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Abstract

We present an electrophysiological model of double bouquet cells and integrate them into an established cortical columnar
microcircuit model that has previously been used as a spiking attractor model for memory. Learning in that model relies
on a Hebbian-Bayesian learning rule to condition recurrent connectivity between pyramidal cells. We here demonstrate
that the inclusion of a biophysically plausible double bouquet cell model can solve earlier concerns about learning rules
that simultaneously learn excitation and inhibition and might thus violate Dale’s principle. We show that learning ability
and resulting effective connectivity between functional columns of previous network models is preserved when pyramidal
synapses onto double bouquet cells are plastic under the same Hebbian-Bayesian learning rule. The proposed architecture
draws on experimental evidence on double bouquet cells and effectively solves the problem of duplexed learning of
inhibition and excitation by replacing recurrent inhibition between pyramidal cells in functional columns of different
stimulus selectivity with a plastic disynaptic pathway. We thus show that the resulting change to the microcircuit architecture
improves the model’s biological plausibility without otherwise impacting the model’s spiking activity, basic operation, and
learning abilities.

Keywords BCPNN learning rule - Cortical microcircuit - Disynaptic inhibition - Double bouquet cells -
Electrophysiological modeling - Hebbian plasticity

1 Introduction

We examine and build on a cortical microcircuit model,
previously used in a working memory model by Fiebig
and Lansner (2017) that implemented a BCPNN (Bayesian
Confidence Propagation Neural Network) learning rule.
We then expand on this functional columnar architecture
by integrating GABAergic double bouquet cells (DBCs),
which may play a key modulatory role in the cortical
microcircuit (Krimer et al. 2005; Kelsom and Lu 2013).
Generally speaking, the BCPNN learning rule processes
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spike trains of pre- and postsynaptic neurons, and computes
synaptic traces of activation and coactivation, which are
then used to calculate the updated weights (see Section 2.3).
In other words, the BCPNN is based on spike train
correlations (Tully et al. 2014).

The foremost points of this work are first, the electro-
physiological modeling of the inhibitory DBCs, and sec-
ondly their integration with the previous cortical memory
model and its learning rule, which yields a novel model
with improved biological plausibility and maintained func-
tionality. The previous implementation suffers from the
problem that learned weights among excitatory pyrami-
dal cells in competing functional columns become negative
(inhibitory), thus violating Dale’s Principle which states that
neurons release the same neurotransmitters at all of their
synapses (Strata and Harvey 1999). The biological plausi-
bility of our model is here improved by the introduction of
DBC:s that provide disynaptic inhibition among pyramidal
cells (Silberberg and Markram 2007).
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2 Materials and methods
2.1 Neuron models

We use an AdEx IAF (Adaptive Exponential integrate-
and-fire) neuron model with spike-frequency adaptation
(Brette and Gerstner 2005). The neuron model has been
modified for compatibility with a BCPNN synapse model
(Tully et al. 2014) and reparameterized for simulation of
several different neuron types. The model describes the
temporal development of the membrane potential Vi, and
the adaptation current Iy, given by the following equations:

dv, Vin—V,
Cmd_;n:_gL(Vm_EL)+gLATe A — wtlext+Isyn (1)
dly, —Iy
— = —— 4+ bé(t — t 2
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Vi represents cell membrane potential, I, stands for the
adaptation current, Cy, is the membrane capacitance, g, is
the leak conductance, Ep, is the leak reversal potential, V¢
is the spiking threshold, A; is the spike slope factor, b is
the spike-triggered adaptation, 7,y is the adaptation recovery
time constant and Iy is the stimulation current.

Adaptation enriches neural dynamics particularly in
pyramidal cells (Brette and Gerstner 2005), and we take
advantage of this in modeling DBCs as well. As in
the model we extend, the neuron model was somewhat
simplified by excluding the subthreshold adaptation. AdEx
models provide a phenomenological description of the
neural behaviour, yet feature limitations in predicting the
precise time course of the voltage during and after a spike
or the underlying biophysical causes of electrical activity
(Gerstner and Naud 2009).

2.2 Synapse model

Besides the stimulation current Il.x, neurons receive
synaptic currents Lsyn, from AMPA and GABA synapses
summed at the membrane. The model features conductance
based AMPA (reversal potential EAMPA) and GABA
(reversal potential EGABA) synapses:

Isynj :Z Zg?j/yn(t)(vm—E;/’.vn):]JAMPA(t)_i_IjGABA(t)
syn i

3

Plastic AMPA synapses under the spike-based BCPNN
learning rule (see Section 2.3), are also subject to synaptic
depression following the Tsodyks-Markram formalism
(Tsodyks and Markram 1997) :

dep dep

dx;; 1—x.; )
J iy dep i
TR le.j E 8(r — 15, — tij) @

sp

@ Springer

2.3 BCPNN learning rule

Excitatory AMPA weights develop according to the BCPNN
learning rule (Lansner and Ekeberg 1989; Sandberg et al.
2002; Tully et al. 2014). This is a Hebbian type of
learning rule used in many previous works, most recently
in Fiebig and Lansner (2017). It was derived from Bayes
rule, assuming that a postsynaptic neuron employs some
form of probabilistic inference to decide whether to emit
a spike or not. It is a more complex learning rule than the
more standard spike-timing-dependent plasticity (STDP)
learning rule (Caporale and Dan 2008), but can replicate the
main features of such plasticity. As other spiking synaptic
learning rules, it is so far insufficiently validated against
quantitative experimental data on biological synaptic
plasticity.

A BCPNN synapse calculates three synaptic memory
traces, P;, P; and P;;, implemented as exponentially
weighted moving averages of pre-, post- and co-activation.
As old memories deteriorate they are gradually replaced by
newly learned patterns, so exponentially moving averages
prioritize recent patterns. Specifically, BCPNN implements
a three-stage procedure of exponential filters which defines
Z, E and P traces. The method then estimates P; (normalized
presynaptic firing rate), P; (normalized postsynaptic firing
rate) and also P;; (coactivation) from these traces. In the
final stage, P;, P; and P;; update the Bayesian weights w;;
and biases B;. It is worth adding that E traces that enable
delayed reward learning, are not used here because such
conditions are not applicable. Some of the key equations
are highlighted in this chapter; yet for further information
and deeper understanding of the BCPNN learning rule, see
Tully et al. (2014).

To begin with, BCPNN receives pre- and postsynaptic
spike trains (S;, S;) so as to calculate the traces Z; and Z;:

&)

dzZ; __ Si _ 7.
{ Tz dar — JfmaxZspike Zl Te
azy _ S .

TZj W - fmaxtspike o ZJ + €
fmax denotes the maximal neuronal spike rate, € is the
lowest attainable probability estimate, f;p;ir. denotes the
spike duration while Ty = Ty are the pre- and postsynaptic
time constants respectively (here 5 ms).

P traces then are estimated from the Z traces as follows:

ol =K (Zi — P)
Tp[jj_fj. =k(Zj— P) (6)
g = k(Zij = Py)

The parameter « adjusts learning speed, and by setting
k = 0 there are no weight changes. To give prominence
to the stability of memory networks with BCPNN learning
rule, we set k = 1 during the whole simulation.
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Finally, P;, P; and P;; are used to calculate intrinsic
excitability 8; and synaptic weights w;; :

— log i
PR @
Bj = log(F))

2.4 Columnar network architecture

The proposed architecture principally follows several pre-
vious spiking neural network implementations (Fiebig and
Lansner 2017; Lansner 2009) and is best understood as a
subsampled cortical layer II/III model with nested hyper-
columns (HCs) and minicolumns (MCs) (see Fig. 1a). This
modular design attributes MCs as the core functional unit of
cortex, composed of pyramidal cells with shared selectivity,
forming a functional (not necessarily strictly anatomical)
column. The high degree of recurrent connectivity within
MCs (Thomson et al. 2002; Yoshimura and Callaway 2005)
and horizontal connections between them link functional
columns into larger attractors (Binzegger et al. 2009; Muir

. Hypercolumn
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Fig. 1 a The proposed functional columnar architecture including
DBCs. The model contains 2 Hypercolumns (HCO, HC1) nesting
2 minicolumns each (MCO, MC1, MC2, MC3). Each MC contains
one DBC, which delivers inhibition to all pyramidal cells in their
MC. MCs are selective for different stimuli such that MCO and
MC2 function coactively and compete with another pair of coac-
tive minicolumns MC1 and MC3. When MCO and MC2 are active,
MCI1 and MC3 are silent and vice versa. Pyramidal neurons of
MCO and MC2 disynaptically inhibit MC1 and MC3 through bas-
ket cells (within HCs) and DBCs (within and between HCs). Plastic
connections are drawn with 20% connection probability, while the
connections between basket and pyramidal cells within the local hyper-
columns are drawn with 70% connection probability. Conductance

et al. 2011; Stettler et al. 2002). Densely recurrent non-
specific feedback inhibition, here mediated by basket cells,
implements a soft winner-take-all structure (Binzegger et al.
2009) amongst the functional columns. Recurrent excitatory
gain can amplify and complete noisy inputs towards discrete
embedded attractors. This approach does not address the
role of infragranular layers and it does not apply directly to
neural structures that do not follow the implied stereotypical
columnar layout (such as hippocampus and rodent V1).

2.5 Simulation tools

We use NEST (Neural Simulation Tool) version 2.4.2,
and a custom-built BCPNN learning rule module (Tully
et al. 2014). NEST simulates the dynamics of spiking
neural models and features a convenient Python interface
(PyNEST) to NEST’s simulation kernel (Gewaltig and
Diesmann 2007). Simulation code and the custom module
is available online in ModelDB (McDougal et al. 2017) at
http://modeldb.yale.edu/257610.
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delays within and between HCs are 1.5 and 4.5 ms respectively. b
Training stimuli drive pyramidal and DBCs. PYRZgg denotes the
pyramidal cells in MCO. A poisson generator (STIMO - brown) stim-
ulates PYREC), PYRIC), DBCHEY and DBCIIC) between 1000
ms and 2000 ms. Another poisson generator (STIM1 - purple) stim-
ulates PYRZ%?, PYRZ%, DBCﬁgg and DBCZ% between 3000
ms and 4000 ms. A zero mean noise poison generator (ZMN - green
shaded area) is active throughout the simulation. ¢ Membrane voltage
of a stimulated DBC. STIM1 specifically drives this cell between 3000
ms and 4000 ms (cf. Fig. 1b). The DBC presents sustained low-rate
firing throughout simulation and reaches typically reported firing rates

during stimulation (see Table 1)
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3 Results
3.1 Double bouquet cells

Modeling DBCs is a key contribution of this work
since the suggested cortical microcircuit model learns
disynaptic inhibition through them and thereby modulates
the neural activity of neurons in competing MCs. DBCs
are GABAergic interneurons which may play an important
role in shaping neural activity and circuitry (Krimer et al.
2005; Kelsom and Lu 2013) and are mainly located in Layer
II/TII featuring a bitufted dendritic conformation (Markram
et al. 2004). They contact the dendrites of targeted cells
(Markram et al. 2004) innervating spines (69.2% =+ 4.2%)
and shafts (30.8% =+ 4.2%) (Tamas et al. 1997). DBCs
are characterized by vertically oriented descending axons
(Maria and DeFelipe 1995), which are generally termed
“bundles” or “horse-tails” (Yafiez et al. 2005; DeFelipe et al.
1989).

The majority of double bouquet cells appear to be
situated in upper layers (DeFelipe et al. 1989) and one of
their unique feature is a horse-tail that fit well within the
minicolumn (vertical cyclinder of tissue with a diameter
of roughly 25 — 50 wm). Due to this morphology they
create strong connections with pyramidal cells within their
local column (DeFelipe et al. 2006). Neuroanatomical data
suggests that each minicolumn contains one DBC (DeFelipe
et al. 2006).

DBCs present a small degree of adaptation (Tamas
et al. 1997) and unlike Basket Cells, they are characterized
by sustained spiking activity (Krimer et al. 2005), which
under strong stimulation is at 43 + 13 Hz (Zaitsev et al.
2008). DBCs are intermediate spiking (IS) cells (Krimer
et al. 2005) and subclassified as RSNP cells (Regular-
spiking nonpyramical neurons) according to studies of their
physiological properties (Kawaguchi and Kubota 1996;
1997).

In vitro experiments report DBC resting potential at
—76+£6 mV, spiking threshold Vi, at —44+8 mV and input
resistance at 626312 M 2. They are considered inhibitory
neurons with high input resistance (Zaitsev et al. 2008) and
low capacitance (see Table 1). In addition, they exhibit
membrane time constants (17.1 & 7.7 ms), slope factor
(—0.64 & 2.22) and action potential amplitude (66 + 12.4
mV) (Krimer et al. 2005).

We align the simulation model for DBCs with biological
findings, yet tune some factors such as adaptation (), leak
conductance (gr.), slope factor (A¢) and refractory period
(trer) to achieve satisfactory electrophysiological fidelity,
reproducing spike patterns under sweeps of increasing
suprathreshold current steps and other typically reported

@ Springer

Table 1 DBC model parameters

Parameters Symbol Value
Adaptation current b 3 pA
Adaptation time constant Tw 200 ms
Membrane capacitance Cm 15 pF
Leak reversal potential EL =76 mV
Leak conductance gL 1.52 pS
Upstroke slope factor Aq 1mV
Spike threshold Vi —44 mV
Spike reset potential Vi —60mV
Refractory period Tref 2ms
Input Resistance RI 660 M $2

activity. Figure Ic displays the membrane voltage of
a stimulated DBC. The resulting model parameters are
broadly consistent with experimentally reported values (see
Table 1).

3.2 Adding DBCs to the columnar architecture

In the new model, connections among pyramidal cells in
competing MCs are now mediated by DBCs as an additional
local microcircuit component (see Fig. 1a). Their functional
role is to deliver the same amount of inhibition to the
respective MCs as the previous model but now entirely
disynaptically, without principally changing established
network learning and neural dynamics.

This extended cortical microcircuit model now contains
three classes of neurons; pyramidal cells, basket cells and
DBCs (see Fig. 1a). We use parameters for pyramidal and
basket cells from a previous model implementation (Fiebig
and Lansner 2017) and derive parameters for DBCs through
electrophysiological modeling and tuning based on reported
in vitro characterizations (see Section 3.1). We simulate a
small network of two reduced HCs from the previous larger
network model.

3.3 BCPNN plasticity

Stimulation of the columnar network changes the efficacy
of the plastic BCPNN synapses. To show the learned
connectivity, we read out connection weights after an one
second long initialization with zero mean noise (Initial
Weight Distribution, IWD) and finally, after learning of
the two stimuli (Learned Weight Distribution, LWD), see
Fig. 1b.

Figure 2 shows histograms of plastic weights between
the pyramidal cells in MCO and their post-synaptic targets.
Figure 2a and b show that the integrated DBCs in the
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Plastic weights

Fig.2 Weight distribution of plastic connections from pyramidal cells
in MCO before (Initial Weight Distribution, IWD) and after (Learned
Weight Distribution, LWD) training in the previous and updated
microcurcuit (multi-trial averages). IWD (new model) in blue, LWD
(new model) in green, IWD (previous model) in orange and LWD
(previous model) in purple. a Recurrent AMPA weight distribution
among the pyramidal cells of MCO. Initial and converged distributions
from both columnar networks are similar with means of 0 and 1.7
respectively, (see plot-box). b Distribution of AMPA weights between
the pyramidal cells of the coactive MCO and MC2 (associate con-
nection between HCs). The distribution of the initial weights has the
same behaviour in both architectures, with a mean close to 0. The

columnar architecture do not affect the behaviour of the
functional weights which are not related to them.

Two important changes can be identified in Fig. 2c and d,
wherein disynaptic inhibition is introduced by DBCs. Even
though the strength of the learned connections onto DBCs
is weak, DBCs also feature low capacitance and dense
connections with local pyramidal cells, and thus deliver
comparable inhibition (see Section 3.4).

This result shows the effectiveness of DBCs involvement
in the microcircuit network as they learn to mediate
disynaptic inhibition between pyramidal cells in competing
MCs. This outcome looks promising, but we yet have
to verify its functional efficacy with regards to the total
inhibition delivered (see Section 3.4).

Plastic weights

distributions of the learned weights overlap, with a mean of 1.3. ¢
The initial distribution of plastic weights in both functional columnar
architectures is close to 0. The negative learned weights of the previous
model (violating Dale’s principle) are functionally substituted in the
new model by positive weights from the pyramidal cells of MCO to the
DBC of the competing MC1. The converged positive weight distribu-
tion has a mean of 0.5. d Plastic connections between pyramidal cells
of MCO and DBC of the competing MC3 are compared with plastic
connections between pyramidal cells in MCO and MC3 in the previous
model. The behaviour remains the same as in C) because the negative
weights turn positive after DBCs integration

3.4 Functionality verification

Figure 3a displays the spiking activity of neurons in a
simulated HC (HCO). Although DBCs keep a low level
sustained spiking activity throughout the simulation, they
can reach higher firing rate during training (Zaitsev et al.
2008).

The cortical model learns as expected and the competing
MCs inhibit each other by disynaptic inhibition mediated
by DBCs and basket cells. But is this inhibition equivalent
to the mono-synaptic inhibition learned by the previous
model?

We tested learning in both the new and previous
model using the same stimulation pattern and recorded

@ Springer
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Fig.3 a Spike raster of neurons in HCO. Colors correspond to Fig. 1a,
b. When STIMO or STIMI are ON (cf. Fig. 1b), pyramidal cells in
MCO excite basket cells within their local MC and DBC in compet-
ing MC which in turn inhibit pyramidal cells in MC1 and vice versa.
b Population averaged total inhibitory input current received by pyra-
midal cells in MCO in both architectures (100 trials, 10 ms bins).

the total inhibitory input current received by pyramidal
cells in MCO (see Fig. 3b). The proposed cortical model
effectively delivers the same amount of disynaptic inhibition
via basket cells and DBCs. The new model has thus
improved biological credibility while maintaining the same
functionality.

4 Discussion

This work aims at giving prominence to the double bouquet
cells and their use as an integral part of a cortical
microcircuit model. The population of DBCs is limited
compared to other GABAergic neurons; however, they may
play a key role in shaping neural activity. By integrating
them into an established model, the new model now obeys
Dale’s principle with maintained function. Indirectly, this
result also verifies the biological plausibility of recent
network models (Lansner 2009; Tully et al. 2016; Fiebig
and Lansner 2017). The newly integrated DBCs effectively
learn to mediate disynaptic inhibition between pyramidal
cells thus eliminating negative learned weights between
pyramidal cells which violate Dale’s principle.

In conclusion, the successful integration of an elec-
trophysiological DBC model into an established cortical
microcircuit design yields a novel functionally equivalent
learning network with improved biological plausibility. This
model suggests that DBCs have a quite well defined role in
cortical memory networks.
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New model in purple, previous network in blue. DBC and basket cells
simultaneously deliver inhibition to the neurons of MCO. The total
inhibition current (Igapa) starts from zero level (2500 ms-3000 ms),
then decreases (3000 ms-4000 ms) reaching a climax of 220 pA
and finally stabilizes at zero (4000 ms-4500 ms) following the same
pattern in the new and previous cortical model
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