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Abstract

Ribosomal S6 Kinase 2 (RSK2) is a member of the p90RSK family of serine/threonine kinases, which are widely expressed and
respond to many growth factors, peptide hormones, and neurotransmitters. Loss-of function mutations in the RPS6KA3
gene, which encodes the RSK2 protein, have been implicated in Coffin-Lowry Syndrome (CLS), an X-linked mental
retardation disorder associated with cognitive deficits and behavioral impairments. However, the cellular and molecular
mechanisms underlying this neurological disorder are not known. Recent evidence suggests that defective DNA damage
signaling might be associated with neurological disorders, but the role of RSK2 in the DNA damage pathway remains to be
elucidated. Here, we show that Adriamycin-induced DNA damage leads to the phosphorylation of RSK2 at Ser227 and
Thr577 in the chromatin fraction, promotes RSK2 nuclear translocation, and enhances RSK2 and Atm interactions in the
nuclear fraction. Furthermore, using RSK2 knockout mouse fibroblasts and RSK2-deficient cells from CLS patients, we
demonstrate that ablation of RSK2 impairs the phosphorylation of Atm at Ser1981 and the phosphorylation of p53 at Ser18
(mouse) or Ser15 (human) in response to genotoxic stress. We also show that RSK2 affects p53-mediated downstream
cellular events in response to DNA damage, that RSK2 knockout relieves cell cycle arrest at the G2/M phase, and that an
increased number of cH2AX foci, which are associated with defects in DNA repair, are present in RSK2-deficient cells. Taken
together, our findings demonstrated that RSK2 plays an important role in the DNA damage pathway that maintains
genomic stability by mediating cell cycle progression and DNA repair.
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Introduction

Coffin-Lowry syndrome (CLS) is an X-linked mental retarda-

tion disorder caused by mutations in the Rps6ka3 gene, which

encodes ribosomal S6 kinase (RSK) 2 [1]. This syndrome is

characterized by psychomotor, growth, and cognitive retardation,

as well as facial, hand, and skeletal anomalies [2].

CLS patients have markedly reduced cerebellar and hippocam-

pal volumes compared to healthy controls [3]. RSK2 plays a key

role in this neurological disorder. In the adult mouse brain, RSK2

is highly expressed in regions with high synaptic activity, including

the cerebellar Purkinje cells and the pyramidal cells of the CA3

hippocampal region [4]. Studies have shown that the functional

impairment of neurotransmission and plasticity due to AMPAR

dysfunction may contribute to the cognitive deficit observed in

RSK2 knockout (KO) mice [5]. In addition, loss of RSK2 function

decreases neurogenesis during cerebral cortex development [6].

These data suggest that RSK2 plays an important role in learning

and memory in both humans and mice and that RSK2 deficiency

might lead to cognitive and behavioral dysfunction.

Several lines of evidence have linked DNA damage and repair

systems to neurological disorders. DNA damage can be caused by

exogenous or endogenous factors, such as ionizing radiation (IR),

chemotherapeutic drugs, and stalled replication forks [7]. Upon

exposure to DNA-damage reagents, mammalian cells trigger a

sequence of multi-component biochemical reactions to maintain

genome integrity. At the core of the signaling network are PI3

kinase-like kinases (PIKKs), including Atm, Atr and DNA-PKcs

[8]. Atm and Atr are recruited to nuclear foci by the MRN

(Mre11-Rad50-NBS) complex [9], where they phosphorylate

proteins such as p53, Chk1, Chk2, and H2AX to activate cell

cycle checkpoints and/or induce apoptosis [10].

Patients with Ataxia Telangiectasia (A-T) and Seckel Syndrome-

1 (SCKL1) exhibit severe cerebellar degeneration, microcephaly

and mental retardation, which result from deficiencies in Atm and

Atr, respectively [11–12]. Furthermore, growing evidence links
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DNA damage to cognitive impairment in experimental animals

and patients receiving genotoxic chemotherapeutic drugs [13–14].

For instance, data from a longitudinal study of breast cancer

patients who were evaluated using structural and functional

Magnetic Resonance Imaging (MRI) before treatment and 1 and

12 months after treatment suggest a pattern of reduced activation

in frontal areas during a working memory task [15]. Recently,

RSK2 was reported to directly phosphorylate histone H2AX. The

incorporation of phosphorylated H2AX in chromatin is an

indicator of DNA damage, suggests a possible role for RSK2 in

maintaining chromatin stability [16]. In addition, RSK2 activates

p53 in vitro and in vivo, and co-localizes with p53 in the nucleus

[17]. However, the primary function of RSK2 in the DNA

damage pathway remains unclear.

While investigating the role of RSK2 in the DNA damage

response and DNA repair, we observed the phosphorylation of

RSK2 at Ser227 and Thr577 in response to Adriamycin-induced

DNA damage. We demonstrated that RSK2 activates the Atm/

p53-dependent DNA damage pathway and that RSK2 also

interacted and co-localized with Atm in the nucleus upon DNA

damage. RSK2 participated in the DNA damage response by

affecting p53-controlled cell cycle progression and DNA repair

mechanisms. The absence of RSK2 relieved cell cycle arrest at the

G2/M phase, increasing the number of cH2AX foci (which are

associated with DNA repair) in both RSK2 knockout (KO) mouse

embryonic fibroblasts (MEFs) and CLS patient fibroblast cells.

Hence, our study has uncovered a novel role for RSK2 in the

DNA damage pathway and provided a link between CLS, a

neurological disorder caused by mutated RSK2, and defects in the

DNA damage response.

Results

Genotoxic stress results in RSK2 phosphorylation at
Ser227 and Thr577

To maintain genomic integrity, DNA damage in mammalian

cells rapidly activates a number of specific signaling pathways

that initiate cell cycle arrest and subsequent DNA repair. To

examine the potential role of RSK2 in the DNA damage

response, we treated low-passage, non-immortalized MEFs with

DNA-damaging agents for various lengths of time, and then, we

detected the phosphorylation of RSK2 in response to the DNA

damage. DNA damage was initially induced by treatment with

Adriamycin (AD), a chemotherapeutic agent used to treat a wide

variety of cancers. AD is a topoisomerase II inhibitor that has

been shown to induce DSBs and SSBs by activating both Atm

and Atr [18]. We found that after 2 hr of AD treatment, RSK2

was phosphorylated at Ser227 (,1.6-fold) in the N-terminal

kinase domain (NTKD) and Thr577 (,1.6-fold) in the C-

terminal kinase domain (CTKD). RSK2 remained phosphory-

lated for up to 16 hr after AD treatment (Fig. 1A and B). The

levels of RSK2 expression remained constant during the AD

treatment.

Several DNA damage response and DNA repair proteins, such

as DNA-PK, Rad51, and HMGB1, associate with chromatin in

response to DNA damage [19–20]. To test whether RSK2

associates with chromatin after DNA damage, we treated MEFs

with 0.5 mM of AD and then isolated the chromatin-associated

proteins [21]. We found an increased amount of RSK2

phosphorylated at Ser227 and Thr577 in the chromatin fraction

after treating with AD for 2 hr (Fig. 1C and D), but this effect was

not observed in the cytosolic fraction (Fig. 1E and F). This

indicates that activated RSK2 associates with chromatin in

response to DNA damage.

RSK2 deficiency impairs the Atm/p53-dependent DNA
damage pathway

Our data show that RSK2 is phosphorylated at Ser227 and

Thr557 in response to genotoxic stress, which is known to cause

DSBs and SSBs. To determine the role of RSK2 in the DNA

damage response, we first examined whether the absence of

functional RSK2 would affect the activation of the Atm/p53-

dependent DNA damage pathway, which is known to trigger the

DNA damage signaling network [10]. We cultured RSK2 wild

type (WT) and knockout (KO) MEFs and treated the cells with

0.5 mM AD for 2 hr, 8 hr, or 16 hr. We found that AD-induced

DNA damage induced the phosphorylation of RSK2 at both

Ser227 and Thr577 (Fig. 2A). Next, we assessed the activation of

Atm in RSK2 WT and KO MEFs treated with AD. We observed

phosphorylation of Atm at Ser1981 in RSK2 WT MEFs starting

at 2 hr after AD treatment, indicating the presence of DNA DSBs.

However, the phosphorylation of Atm at Ser1981 was reduced in

RSK2-deficient MEFs compared to the WT cells (Fig. 2A).

p53 is one of the most important effector molecules downstream

of Atm in the DNA damage response. p53 phosphorylation

induced by DNA damage either stabilizes p53 or enhances its

transactivation ability. We therefore investigated the phosphory-

lation of p53 in both RSK2 WT and KO MEFs. Western blot

analysis revealed that p53 was phosphorylated at Ser18 (human

Ser15) in WT cells. RSK2 deficiency led to drastically reduced

phosphorylation at Ser18, as well as a reduction in p53 up-

regulation in response to AD (Fig. 2A). p53 is a master gene that

regulates cell cycle progression, apoptosis, and DNA repair in cells

with DNA damage. Decreased phosphorylation of p53 at Ser18

indicates that downstream target genes that control these cellular

events might be affected. Indeed, we found that while AD

treatment of WT cells leads to an induction of p21, a potent cyclin-

dependent kinase inhibitor (CDKI) that functions as a regulator of

cell cycle progression at the G1 phase [22], this effect was

abolished in RSK2 KO cells (Fig. 2A). We further observed that

RSK2 deficiency had no effect on the expression levels of Bax, a

molecule that is involved in p53-mediated apoptosis [23],

compared to WT cells, suggesting that RSK2 plays a critical role

in DNA damage-induced p53 activation and cell cycle progres-

sion. To further confirm the effects of the RSK2-mediated DNA

damage response, we overexpressed RSK2 in RSK2-deficient

MEFs and observed that the disrupted phosphorylation of Atm at

Ser1981 and p53 at Ser18 in these cells was rescued by RSK2

overexpression (Fig. 2B).

To further confirm this finding, we analyzed CLS fibroblasts

obtained from patients with RSK2 mutations. Genotoxic stress-

induced RSK2 phosphorylation at Ser227 and Thr577 was

observed in healthy human fibroblasts (Fig. 2C). Notably,

however, we observed a decreased phosphorylation of Atm at

Ser1981 in CLS fibroblasts (Fig. 2C). Furthermore, p53 phos-

phorylation at Ser15 was abolished in the RSK2-deficient CLS

cells, as well as downstream p21 signaling. However, Bax activity

was not affected. Taken together, our findings from the RSK2 KO

mouse cell line and the RSK2-deficient human cell line indicate

that RSK2 activates the Atm/p53-dependent DNA damage

pathway.

Genotoxic stress promotes RSK2 interaction with Atm
To further define the mechanism of how RSK2 activates the

Atm-dependent DNA damage pathway, we next sought to

determine whether RSK2 and Atm interact with each other

under conditions of genotoxic stress. RSK2 shuttles between the

cytoplasm and the nucleus upon activation [24]. Co-immunopre-

cipitation assays showed that upon overexpression of RSK2 and

RSK2 Deficiency Impairs DNA Damage Pathway
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Atm in NIH cells, Atm associates with RSK2. Importantly, this

interaction was further enhanced by genotoxic stress induced by

AD treatment for 2 hr (Fig. 3A). To confirm this result, we co-

transfected RSK2 and Atm into MEFs, which were then

immunostained for both proteins. Under normal conditions,

RSK2 is predominantly in the cytoplasmic compartment, whereas

Atm is mainly nuclear. Thus, there was little co-localization

between these two proteins (Fig. 3B). However, after AD

administration for 2 hr, enhanced nuclear co-localization of

RSK2 and Atm was observed (Fig. 3B). These results suggest that

Atm interacts with RSK2 under conditions of genotoxic stress.

RSK2 deficiency relieves genotoxic stress-induced G2/M
cell cycle arrest

DNA damage typically results in three cellular responses: cell

cycle arrest, increased DNA repair, and apoptosis [25]. Previous

studies have shown that RSK2 is mainly involved in proliferation

and survival upon exposure to UVB or an AD analogue [17,26].

In addition, our results also suggested that in response to DNA

damage, RSK2 primarily affects p21, which is involved in cell

cycle regulation rather than apoptosis (Fig. 2). Hence, we

examined the impact of RSK2 deficiency on cell cycle arrest

under genotoxic stress conditions for 8 hr and 24 hr. We

performed flow cytometry analysis of AD-treated RSK2 KO

and WT MEFs. Propidium Iodide (PI) staining showed approx-

imately 40% of control (untreated) cells were in G2/M phase

(Fig. 4A, 4B, 4D). Treatment of cells with AD increased this

number to 80%, indicating AD-induced G2/M arrest (Fig. 4D).

Interestingly, reduced percentage of cells in the G2/M phase

(58%) was observed in the RSK2 KO cells (Fig. 4D). Moreover,

recovered number of cells in the G1/S phase was detected in the

RSK2 KO cells (Fig. 4C). These data indicate that RSK2

Figure 1. Genotoxic stress results in RSK2 phosphorylation at Ser227 and Thr577. A. MEFs were treated with 0.5 mM Adriamycin (AD) for
specific periods of time to induce DNA lesions. Protein levels of total RSK2 and RSK2 phosphorylated at Ser227 and Thr577 were analyzed by western
blot. B. Quantitation of RSK2 phosphorylation at Ser227 and Thr577. The value of phospho-RSK2 at time zero in the absence of AD was set at 1.0.
Increased levels of phospho-RSK2 were observed 2 hr after exposure of the MEFs to AD. C. RSK2 is associated with chromatin and activated by a DNA
damaging reagent. MEFs were treated with 0.5 mM AD for various time points, followed by fractionation into the cytosolic and chromatin
compartments. Western blot was performed to analyze the protein levels of total RSK2 and phospho-RSK2. D. Quantitation of RSK2 phosphorylation
at Ser227 and Thr577 in the chromatin fraction. The value of phospho-RSK2 at time zero in the absence of AD was set at 1.0. An increased level of
phosphorylated RSK2 was observed in the chromatin fraction, indicating an increased association between activated RSK2 and chromatin under
genotoxic stress, whereas the level of cytosolic phospho-RSK2 remained the same as shown in E and F. For each experiment, at least three replicates
were performed, and similar results were obtained. Representative results from one experiment are shown. All data are shown as the mean plus or
minus the standard deviation of the mean (mean 6 SD). A significant difference was defined as *P,0.05, **P,0.01, and ***P,0.001 compared to the
control.
doi:10.1371/journal.pone.0074334.g001
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Figure 2. RSK2 activates the Atm/p53-dependent DNA damage
pathway under genotoxic stress. A. RSK2 activates the Atm/p53-
dependent DNA damage pathway under genotoxic stress in MEFs. RSK2
WT and KO MEFs were isolated from E14.5 mouse embryos. Cells were
treated with 0.5 mM AD for 2 hr, 8 hr, or 16 hr. The cell lysates were
then analyzed by western blot against Atm, phospho-Atm(Ser1981),
and DNA damage response target genes downstream of p53, including
phospho-p53(Ser18), Bax and p21. The RSK2 KO MEFs shows very little
activation signal due to the RSK2 deficiency, and this leads to decreased
phosphorylation of Atm at Ser1981, decreased p53 protein stability and
transactivation, and decreased levels of p21 expression. Total RSK2 and
b-actin were used as internal controls to confirm the RSK2 knockout
and equal protein loading. B. Overexpression of RSK2 in the RSK2 KO
MEFs rescued Atm and p53 activation. RSK2 WT and KO MEFs were
isolated from E14.5 mouse embryos. RSK2 was overexpressed in RSK2
KO MEFs, and a control plasmid was overexpressed in the WT and KO
RSK2 cells. Cells were treated with 0.5 mM AD for 2 hr, 8 hr or 16 hr. The
cell lysates were then analyzed by western blot for the expression of
Atm, phospho-Atm(Ser1981), p53 downstream targets, and phospho-
p53 (Ser18). C. RSK2 activates the Atm/p53-dependent DNA damage

pathway under genotoxic stress in human fibroblasts. Healthy
fibroblasts (GM09621) and RSK2-deficient fibroblasts from CLS patients
(GM03321) were cultured and exposed to 0.5 mM AD for various times.
Western blot analysis was conducted using phospho-specific antibodies
for Atm and p53. Total RSK2 and b-actin were used as internal controls
to confirm RSK2 knockout and equal protein loading.
doi:10.1371/journal.pone.0074334.g002

Figure 3. Genotoxic stress promotes the interaction of RSK2
with Atm. A. Ectopically expressed RSK2 interact with Atm, and the
formation of this complex is enhanced under conditions of genotoxic
stress. NIH cells were transfected with the indicated expression
constructs and treated with 0.5 mM AD 2 hr or left untreated. Atm
was then immunoprecipitated from the cell lysates. The immunopre-
cipitated proteins and their associated proteins were detected by
western blot analysis using anti-Atm, -RSK2 antibodies, respectively. B.
Under conditions of genotoxic stress, activated RSK2 translocated to the
nucleus and co-localized with Atm. MEF cells were co-transfected with
Atm and RSK2 and then treated with 0.5 mM AD for 2 hr. The cells were
fixed, permeabilized, and blocked, and immunocytochemistry was
performed using primary antibodies against RSK2 and Atm and FITC-
conjugated or Alexa Fluor 555 Donkey anti-mouse IgG (H+L) secondary
antibodies. Scale bars: 5 mm. A representative Z-stack image shows
RSK2 and Atm double-positive cells.
doi:10.1371/journal.pone.0074334.g003
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deficiency relieves AD-induced G2/M arrest, suggesting that

RSK2 plays a critical role in genotoxic stress-induced cell cycle

progression.

RSK2 deficiency increases vulnerability of the cells to
genotoxic stress

As impaired DNA repair would lead to cell apoptosis, we also

test the cell viability in RSK2 WT and KO cells treated with

Adriamycin (0.5 mM). As shown in Fig. 5A, Adriamycin treatment

significantly decreased cell viability in RSK2 KO cells but not in

RSK2 WT cells. Compared with RSK2 WT cells, RSK2 KO cells

displayed lower cell viability at each time point after treatment. In

addition to that, we also performed TUNEL assay to detect the

cell death effect under the genotoxic stress. RSK2 KO cells

exhibited more cell death than RSK2 WT cells after 24 h

Adriamycin treatment (Fig. 5B, C). Our results suggested that

RSK2 deficiency increased vulnerability of cells to genotoxic

stress.

RSK2 deficiency results in an increased number of cH2AX
foci in response to genotoxic stress

When the cell cycle is arrested, specific DNA repair mechanisms

are activated depending on the types of DNA lesions and the cell

cycle phase [27]. We next examined the potential role of RSK2 in

DNA repair under genotoxic stress conditions. Proteins that are

responsible for the DNA damage response and DNA repair are

rapidly recruited to the sites of breaks, leading to the formation of

nuclear foci. These foci disappear upon completion of DNA

damage repair [28]. We therefore investigated whether the AD-

induced formation of cH2AX foci is affected by RSK2. cH2AX is

phosphorylated at Ser139 by various kinases and forms foci at the

sites of DSBs [29–31]. Due to this localization pattern, cH2AX

foci are commonly used to quantify the severity of DSBs and the

efficiency of DNA repair, with a high number of foci indicating a

deficiency in DNA repair. We treated RSK2 WT and KO MEFs

with AD for different periods of time (from 2 hr to 48 hr) and

quantified the average number of cH2AX foci per cell by

immunostaining the cells for endogenous cH2AX (Fig. 6A).

Untreated WT and KO MEFs formed very few foci (,1–2 foci/

cell). After 2 hr of treatment with 0.5 mM AD, RSK2 WT and KO

MEFs started to form foci, but no difference was detected between

the two groups (Fig. 6A and 6B). We observed an increase in the

number of foci per cell in both RSK2 WT and KO MEFs over

time, which reached a peak at 24 hr (Fig. 6B: WT-75 foci/cell,

and KO-84 foci/cell). Interestingly, we observed an increase in the

number of foci per cell at 8 hr (61 foci/cell), 24 hr (84 foci/cell),

and 48 hr (75 foci/cell) in the RSK2 KO group compared to the

WT cells (which showed 55 foci/cell, 75 foci/cell, and 48 foci/cell

at these time points, respectively) (Fig. 6A and B). The significant

difference in the number of cH2AX foci observed over time (from

8 to 48 hr) suggests that RSK2 deficiency might cause a delay in

DNA repair, resulting in the persistently high number of cH2AX

foci in RSK2-deficient MEFs.

To determine whether DNA repair efficiency is impaired in

CLS, we treated healthy human fibroblasts and CLS patient

fibroblasts with AD and measured the number of cH2AX foci per

cell. We observed an increase in cH2AX foci formation for both

groups beginning at 2 hr of AD treatment, which reached a peak

at 8 hr, followed by a reduction in the number of foci number by

16 hr. However, CLS fibroblasts displayed a significantly higher

number of foci per cell at 2 hr (18 foci/cell), 8 hr (48 foci/cell),

and 16 hr (21 foci/cell) of AD treatment, compared to healthy

fibroblasts (which showed 13 foci/cell, 32 foci/cell, and 16 foci/

Figure 4. RSK2 regulates cell cycle progression in response to
genotoxic stress. A and B. Cell cycle profile analysis using FACs. RSK2
WT (A) and KO (B) MEFs were treated with 0.5 mM AD at various time
points, and the cells were fixed and stained with propidium iodide,
followed by flow cytometry analysis. C. At 24 hr, an increased
percentage of RSK2 KO MEFs had entered the G1/S phase compared
to WT MEFs. D. At 24 hr, a decreased number of RSK2 KO MEFs had
entered the G2/M phase compared to WT MEFs. For each experiment, at
least three independent replicates were performed, and similar results
were obtained. Representative results from one experiment are shown.
All data were shown as the mean plus or minus the standard deviation
of the mean (mean 6 SD). A significant difference was defined as
***P,0.001 compared to WT cells.
doi:10.1371/journal.pone.0074334.g004
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cell at these time points, respectively) (Fig. 6C). Hence, the results

from human RSK2 mutant cell lines were consistent with our

findings in RSK2-deficient mouse cells (Fig. 6A and 6B), indicating

that the lack of functional RSK2 leads to deficiency in DNA

repair.

We next analyzed TopBP1, a nuclear protein that localizes at

the sites of DNA DSBs and affects DNA repair [32–33]. Notably,

western blot analysis demonstrated that the levels of TopBP1

decreased in RSK2 KO MEFs in response to AD treatment,

compared to WT cells (Fig. 6D). TopBP1 was also down-regulated

in the CLS patient fibroblast cells (Fig. 6 E). Thus, the decreased

level of TopBP1 in RSK2-deficient cells indicates that RSK2 is

important in maintaining DNA repair efficiency.

Discussion

Increasing evidence suggests that RSK2 is involved in DNA

damage-induced signaling pathways. For instance, RSK2 is

activated by UV irradiation, which causes DNA strand breaks,

and this activation transduces signals to specific downstream

effectors, such as RNA-activated Protein Kinase (PKR) and Bcl-2-

Associated Death promoter (BAD) [34–35]. However, the

physiological function of RSK2 in the DNA damage response

and DNA repair has not been well elucidated. Here, we show that

RSK2 is phosphorylated at both Ser227 and Thr577 in response

to genotoxic stress. We also show that RSK2 activates the Atm/

p53-dependent DNA damage pathway by interacting with Atm,

which acts as a sensor for DNA damage. We further showed that

RSK2 KO relieves AD-induced cell cycle arrest at the G2/M

check point and subsequently inhibits the DNA repair process by

reducing the formation of cH2AX foci (Fig. 7).

Our results suggested that RSK2 was activated under genotoxic

stress. As shown in Fig. 1, in MEF cells treated with adriamycin,

the phosphorylation of RSK2 was elevated and accumulated in

nuclear. It has been reported that RSKs were activated via ERK

and JNK pathway under UV-irritation [26,36], which suggested a

possible signaling mechanism for RSK2 activation in cells with

genotoxic stress. Further investigation will be carried out to

elucidate the underlying mechanisms.

RSK2 does not contain a classic nuclear localization signal

(NLS), and the mechanism by which it translocates to the nucleus

has not been investigated previously. In response to mitogen

treatment, RSK2 is slowly released from stress granules and

shuttles rapidly in and out of the nucleus [37]. Several studies have

suggested that the phosphorylation status of RSK is important for

its nuclear translocation [38]. Other studies have also indicated

that various binding partners regulate the subcellular distribution

of RSK [39–40]. ATM is the key player in DNA damage response,

which is predominantly present within the nucleus of cultured

human cells, with a small fraction present in the cytoplasm [41].

Our results demonstrated that RSK2 deficiency impaired ATM

function under genotoxic stress. As suggested in Fig. 2, RSK2 KO

Figure 5. RSK2 deficiency increases cell vulnerability to genotoxic stress. A. WST1 assay indicated the cell viability decreases in RSK2 WT
and KO MEFs treated with AD (0.5 mM) at indicated time scale (0–24 h). n$8. ***P,0.001 compared to WT cells at same time point. ###P,0.001
compared to 0 h control. B. TUNEL assay indicated the percentage of dead cells after 24 h AD (0.5 mM) treatment. Representative image of TUNEL
assay for cell death in RSK2 WT and KO MEFs treated with AD. Scale bar indicated 50 mm. C. Grouped result showing the statistics of TUNEL assay in
RSK2 WT and KO MEFs n$5. ***P,0.001 compared to WT cells.
doi:10.1371/journal.pone.0074334.g005
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cells and CLS Fibroblast with RSK2 mutants displayed a

dysfunction of ATM activation. Overexpression of RSK2 was

able to rescue the ATM phosphorylation levels but not ATM

protein levels (Fig. 2B), indicating that RSK2 might be essential for

ATM activation. Moreover, we found that cytosolic RSK2

translocates to the nucleus when DNA damage occurs. As Atm

is predominantly expressed in the nucleus, transport of RSK2 to

the nucleus enables the formation of a RSK2-Atm complex,

promotes the activation of ATM and facilitates the Atm/p53-

dependent DNA damage pathway in response to DNA damage.

Atm, Atr, and DNA-PKs are DNA damage-sensing protein

kinases that signal the presence of DNA lesions, initiate cell cycle

arrest, and DNA repair or apoptosis through a series of

phosphorylation events [27].

We postulate that the phosphorylation of RSK2 is required to

fully activate Atm at Ser1981 and p53 at Ser18 (mouse) or Ser15

Figure 6. RSK2 regulates DNA repair efficiency under conditions of genotoxic stress. A. Increased formation of AD-induced cH2AX foci in
RSK2 KO MEFs. RSK2 KO and WT MEFs were exposed to 0.5 mM AD for different periods of time from 2 hr to 48 hr, and then immunostained for
endogenous cH2AX. Scale bars: 10 mm. B. Quantitation of the data from image (A) showing the number of cH2AX foci per cell in RSK2 WT and KO
MEFs. RSK2 KO cells showed a significant increase in the number of cH2AX foci at 8 hr, 24 hr, and 48 hr, compared to WT cells. C. Similar to RSK2 KO
cells, RSK2-deficient fibroblasts from CLS patients displayed an increased number of cH2AX foci compared to fibroblasts from healthy controls at 2 hr,
8 hr, and 16 hr. D. RSK2 KO MEFs show decreased expression levels of TopBP1, compared to WT MEFs. RSK2 WT and KO MEFs were treated with
0.5 mM AD treatment for 2 hr, 8 hr, and 16 hr, follow by western blot analysis with an antibody against TopBP1. The expression level of TopBP1 in
RSK2 WT MEFs increased in response to 0.5 mM AD treatment, but this response was impaired in RSK2 KO MEFs. E. Similarly, TopBP1 was down-
regulated in response to AD in the CLS patient fibroblast cells compared to cells healthy control. For each experiment, at least three independent
replicates were performed, and similar results were obtained. Representative results from one experiment are shown. All data are shown as the mean
plus or minus the standard deviation of the mean (mean 6 SD). A significant difference was defined as *P,0.05, **P,0.01, and ***P,0.001 compared
to WT cells.
doi:10.1371/journal.pone.0074334.g006
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(human) in response to genotoxic stress. Atm has long been known

to phosphorylate p53 at Ser15, promoting p53 accumulation and

activation in response to DNA damage [42]. Previous studies have

indicated that p53 is another important substrate of RSK2 for

chromatin remodeling and regulation of gene expression. RSK2

activates and phosphorylates p53 (Ser15) in vitro and in vivo and co-

localizes with p53 in the nucleus [17]. Upon UVB stimulation,

phosphorylation of p53 at Ser15 in cells from CLS patients lacking

RSK2 was noticeably reduced compared to p53 phosphorylation

in healthy cells, showing a crucial role for RSK2 in p53 activation

in response to DNA damage. As p53 is a common target for both

Atm and RSK2 in the presence of DNA lesions, this suggests the

existence of a DNA damage pathway that involves both RSK2

and Atm. In addition, our analysis also showed that RSK2

interacts with Atm shortly after the induction of DNA damage,

while Atm activation is greatly diminished when RSK2 is absent

or mutated (Fig. 2). Quantification of cH2AX foci revealed that

DNA repair ability is reduced in Atm-defective human fibroblasts

treated with Neocarzinostatin, a radiomimetic reagent that

induces DSBs [43]. This observation correlates well with our

observation that RSK2 KO MEFs and CLS fibroblasts exhibit a

significantly higher number of cH2AX foci per cell with longer

periods of AD treatment, indicating deficiencies in DNA repair in

RSK2-deficient cells. These findings demonstrate that both

RSK2- and Atm-deficient cells display similar functional defects,

presumably meditated by their common downstream target p53.

Thus our study suggests that RSK2 plays an important role in the

Atm/p53-dependent DNA damage pathway and DNA repair.

RSK2 does not contain a classic nuclear localization signal

(NLS), and the mechanism by which it translocates to the nucleus

has not been investigated previously. In response to mitogen

treatment, RSK2 is slowly released from stress granules and

shuttles rapidly in and out of the nucleus [37]. Atm is

predominantly present within the nucleus of cultured human

cells, with a small fraction present in the cytoplasm [41]. Several

studies have suggested that the phosphorylation status of RSK is

important for its nuclear translocation [38]. Other studies have

also indicated that various binding partners regulate the subcel-

lular distribution of RSK [39–40]. Here, we found that cytosolic

RSK2 translocates to the nucleus when DNA damage occurs. As

Atm is predominantly expressed in the nucleus, transport of RSK2

to the nucleus enables the formation of a RSK2-Atm complex and

activates the Atm/p53-dependent DNA damage pathway in

response to DNA damage. Atm, Atr, and DNA-PKs are DNA

damage-sensing protein kinases that signal the presence of DNA

lesions, initiate cell cycle arrest, and DNA repair or apoptosis

through a series of phosphorylation events [27].

Impaired DNA damage response would promote apoptosis [44].

We also observed that RSK2 KO cells exhibited decreased cell

viability and elevated cell death under genotoxic stress compared to

RSK2 WT cells (Fig. 5 A and B). However, we did not observe

alternations of Bax expression in both RSK2 WT and KO cells.

The expression of Bax is regulated by p53 and will be elevated

under apoptotic signals [45]. We postulated that in our experiments,

the Adriamycin treatment (0.5 mM) in immortalized MEF cells was

able to induce p53 signaling to cell cycle arrest but not severe

enough to induce massive apoptosis. Therefore we found that p21

but not Bax was up-regulated during genotoxic stress.

In summary, our study has uncovered a novel role for RSK2 in

a DNA damage and repair pathway that maintains genomic

stability by regulating cell cycle progression and DNA repair. We

believe that the elucidation of this regulatory network has greatly

enhanced our understanding of the underlying causes of cognitive

dysfunction observed in CLS. In addition, our results confirm the

link between CLS, a neurological disorder caused by mutated

RSK2, and defects in the DNA damage response.

Materials and Methods

Animals
All C57BL/6 mice were maintained in accordance with the

institutional guidelines, and all protocols were approved through

the Institutional Animal Care and Use Committee (IACUC) of the

National Neuroscience Institute, Tan Tock Seng Hospital. The

mice were maintained in a pathogen-free facility and exposed to a

12 h light/dark cycle with food and water.

Cell culture and transfection
Low passage (p3–p5) mouse embryonic fibroblasts (MEFs) were

prepared as previously described [46]. MEFs were cultured in

DMEM supplemented with 10% FCS and penicillin/streptomycin

in an atmosphere of 5% CO2 at 37uC. Human CLS (GM09621)

and healthy fibroblast cells (GM03321) were purchased from

Coriell Cell Repositories. The RSK2 knockout MEFs were

provided by Dr. R. Strachan, Duke University [47]. The RSK2

DNA constructs (imaGenes, GmbH) and Atm DNA constructs (a

kind gift from Dr. XY. Wang, the National University of

Singapore) were transfected into NIH cells and MEFs using

lipofectamine (Invitrogen) according to manufacturer’s protocol.

Genotoxic stress and antibodies
DNA damage was generated by inducing genotoxic stress with

0.5 mM Adriamycin (doxorubicin) (CalBiochem, USA). Antibodies

against RSK2 (#SC-9986), Ser227 RSK2 (#SC12445), Thr577

RSK2 (#SC-16407), and actin (#SC-69879) were purchased from

Figure 7. RSK2 maintains genome stability in response to
genotoxic stress. RSK2 is phosphorylated at both Ser227 and Thr577
in response to DNA damage. Activated RSK2 translocates to the nucleus
and interacts with Atm, thus activating the Atm/p53-dependent DNA
damage pathway, as well as p53-controlled cellular events. RSK2 KO
relieves AD-induced cell cycle arrest at the G2/M check point and
subsequently inhibited the DNA repair process, as indicated by the
increased formation of cH2AX foci.
doi:10.1371/journal.pone.0074334.g007
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Santa Cruz; antibodies against p53 (#2524) and Ser15 p53

(#9284) were purchased from Cell Signaling; antibodies against

Bax (#554104), p21 (#556430), and TopBP1 (#611875) were

purchased from BD Biosciences; the antibody against Atm

(GTX70103) was purchased from GeneTex; and the antibody

against Ser1981 Atm (200-301-400) was purchased from Rockland

Immunochemicals.

Chromatin Fractionation
MEF cells were treated with Adriamycin (AD) and harvested at

specific time points. Chromatin fractionation was performed as

described previously [21]. In brief, cells were incubated with

Buffer A containing 10 mM HEPES, 10 mM KCl, 1.5 mM

MgCl2, 0.34 M Sucrose, 10% Glycerol, 1 mM DTT, and a

mixture of protease and phosphatase inhibitors for 5 min and then

lysed. Triton X-100 was added to a final concentration of 0.1%.

Lysed cells were incubated on ice for 4 min and then centrifuged

at 1300 rcf for 4 min at 4uC. The supernatant (S1) and pellet (P1)

fractions were collected. The S1 fraction was further centrifuged at

1600 rcf for 15 min at 4uC, and the supernatant (S2) was collected.

The P1 fraction was washed once with Buffer A and lysed for

30 min on ice with Buffer B, which contained 3 mM EDTA,

0.2 mM EGTA, and a mixture of protease and phosphatase

inhibitors. The lysed P1 fraction was centrifuged at 1700 rcf for

4 min at 4uC. The resulting pellet (P3) was washed once with

Buffer B and re-suspended in Laemmli buffer. The S2 (cytosolic

proteins) and P3 (chromatin associated proteins) fractions were

then analyzed by SDS-PAGE and western blot.

Immunoprecipitation and western blot
After drug treatment, cells were washed with PBS and lysed in

RIPA buffer containing phosphatase and protease inhibitors. The

protein concentration was determined by Bio-Rad assay. Equal

amounts of protein (15 mg) were separated by electrophoresis on

SDS–PAGE gels and then transferred onto nitrocellulose mem-

branes (Millipore), which were probed with primary and secondary

antibodies, and visualized using an ECL kit (GE Healthcare). For

immunoprecipitation, antibodies were added to the cell lysates and

incubated at 4uC overnight, followed by incubation with Protein A

plus G beads at 4uC for 4 hr. The immunoprecipitated proteins

were released from the beads by boiling in 26 sample buffer for

5 min and subsequently analyzed by western blot.

FACs analysis
After drug treatment, cells were trypsinized with 0.05% trypsin

and 0.5 mM EDTA (Gibco BRL) at 37uC for 2 min and collected

by centrifugation at 1000 rpm for 5 min. For cellular DNA

content analyses, cells were then washed once in PBS and

subsequently fixed in 70% ethanol at 220uC overnight. The

ethanol solution was then removed, and the cells were washed

once with PBS containing 5 mM EDTA. The cells were then re-

suspended in hypotonic Propidium Iodide (PI) buffer for 3 hr in

the dark at room temperature as described previously [48]. Counts

of PI-stained cells were immediately acquired using an LSRII flow

cytometer (Becton and Dickinson Biosciences) and analyzed using

WinMDI Version 2.9 software (The Scripps Research Institute, La

Jolla, CA, USA).

WST-1 assay
WST-1 assay kit (Roche, Switzerland) was used to test cell

viability. Both the RSK2 WT and KO MEFs were seeded equally

into 96-well plate. The cells were treated with AD (0.5 mM) for

time periods as indicated (2–24 h), followed by incubation with

WST-1 (1:10) for additional 2 h. The absorbance at a wavelength

of 450 nm was measured by the microplate reader (Tecan,

Austria).

TUNEL assay
The in situ cell death detection kit (Roche, Switzerland) was used

for detecting cell injury after AD treatment. Both the RSK2 WT

and KO MEFs were seeded on cover slips. After treatment of

Adriamycin for 24 h, the cells were fixed in 4% paraformaldehyde

for 1 h at room temperature. Following fixation, the cells were

rinsed with PBS and permeabilized with 0.1% Triton X-100 in

0.1% sodium citrate on ice for 2 min. Then the cells were

incubated at 37uC with TUNEL reaction mixture for 1 h. The

TUNEL positive cells were visualized on a confocal microscope

(Olympus, FV-10).

Immunocytochemistry
After drug treatment, cells were fixed, permeabilized with

0.1% Triton X-100, and blocked with 2% BSA. Primary

antibodies against cH2AX (A300-081A, Bethyl Lab), Atm (SC-

7230, Santa Cruz), and RSK2 (SC-9986, Santa Cruz) were

added, followed by incubation with Alexa Fluor 555 Goat Anti-

Rabbit IgG (H+L) (Invitrogen, A21428), Alexa Fluor 488 Goat

Anti-Rabbit IgG (H+L) (Invitrogen, A11043), and Alexa Fluor

555 Donkey Anti-Mouse IgG (H+L) (Invitrogen, A31570)

secondary antibody. The slices were mounted with mounting

medium containing DAPI and visualized on a confocal

microscope (Olympus, FV-10).

Image acquisition, western blot quantification, and
statistical analysis

For each experiment, at least 3 independent replicates were

performed, and similar results were obtained. Representative

results from one experiment are shown. For quantification, all

western blots were scanned with a Molecular Dynamics scanning

densitometer. Statistical analysis was performed using ANOVA

and Student’s t test. All data are shown as the mean plus or minus

the standard deviation of the mean (mean 6 SD). A significant

difference was defined as *P,0.05, **P,0.01, and ***P,0.001

compared to the control.
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