microbiome interactions may also 
contribute to drug side effects and even toxicities. Oral TDF/
FTC for PrEP is associated with varying gastrointestinal symp-
toms during the first month of use, often termed PrEP “start-up 
syndrome”. It is possible that these symptoms occur due to 
PrEP-associated microbiome alterations and abate as the gas-
trointestinal tract acclimates to these changes.

Our study has limitations that should be considered while 
interpreting the results. The overall study size is modest 
(n = 74); however, this study is the largest study to date to ex-
amine microbiome changes in HIV-negative MSM on oral PrEP. 
More important, we used 1:1 matching on a multitude of im-
portant clinical and behavioral confounders, including sexual 
behavior, which greatly strengthens the study results. However, 
we cannot fully exclude the possibility of residual confounding 
from additional unidentified factors. Furthermore, we did not 
have dietary data available, and we were unable to account for 
this potentially important confounder. Finally, the cross-sec-
tional design limits our ability to precisely attribute the ob-
served microbiome differences solely to PrEP use. Our ability 
to detect dose-response relationships between increasing TFV 
or FTC drug levels and the abundance of specific bacterial taxa 
does provide further evidence to support the relationship be-
tween PrEP use and these microbiome changes.

CONCLUSIONS

This study adds to the growing literature highlighting 
xenobiotic-microbiome interactions. It is the largest such study 
to specifically examine the effects of oral TDF/FTC for PrEP 
on the gut microbiome. We identified several specific bacte-
rial taxa associated with PrEP, including Streptococcus, which 
was similarly identified in a prior study [27], and also showed 
a dose-dependent association between TFV exposure and 
Fusobacterium abundance. With increasing efforts focused on 
expanding PrEP use for HIV prevention, it will be important 
to consider these potential interactions with the microbiome 
and continue research to better understand their clinical 
consequences.
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