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Abstract

Background: Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells.
However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like
HIV-1 that recruit multiple different ESCRT factors to initiate budding.

Results: In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia
Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT
proteins and “rescue” experiments with exogenous siRNA-resistant wild type and mutant constructs revealed
budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV
budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:
CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding.
Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions.

Conclusions: We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-
CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps
control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at
the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting
the stepwise processes of lentivirus assembly and ESCRT-mediated budding.
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Background
Many enveloped viruses usurp the cellular ESCRT path-
way to bud from cells. The ESCRT pathway also medi-
ates membrane fission during vesicle formation at the
multivesicular body (MVB), abscission of the intercellu-
lar bridge, and shedding microvesicle formation at the
plasma membrane (reviewed in [1-8]). All of these pro-
cesses require membranes to be constricted toward the
cytoplasm, ultimately resulting in membrane fission. The
ESCRT pathway is therefore mobile machinery that is
targeted to different cellular membranes to mediate dif-
ferent “reverse topology” membrane fission events.
ESCRT factors assemble in a stepwise fashion in which

“early-acting” factors bind site-specific adaptors and then
recruit the “late-acting” factors that mediate membrane
fission and ESCRT factor recycling. The ESCRT pathway
was first identified through genetic studies of MVB sorting
in S. cerevisiae [8-13], and this system continues to serve as
the paradigm for understanding ESCRT protein assembly
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and function. Attractive features of the yeast system include
robust MVB protein sorting assays [14], the ability to make
genetic knockouts, and the relative simplicity of the yeast
ESCRT machinery, which often contains single versions of
proteins that have diverged into multi-protein families in
mammals. Even S. cerevisiae has more than 20 ESCRT-
associated proteins, however, and it has therefore proven
useful to divide them into essential factors that are required
for MVB sorting, and non-essential accessory factors that
appear to modulate or regulate core protein functions
(reviewed in reference [8]). Although these distinctions are
not absolute, the five consensus core components of
the S. cerevisiae MVB sorting pathway are: 1) ESCRT-0
(a two protein complex), 2) ESCRT-I (a four protein
complex), 3) ESCRT-II (a three protein complex), 4)
Vps20p/CHMP6, Snf7p/CHMP4A/B/C, Vps24p/Did3p/
CHMP3, and Vps2p/Did4p/CHMP2A/B (the core ESCRT-
III factors, with human homolog names in italics), and 5)
Vps4p/VPS4A/B.
The core ESCRT factors are recruited sequentially to sites

of S. cerevisiae MVB protein sorting [8]. The ESCRT-0
adaptor initially concentrates ubiquitylated cargoes on
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endosomal membranes and recruits the ESCRT-I complex
through a direct interaction with the Vps23p/TSG101 sub-
unit [15]. ESCRT-I recruits ESCRT-II, and the ESCRT-I-II
supercomplex helps stabilize the highly curved membrane
neck of the emerging vesicle [16,17]. ESCRT-II binds
two copies of Vps20p/CHMP6, leading to recruitment
of the ESCRT-III subunits through direct, ordered in-
teractions between Vps20p/CHMP6, Snf7p/CHMP4A-C,
Vps24p/Did3p/CHMP3, and Vps2p/Did4p/CHMP2A-B
[18-21]. The ESCRT-III subunits appear to form paired
helical filaments that constrict the bud neck [19,22-31], al-
though their precise architecture and constriction mech-
anism are not yet well understood. The polymerized
ESCRT-III subunits, particularly Vps2p/CHMP2A/B and
Snf7p/CHMP4A/B/C, also recruit the Vps4p/VPS4A/B
AAA ATPase, using two different types of C-terminal tail
motifs (called MIM-1 and MIM-2 elements) to bind
Vps4 MIT domains [32-35]. Vps4p forms hexameric
rings, and uses the energy of ATP hydrolysis to re-
model the ESCRT-III filaments [22,36,37], resulting in
membrane fission and ESCRT-III subunit disassembly
and recycling to the cytoplasm. Accessory ESCRT proteins
in S. cerevisiae include three ESCRT-III-like proteins:
Vps44p/CHMP1A/B, Ist1p/IST1, and Vps60p/CHMP5,
which interact with both core ESCRT-III subunits and
with Vps4p [38-42]; Vta1p/LIP5, which binds both
Vps60p/CHMP5 [43,44] and Vps4p/VPS4A/B, and stimu-
lates enzyme assembly and ATPase activity [45-48]; and
the ESCRT-III adaptor protein, Bro1p/ALIX, which binds
and stabilizes the Snf7p/CHMP4A/B/C filaments, and re-
cruits the deubiquitinating enzyme, Doa4p/UBPY [23,49].
Although the core yeast ESCRT components and their

mechanistic functions are largely conserved across eu-
karyotes, there are likely to be important differences in
the way the pathway is used to perform distinct mem-
brane fission reactions, particularly in processes like
enveloped virus budding that do not occur in yeast.
ESCRT-mediated enveloped virus budding has been
most intensively studied for retroviruses, particularly
HIV-1 (reviewed in [6,50-53]). The structural Gag pro-
teins of retroviruses initiate ESCRT factor recruitment
using one of three well-characterized peptide motifs,
termed “late assembly domains”. “P(S/T)AP” late as-
sembly domains function by binding the TSG101 sub-
unit of ESCRT-I; “YP(X)nL” late assembly domains
function by binding ALIX; and “PPXY” late assembly
domains function by binding members of the ESCRT-
associated NEDD4 family of ubiquitin E3 ligases. Recent
studies, particularly of HIV-1, make it clear that these ini-
tial interactions ultimately result in the recruitment of
downstream ESCRT-III and VPS4 proteins, which carry
out the membrane fission step [54-58]. However, the pre-
cise set of downstream factors and protein-protein inter-
actions required for ESCRT-mediated virus budding have
not yet been defined unambiguously for any enveloped
virus.
One challenge in dissecting how the ESCRT pathway

functions in retrovirus budding is that mammalian cells
express a large number of isoforms of the different clas-
ses of ESCRT factors, including at least 12 distinct sub-
units of the ESCRT-III family. Adding to this complexity
is the fact that the Gag proteins from many retroviruses
contain multiple late assembly domains that can bind
and recruit different early-acting ESCRT factors. For ex-
ample, HIV-1 Gag contains both P(S/T)AP and YPXnL
motifs that bind directly to TSG101/ESCRT-I and ALIX,
respectively [59-62]. These two early-acting ESCRT
factors can function independently and redundantly, at
least in some contexts [63,64], and this redundancy
makes it challenging to evaluate the functional require-
ments for different downstream ESCRT proteins and
their interactions. For example, the requirement for
ESCRT-II in HIV-1 assembly is controversial, with sev-
eral groups arguing that the complex is important
[56,65], and several others arguing it is not [57,66,67].
In contrast, the Gag protein of the Equine Infectious
Anemia Viruses (EIAV) lacks a TSG101/ESCRT-I bind-
ing site and is only known to connect to the ESCRT
pathway via ALIX [39,40,62,63,68-72]. This apparent
simplicity makes EIAV an attractive model system for
studying how the ESCRT pathway functions in virus bud-
ding. Similarly, the Gag proteins of some SIV strains also
bind ALIX but lack identifiable TSG101/ESCRT-I binding
sites [73,74], indicating that EIAV can also serve as a para-
digm for the budding of this class of primate lentiviruses.
Other attractive aspects of the EIAV system include the
availability of: 1) EIAV-based reporter vectors [75,76],
and 2) analyses of the temporal recruitment of fluores-
cent ESCRT factors to assembling EIAV Gag particles
[54]. The functional requirements for late-acting ESCRT
factors in EIAV budding have not yet been tested, how-
ever. We therefore examined the requirements for core
ESCRT factors in EIAV budding, with the ultimate goal of
developing EIAV as a useful model system for characteri-
zing how different ESCRT factors function in lentivirus
budding.

Results
EIAV release requires ALIX, CHMP2, CHMP4 and VPS4
proteins
We used siRNA depletion experiments to test the require-
ments for all of the human ESCRT factors that correspond
to core ESCRT factors for MVB sorting in S. cerevisiae [8]:
ESCRT-I, ESCRT-II, CHMP6, CHMP4A-C, CHMP3,
CHMP2A-B, and VPS4A-B, plus ALIX. Preliminary sur-
veys, described in greater detail in Additional file 1 and
shown in Additional file 2: Figure S1 and Additional file 3:
Figure S2, demonstrated that: 1) CHMP2A is the primary
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human CHMP2 isoform that contributes to EIAV budding
from 293T cells (Additional file 2: Figure S1A). Co-
depletion of CHMP2A and CHMP2B further enhances
inhibition of EAIV release, and both CHMP2 proteins
were therefore co-depleted in subsequent analyses of
CHMP2 function. 2) CHMP4B is the primary human
CHMP4 isoform that contributes to EIAV budding
(Additional file 2: Figure S1B). CHMP4C depletion did
not significantly inhibit EIAV budding under any con-
ditions tested, whereas co-depletion of CHMP4A with
CHMP4B enhanced inhibition. CHMP4A/B co-depletion
was therefore used in subsequent tests for CHMP4
function. 3) Depletion of EAP20 (ESCRT-II), CHMP6
(ESCRT-III) or CHMP3 (ESCRT-III) had no measur-
able effect on EIAV release or infectivity (Additional
file 3: Figure S2), and these factors therefore were not
studied further.
Requirements for the remaining core ESCRT proteins

in HIV-1 and EIAV release and infectivity are compared
in Figure 1A and B, respectively. For these experiments,
293T cells were transfected with expression constructs
for either HIV-1NL4-3 or EIAV, together with either con-
trol siRNAs (lanes 1 and 2, denoted “Control 1 and 2”),
or with siRNAs that targeted ALIX (lane 3), TSG101
(lane 4), CHMP2A and B (lane 5), CHMP4A and B (lane
6), or VPS4A and B (lane 7). Viral titers were measured
in single-cycle infectivity assays (panel 1), and virion re-
lease was analyzed using western blotting to quantify the
levels of virion-associated CA proteins released into the
culture supernatant (panel 2, “Virus”). Western blots of
soluble cell extracts were also performed to visualize
Gag protein expression and processing (panel 3), GAPDH
levels (“Control”, panel 4), and the efficiency of target pro-
tein depletion (bottom panels). In every case, the siRNA
treatment reduced target protein levels more than 10-fold.
As expected, our results for the HIV-1 control

(Figure 1A) agree well with previous reports [57,59,62,77].
Depletion of ALIX modestly reduced virion release and in-
fectivity (compare lane 3 to lanes 1 and 2, 3-fold reduction
in virion release and 2-fold reduction in infectivity),
whereas greater reductions were seen upon depletion of
TSG101 (lane 4, 21-fold reduction in virion release and
101-fold reduction in infectivity), CHMP2A/B (lane 5, 18-
and 101-fold reductions, respectively), CHMP4A/B (lane 6,
3- and 55-fold reductions, respectively) and VPS4A/B (lane
7, 2- and 12-fold reductions, respectively). These experi-
ments confirm that TSG101, CHMP2, CHMP4 and VPS4
proteins all make important contributions to HIV-1 release
from 293T cells, and that ALIX makes a modest, but meas-
urable contribution.
As shown in Figure 1B, the EIAV requirements for

early-acting ESCRT factors differed from those of HIV-1
because ALIX was more important for EIAV whereas
TSG101 was unimportant. ALIX depletion reduced EIAV
release and infectivity by 6-fold and 27-fold, respectively
(compare lane 3 to lanes 1 and 2), whereas TSG101 deple-
tion actually increased virion release and infectivity mod-
estly (lane 4, 8- and 2-fold increases, respectively). These
results are consistent with previous reports that the EIAV
p9Gag polypeptide contains a functional YPDL late domain
that recruits ALIX, but lacks a TSG101 binding site
[39,40,62,63,68-72]. We speculate that the modest in-
creases in virion release and infectivity observed upon
TSG101 depletion may reflect competition for late-acting
ESCRT factors between EIAV budding and other cellular
processes, which is relieved when TSG101 is depleted.
HIV-1 and EIAV generally exhibited similar require-

ments for late-acting ESCRT-III and VPS4 factors, albeit
with several notable exceptions. Like HIV-1, EIAV in-
fectivity was strongly reduced upon CHMP2A/B and
CHMP4A/B depletion (Figure 1B, lanes 5 and 6, 41- and
33-fold infectivity reductions, respectively), and moder-
ately reduced upon VPS4A/B depletion (lane 7, 12-fold
infectivity reduction). The two reproducible differences
between HIV-1 and EIAV were: 1) EIAV appears to rely
on CHMP2A more than HIV-1 does (where single-
protein depletions of both CHMP2A and CHMP2B pro-
duced measurable titer reductions) (Additional file 2:
Figure S1A and ref. [57]). 2) CHMP4B depletion did not
reduce EIAV Gag release, despite the infectivity reduc-
tions. Indeed, levels of virion-associated EIAV CAGag re-
producibly increased when CHMP4B was depleted,
either alone or in conjunction with other CHMP4 pro-
teins (e.g., see Figure 1B, panel 2, compare lane 6 to
lanes 1 and 2 and Additional file 2: Figure S1B, panel 2,
compare lanes 4, 6, 8 and 9 to lane 1). The magnitude of
the increase varied, ranging from 2-fold (Figure 1B, lane 6)
to 19-fold (Additional file 2: Figure S1B, lane 6). This ob-
servation suggested that CHMP4B depletion might alter
the properties of EIAV virions, and this phenomenon was
investigated further using electron microscopy, as de-
scribed below in the final Results section.

EIAV release requires an interaction between ALIX and
CHMP4B
Functional rescue experiments were performed using
siRNA-resistant constructs to re-express exogenous ESCRT
proteins following depletion of their endogenous counter-
parts. These experiments confirmed the specificity of the
siRNA depletion phenotypes, and were also used to test the
functional effects of ESCRT protein mutations. As shown
in Figure 2A, the strong detrimental effects of ALIX deple-
tion on EIAV release and infectivity could be rescued fully
by overexpression of exogenous ALIX from an siRNA re-
sistant construct (compare lane 3 to lanes 1 and 2). In con-
trast, an ALIX mutation that impaired CHMP4 binding
also impaired EIAV release and infectivity (ALIX (I212D),
denoted “CHMP4-”, compare lanes 4 and 3, and see ref.
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[63]), even though the wild type and mutant proteins were
expressed at comparable levels (panel 4).
Similar effects were seen for an inactivating mutation

on the other side of the ALIX-CHMP4B interface. As
shown in Figure 2B, the inhibition of infectious EIAV
particle release caused by co-depletion of CHMP4A and
CHMP4B could be fully rescued by re-expression of wild
type CHMP4B from an siRNA construct (compare lane
3 to lanes 1 and 2), but not by a mutant CHMP4B pro-
tein that could not bind ALIX (CHMP4B (L217A,
W220A), denoted “ALIX-”, compare lane 4 to lane 3,
and see ref. [57]). These results imply that ALIX and
CHMP4B must interact directly to support release of
infectious EIAV.
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The CHMP2-CHMP4 interaction contributes to EIAV
release
Analogous experiments were used to test the functional
requirements for CHMP4 and CHMP2 in EIAV release
(Figure 3). As shown in Figure 3A, an exogenously
expressed wild type CHMP4B protein fully rescued
viral infectivity (compare lanes 3 and 4), whereas a mu-
tant CHMP4B protein that was impaired for CHMP2
binding rescued EIAV infectivity only partially (CHMP4B
(104EVLK107 to 104AAAA107), denoted “CHMP2-”, com-
pare lanes 6 and 4, and see ref. [57]). Similarly, an exogen-
ously expressed wild type CHMP2A protein rescued the
defects in EIAV budding induced by depletion of
CHMP2A and CHMP2B (Figure 3B, compare lanes 4
and 3), whereas a mutant CHMP2A protein impaired
in CHMP4 binding rescued poorly (CHMP2A (R24A,
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R27A,R31A), denoted “CHMP4-”, compare lanes 5 and
4, and see ref. [57]). These experiments indicate that
CHMP4B and CHMP2A interact directly during the
process of EIAV budding. The detrimental interaction
mutations did not completely inhibit EIAV budding,
however, possibly because CHMP3 can also bind and
help bridge these two proteins [30,56].

EIAV release requires VPS4 ATP, MIM1 and MIM2 binding
activities
The VPS4 protein requirements for EIAV release were
also tested using functional rescue experiments. As
shown in Figure 3B, a CHMP2A protein with point
mutations in the terminal MIM1 element that inhibit
VPS4 MIT binding was unable to rescue virus budding
(CHMP2A (L216D,L219D), denoted “VPS4-”, compare
lanes 4 and 6, and see refs. [33,35,57]). This result indi-
cates that CHMP2A must bind VPS4 during EIAV bud-
ding. Similar effects were also seen for an inactivating
mutation on the other side of the CHMP2-VPS4 inter-
face. As shown in Figure 4, the wild type VPS4B pro-
tein completely rescued the defect in EIAV infectivity
induced by co-depletion of endogenous VPS4A and
VPS4B (compare lanes 4 and 3), whereas a VPS4B pro-
tein with an inactivating point mutation in the MIM1
binding site did not rescue viral infectivity significantly
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or with vectors expressing either siRNA-resistant wild type VPS4B
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independent repetitions of the experiment, performed in parallel.
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(VPS4B (L66D), denoted “MIM1-”, compare lanes 6
and 4, and see refs. [33-35,57]).
VPS4 proteins can bind ESCRT-III substrates through

a second type of MIT-binding motif (termed MIM2)
[34,78]. This activity was also apparently required for ef-
ficient rescue of EIAV budding and infectivity because a
VPS4B protein with an inactivating mutation in the
MIM2 binding site rescued EIAV release and infectivity
only slightly (VPS4B (A15D), denoted “MIM2-”, com-
pare lanes 7 and 4, and see [34]). Similarly, the VPS4
ATPase activity was required because a mutant VPS4B
protein that could not bind ATP failed to rescue EIAV
budding (VPS4B (K180Q), denoted “ATPase-” compare
lanes 5 and 4, and see refs. [37,39,59,79]). Expression of
the VPS4B ATPase-defective mutant decreased EIAV in-
fectivity to an even greater extent than did depletion of
the endogenous VPS4 proteins alone, consistent with
previous reports that this VPS4B construct is a potent
dominant negative inhibitor of EIAV release [72,80].

CHMP4 recruitment helps terminate EIAV Gag
polymerization
As noted above, CHMP4B was necessary for EIAV in-
fectivity, but the release of virion-associated EIAV Gag
was reproducibly elevated in cells that lacked CHMP4B.
This effect is again evident in Figure 5A, where co-
depletion of CHMP4A and CHMP4B reduced the viral
titer 30-fold, but increased virion-associated Gag protein
levels 4.7-fold (panel 2, compare lanes 1 and 4). Gag
processing was also less complete in virions released
from cells lacking CHMP4 proteins as compared to the
control case. To characterize these phenomena further,
we used transmission electron microscopy (EM) to
visualize the morphology of the cell-associated EIAV
virions produced from control 293Tcells, or from cells de-
pleted of ALIX, CHMP2 or CHMP4 proteins (Figure 5B
and Additional file 4: Figure S3). These experiments re-
vealed that cells lacking CHMP4A/B produced large
numbers of highly aberrant virions that were either
multi-lobed and/or tubular (Figure 5B, bottom panel,
highlighted with green and red arrows, respectively), as
well as immature EIAV virions that were budding and/
or closely associated with the cell surface in the im-
aged sections (Figure 5B, left middle panel). Although
some of these particles were associated with the
plasma membrane (left middle panel), many were dis-
tant from any cell surface in the imaged sections (bot-
tom panel). The tubular EIAV virions were very long,
often hundreds of nanometers in length, even within
the plane of a single 80–100 nm section (red arrows).
In contrast, cells lacking ALIX and CHMP2A/B pro-
duced many fewer aberrant particles, and instead
exhibited a more traditional “late assembly” phenotype in
which immature virions typically remained tethered to the
cell surface through unresolved membrane “necks”
(Figure 5B, top two panels).
These different virion assembly phenotypes were

quantified for a total of 28 virion-producing cells from
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two independent experiments (Figure 5C). Cell-associated
virions were relatively rare in the control case, and we had
to examine 1020 total cell sections to find 28 cells that
produced 198 identifiable virions. Cell-associated virions
were more prevalent in the other cases, where 28 virion-
producing cells were identified from: 1282 slices of ALIX-
depleted cells that produced 365 scored virions; 927 cell
slices of CHMP2A/B-depleted cells that produced 491 vi-
rions, and 428 CHMP4A/B-depleted cell slices that pro-
duced 1172 virions. Hence, cell-associated viral particles
were more prevalent when cells lacked ESCRT factors,
consistent with an arrest in virus budding.
The different phenotypes were quantified by counting

the following types of cell-associated virions: 1) spherical,
mature, cell-free virions, 2) spherical, immature, cell-free
virions, 3) spherical budding virions, and 4) multi-lobed
or tubular virions (examples of each phenotype are pro-
vided in Figure 5B, middle right panel). As expected, EIAV
virions produced from control cells were distributed pri-
marily between mature (15%), immature (28%) and bud-
ding particles (50%), and multi-lobed/tubular particles
were rare (7%). In contrast, the majority of EIAV particles
produced in the absence of CHMP4A/B were multi-lobed
or tubular (62%). Even this elevated value likely underesti-
mates the true percentage of tubular virions because some
were probably incorrectly scored as immature virions
when the plane of section was perpendicular to the tube
axis. As expected, EIAV virions produced from cells
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lacking ALIX exhibited more traditional late assembly de-
fects, with the vast majority (85%) remaining connected to
the plasma membrane via membrane stalks, and no
elevation in multi-lobed/tubular particles. EIAV virions
produced from cells lacking CHMP2A/B exhibited a
modestly elevated percentage of multi-lobed/tubular
virions (22% vs. 7% in the control). Nevertheless, the
CHMP2A/B depletion phenotype most closely resem-
bled the ALIX depletion phenotype because most of
the observable virions were (arrested) in the process of
budding (72%).
These EM data provide an explanation for the appar-

ent discrepancy between measurements of viral titers
and virion release (see Figure 5A, panels 1 and 2, which
were performed on the same samples as those used for
EM analyses). Our interpretation is that some of the
highly aberrant multi-lobed/tubular virions containing
high levels of Gag proteins may ultimately bud (or break
off ) from cells that lack CHMP4A/B. These aberrant vi-
rions are likely poorly infectious, however, which ex-
plains why virion-associated Gag release appears high
(but variable), whereas viral titers are consistently low.
In contrast, ALIX depletion induces a more traditional
“late” assembly phenotype in which immature particles
arrest during budding, leading to strong reductions in
both virion release (37-fold) and titers (34-fold). Virions
produced from cells lacking CHMP2A/B exhibited inter-
mediate phenotypes in both the EM analyses (Figure 5B
and C) and in the virion release/infectivity assays, where
the dramatic reduction in viral titer (49-fold) was ac-
companied by only a modest reduction in virion release
(4-fold). Hence, depletion of ALIX, CHMP2A/B and
CHMP4A/B proteins all induced virus budding defects,
but resulted in different phenotypes.

Discussion
We investigated the core ESCRT factor requirements for
EIAV budding, and found that the greatest reductions in
EIAV infectivity occurred upon depletion of the single
ESCRT factors ALIX, CHMP4B, and CHMP2A (Figures 1B
and 2A, and Additional file 2: Figure S1). In each case,
EIAV infectivity was reduced at least 4-fold, and viral in-
fectivity was fully rescued upon re-expression of the wild
type protein (Figures 2 and 3). Thus, these three factors
perform essential, and largely non-redundant roles in
EIAV budding. Co-depletion of VPS4A and VPS4B also
inhibited EIAV release (Figures 1 and 4), and this defect
could be fully rescued by VPS4B alone (Figure 4). Thus,
the virus also requires VPS4 activity and VPS4B can meet
this requirement. Finally, synergistic effects were observed
upon co-depletion of CHMP2A/B and CHMP4A/B
(Additional file 2: Figure S1), implying that CHMP2B
and CHMP4A may also contribute to EIAV budding,
at least when CHMP2A and CHMP4B levels are low.
Single protein depletions of TSG101, EAP20, CHMP2B,
CHMP3, CHMP4A, CHMP4C and CHMP6 had little or
no effect on EIAV infectivity (Figure 1B and Additional
file 2: Figure S1 and Additional file 3: Figure S2),
suggesting that none of these proteins perform essen-
tial, non-redundant functions. These negative siRNA
results must be interpreted with some caution, how-
ever, owing to the possibility that small reductions in
the kinetics of virus release may have eluded detection
in our “end point” virus release and infectivity assays
and/or that residual levels of the depleted target pro-
teins were sufficient to retain function. Nevertheless,
all target protein levels were reduced at least 8-fold,
and in many cases were reduced to nearly undetectable
levels.
Our experiments confirm that HIV-1 and EIAV differ

in their requirements for TSG101, consistent with the
lack of a known TSG101 binding site in EIAV p9Gag.
The ESCRT-I independence of EIAV is also consistent
with the lack of a requirement for EAP20 (an essential
component of ESCRT-II, an ESCRT-I binding complex)
or CHMP6 (the only ESCRT-III protein known to bind
ESCRT-II). Hence, EIAV, and presumably also some SIV
strains [73,74], use a streamlined ESCRT-based budding
pathway that does not include ESCRT-I, and possibly
also other ESCRT factors used by HIV-1.
Protein-protein interactions in the EIAV budding path-

way are summarized in Figure 6. The YPDL late domain
motif within EIAV p9Gag binds ALIX [62], with the late
domain tyrosine inserting into a hydrophobic pocket in
the ALIX V domain [71]. ALIX can also bind calcium
[81], dimerize [23], bind NCGag through the Bro1 domain
[82-84], and bind Lys-63-linked polyubiquitin chains
through the V domain [85,86], although these interactions
have not yet been characterized structurally. ALIX, in turn,
binds directly to CHMP4B via an interaction between a
hydrophobic patch on the ALIX Bro1 domain and the
C-terminal amphipathic helix of CHMP4B [87], and this
interaction is required for EIAV budding (Figure 2).
ALIX appears to perform analogous “early” assembly

functions in a series of other mammalian ESCRT-dependent
processes, including abscission [88-90], MVB protein sorting
[8], shedding microvesicle formation [91,92], and release of
membrane-bound forms of “non-enveloped” viruses [93]
and non-enveloped particles of “enveloped” viruses [94].
The use of ALIX to initiate ESCRT factor recruitment and
assembly initially appeared to be an important difference be-
tween EIAV budding and MVB sorting in S. cerevisiae,
where the apparent ALIX homolog, Bro1p, was reported to
function downstream of Snf7p (CHMP4) [8]. A recent re-
port indicates, however, that ALIX can also function early in
yeast MVB biogenesis [95], and so the ESCRT recruiting ac-
tivities of ALIX family members now appear to be widely
conserved.
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CHMP4B helps to recruit CHMP2A. CHMP4B and
CHMP2A can interact directly in vitro [30,57], and a
CHMP2A mutation that impairs CHMP4B binding in vitro
[57] inhibited the ability of CHMP2A to function in EIAV
budding (Figure 3B). A CHMP4B mutation that impairs
CHMP2A binding in vitro [57] diminished, but did not
eliminate EIAV release (Figure 3A). It is possible that these
phenotypic effects were incomplete because these muta-
tions do not block the CHMP4B-CHMP2A interaction
completely and/or because CHMP3 helps bridge the
CHMP4B-CHMP2A association [30,56]. A supporting role
for CHMP3 in lentivirus budding is likely because CHMP3
binds tightly to both CHMP2 and CHMP4 proteins
in vitro [30], appears to act together with CHMP2 proteins
in HIV-1 budding, particularly CHMP2A [30], and per-
forms an essential bridging role in an in vitro HIV-1-based
ESCRT assembly system [56]. Nevertheless, our depletion
experiments indicate that CHMP3 does not perform an ab-
solutely essential role in EIAV budding under native condi-
tions. Moreover, there are indications that CHMP2 and
CHMP4 can function together in the absence of CHMP3
in other systems. For example, overexpression of Vps2p/
Did4p (the CHMP2 homolog in S. cerevisiae) suppresses
the temperature- and concavanine-sensitivity induced by
deletion of Vps24p/Did3p (the CHMP3 homolog) from
S. cerevisiae [96]. Similarly, eukaryotes like P. falciparum
and E. histolytica appear to have CHMP4 and CHMP2 ho-
mologs, but lack CHMP3 homologs [97].
It is not yet clear why CHMP2A is the primary CHMP2

isoform required for EIAV release from 293T cells
(Additional file 2: Figure S1A), nor why CHMP4B is
the primary CHMP4 isoform required for release of EIAV
(Additional file 2: Figure S1B) and HIV-1 [57,98,99].
CHMP4C, at least, is recruited to sites of EIAV assembly
in HeLa cells [54], and the simplest explanation for our
negative functional data is that the recruited CHMP4C
proteins simply do not perform an essential (or non-
redundant) role in virus budding. The CHMP2A:CHMP4B
interaction is the only ESCRT protein:protein interaction
shown in Figure 6 for which a structural model is not yet
available, and this information will be important for reveal-
ing how ESCRT-III proteins co-polymerize and for identi-
fying even more specific inhibitory mutations.
Like HIV-1, EIAV budding requires multiple VPS4 activ-

ities, including ATP, MIM1, and MIM2 binding (Figure 4
and ref. [34]). VPS4 is recruited to sites of EIAV and
HIV-1 budding immediately prior to the fission step
[54,55], and CHMP2A appears to be at least one im-
portant VPS4 partner because a CHMP2A mutant that
lacked VPS4 binding activity failed to support EIAV
budding (Figure 3B). The functional target(s) for VPS4B
MIM2 binding activity is less clear. VPS4 proteins can
bind CHMP4 proteins through MIM2-like interactions,
but the isolated interactions are weak in vitro [34]. Never-
theless, the equivalent interaction between Snf7p
(CHMP4) and Vps4p is functionally important for MVB
protein sorting in yeast [100], so CHMP4-VPS4B interac-
tions may also be functionally important during EIAV
budding.
A significant new finding is that depletion of different

ESCRT factors arrests EIAV budding at phenotypically
distinct stages (Figure 5). CHMP4A/B depletion induced
a particularly striking phenotype in which Gag processing
was incomplete, and the virus formed multi-lobed virions
and long tubes. We hypothesize that this is because
CHMP4B recruitment normally helps activate Gag pro-
cessing and/or inhibit Gag polymerization, which there-
fore continues unabated in the absence of CHMP4B.
Similar tubular virions have been reported for mutant
Moloney Murine Leukemia Viruses that carry deletions of
the Gag p12 domain or the PPPY late domain [101,102].
HIV-1 Gag also overpolymerizes in budding-arrested vi-
rions, leading Kräusslich and colleagues to propose that
ESCRT-mediated release occurs in kinetic competition
with Gag polymerization [103]. These observations all in-
dicate that, in addition to providing essential membrane
fission activity, ESCRT factors can also help facilitate Gag
processing and/or terminate Gag assembly. We previously
reported that released HIV-1 Gag levels do not reliably
correlate with infectivity reductions in cells lacking
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CHMP4A/B ([57] and see Figure 1A, lane 6). This ob-
servation suggests the possibility that analogous, but
less dramatic Gag polymerization defects may also
occur for HIV-1. Perhaps the extent of tubular virion
formation is influenced by the predisposition of diffe-
rent retroviral Gag proteins to polymerize into spheres
vs. tubes.
Unlike ALIX, which increases steadily throughout the

process of Gag assembly, CHMP4B is recruited to sites
of EIAV budding in short “bursts” that immediately pre-
cede virus budding [54]. Thus, there must be a “switch”
(or switches) that activates the accumulating ALIX mo-
lecules, inhibits Gag polymerization, activates Gag pro-
cessing, and recruits the late-acting ESCRT factors,
CHMP4B, CHMP2A and VPS4. Factors that could trig-
ger this switch include the proper degree of membrane
curvature and/or critical concentrations of ALIX or Gag.
Switch components could include ubiquitin transfer
and/or conformational changes in Gag or ALIX. At that
point, CHMP4B recruitment and polymerization in the
bud neck could help block extension of the hexagonal
Gag lattice. The switching process is likely to be com-
plex, however, as suggested by the puzzling observation
that tubular EIAV Gag overpolymerization phenotypes
were not observed when ALIX was depleted (Figure 5),
nor were elevated Gag release levels observed for ALIX
mutants that lacked binding sites for CHMP4B (Figure 2)
or ubiquitin [85].

Conclusions
In summary, our experiments reveal that EIAV budding
requires only a subset of ESCRT proteins, including
ALIX, CHMP4B, CHMP2A and VPS4. Point mutations
that inhibited the interactions between these proteins
also inhibited their ability to function in EIAV budding,
indicating that these proteins interact directly during the
budding process. Long tubular virions are produced in
the absence of CHMP4B, suggesting that the burst of re-
cruitment of the late-acting ESCRT factors help mediate the
switch from Gag polymerization to Gag processing and
membrane fission. These studies help establish EIAV as a
streamlined model system for dissecting the stepwise pro-
cesses of lentivirus assembly and ESCRT-mediated budding.

Methods
Cell culture
293T and HeLa-TZM reporter cells were maintained in
DMEM (Invitrogen) with 10% FCS. HeLa-TZM cells
were obtained through the AIDS Research and Refe-
rence Reagent Program.

siRNAs, expression vectors and antibodies
siRNA (19 nt + d(TT) overhangs) were designed using the
Dharmacon siDESIGN Center (Thermo Fisher Scientific
Inc.) and were synthesized by the University of Utah core
facility. siRNA sequences are provided in Additional file 5:
Table S1, expression vectors used in this study are pro-
vided in Additional file 6: Table S2, and most ESCRT anti-
bodies and their working conditions are described in
[104]. We raised our own rabbit anti-HIV CA (UT 416)
and MA (UT 556) antisera (mixed together, each at
1:1,000 dilution), anti-EIAV CA (UT418, 1:3,000), anti-
ALIX (UT 324, 1:500), and anti-EAP20 (UT461, 1:500).
Murine anti-GAPDH (Millipore) was used at a dilution of
1:15,000.

ESCRT protein depletion, rescue and EIAV virion
production
Detailed protocols for siRNA depletion of the different
ESCRT proteins, expression of exogenous, siRNA-resistant
rescue constructs, and western blotting conditions are de-
scribed in [57] (for equivalent HIV-1 experiments). Briefly,
the experiments shown here in Figures 1, 2, 3, 4, and 5A,
Additional file 2: Figure S1 and Additional file 3: Figure S2
were performed following the time course: t = 0, 293T cells
seeded at 2 × 105 cells/well in 6-well plates; t = 24 hr, trans-
fection with 10 nM siRNA and 7.5 μl lipofectamine
RNAimax (Invitrogen); t = 48 hr, media change (2 ml) and
co-transfection with 10 nM siRNA, with control vector or
siRNA-resistant expression construct (0.7 μg), and with
control vector and viral expression vector(s) (0.5 μg HIV-1
R9 vector [105], or an EIAV vector system comprising
0.2 μg pEV53, 0.2 μg pSIN6.1CeGFPW and 0.075 μg
phCMV-VSV-G [75,76] using 10 μl lipofectamine 2000
(Invitrogen); t = 72 hr media change (EIAV only); and
t = 96 hr, harvest cells and culture supernatant for
analysis. Western blots were used to analyze levels of
released virion-associated viral proteins and soluble cellu-
lar proteins, with integrated band intensities measured
with an Odyssey Imager, Li-Cor Biosciences. HIV-1 titers
were analyzed on HeLa-TZM reporter cells. EIAV vector
titers were determined by titrating culture supernatants
onto 293T target cells and quantifying transduced cells
expressing GFP 72 h post-infection by flow cytometry
(FACScan, Becton Dickison).

Transmission electron microscopy
Virus-producing 293T cells were pelleted at low speed,
fixed with 2.5% glutaraldehyde/1% paraformaldehyde in
cacodylate buffer (0.1 M sodium cacodylate (pH 7.4),
35 mM sucrose, 4 mM CaCl2) 48 h after the second
siRNA transfection, washed three times for 10 min with
50 mM cacodylate buffer, stained with a 2% OsO4 solu-
tion for 1 h, rinsed three times for 10 min with water,
and stained with a 4% uranyl acetate solution for
30 min. Samples were dehydrated with a graded etha-
nol series, then in acetone, and embedded in epoxy
resin Embed-812 (Electron Microscopy Sciences). Thin
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sections (80–100 nm) were picked up on copper grids,
stained for 20 min on drops of saturated uranyl ace-
tate, rinsed with water and then stained for 10 min on
drops of Reynolds’ lead citrate. Electron micrographs
were collected on a Hitachi H-7100 transmission elec-
tron microscope at an accelerating voltage of 75 kV,
equipped with a Gatan Orius sc1000 camera.
Two independent experiments were performed, and a

total of 28 cells with associated EIAV virions were
counted for each condition and scored for the presence
of: mature virions, immature virions, budding virions
(Gag assemblies with half-moon or “lollipop” morpholo-
gies) and multi-lobed or tubular virions (virions with mul-
tiple lobes or long tubular structures). Examples of these
different phenotypes are given in Figure 5B, panel 4 and
their relative percentages are provided in Figure 5C.
ESCRT protein depletion generally increased the fre-
quency of cells with observable cell-associated virions and
the number of associated virions/cell. Thus, to find 28 cells
with associated EIAV virions, we had to count a total of
1020 control cell sections, 1282 ALIX-depleted cell sections,
927 CHMP2A/B-depleted cell sections, and 428 CHMP4A/
B-depleted cell sections. Scored virion numbers were: 198
(control cells), 365 (ALIX-depleted cells), 491 (CHMP2A/
B-depleted cells) and 1172 CHMP4A/B-depleted cells).
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