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Background: Biological aging may occur at different rates than chronological aging due to 

genetic, social, and environmental factors. DNA methylation (DNAm) age is thought to be a 

reliable measure of accelerated biological aging which has been linked to an array of poor 

health outcomes. Given the importance of chronological age in recovery following aneurysmal 

subarachnoid hemorrhage (aSAH), a type of stroke, DNAm age may also be an important 

biomarker of outcomes, further improving predictive models. Cerebrospinal fluid (CSF) is a 

unique tissue representing the local central nervous system environment post-aSAH. However, 

the validity of CSF DNAm age is unknown, and it is unclear which epigenetic clock is ideal to 

compute CSF DNAm age, particularly given changes in cell type heterogeneity (CTH) during 

the acute recovery period. Further, the stability of DNAm age post-aSAH, specifically, has not 

been examined and may improve our understanding of patient recovery post-aSAH. Therefore, the 

purpose of this study was to characterize CSF DNAm age over 14 days post-aSAH using four 

epigenetic clocks.

Results: Genome-wide DNAm data were available for two tissues: (1) CSF for N = 273 

participants with serial sampling over 14 days post-aSAH (N = 850 samples) and (2) blood 

for a subset of n = 72 participants at one time point post-aSAH. DNAm age was calculated 

using the Horvath, Hannum, Levine, and “Improved Precision” (Zhang) epigenetic clocks. “Age 

acceleration” was computed as the residuals of DNAm age regressed on chronological age both 

with and without correcting for CTH. Using scatterplots, Pearson correlations, and group-based 

trajectory analysis, we examined the relationships between CSF DNAm age and chronological 

age, the concordance between DNAm ages calculated from CSF versus blood, and the stability 

(i.e., trajectories) of CSF DNAm age acceleration over time during recovery from aSAH. We 

observed moderate to strong correlations between CSF DNAm age and chronological age (R = 

0.66 [Levine] to R = 0.97 [Zhang]), moderate to strong correlations between DNAm age in CSF 

versus blood (R = 0.69 [Levine] to R = 0.98 [Zhang]), and stable CSF age acceleration trajectories 

over 14 days post-aSAH in the Horvath and Zhang clocks (unadjusted for CTH), as well as the 

Hannum clock (adjusted for CTH).

Conclusions: CSF DNAm age was generally stable post-aSAH. Although correlated, CSF 

DNAm age differs from blood DNAm age in the Horvath, Hannum, and Levine clocks, but not in 

the Zhang clock. Taken together, our results suggest that, of the clocks examined here, the Zhang 

clock is the most robust to CTH and is recommended for use in complex tissues such as CSF.
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Background

Across the spectrum of neurological injury populations, identifying therapeutic targets 

of intervention to improve patient outcomes has been a challenge. The aneurysmal 

subarachnoid hemorrhage (aSAH) population is no exception. After aSAH, while extreme 

variability in patient recovery is observed, younger patients generally do better following 

injury [1] underscoring the importance of chronological age as a predictor of outcomes. 

However, given within-individual variability such as genomic, social, and environmental 

factors, it is thought that “bio-logical aging” for many individuals happens at different rates 
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and that chronological age is often a flawed surrogate measure of this phenomenon. For this 

reason, a substantial amount of work has been dedicated to identifying molecular biomarkers 

of aging. One of the most promising thus far is DNA methylation (DNAm) age which can be 

computed from “epigenetic clocks” and is suggested to be applicable across the lifespan and 

in all sources of biological tissues [2].

Several epigenetic clocks have been proposed over the last decade including the Horvath 

[3, 4], Hannum [5], Levine [6], and “Improved Precision” (i.e., Zhang) [7] clocks which 

use DNAm data from 353, 71, 513, and 514 CpG sites, respectively. DNAm age estimated 

by all four epigenetic clocks is strongly correlated with chronological age despite important 

differences in clock construction detailed below. Individuals with a DNAm age greater than 

their chronological age are said to have “age acceleration” which has been associated with 

many negative health outcomes such as cancer [8], Parkinson’s disease [9], cardiovascular 

disease [10], and all-cause mortality [11]. While the Horvath, Hannum, and Zhang clocks 

were developed to estimate chronological age, the Levine clock expanded on this to 

estimate a biological age metric known as “phenotypic age,” which was based not only 

on chronological age, but also other biological factors predictive of mortality (e.g., albumin, 

creatinine) [6]. Further, the Horvath clock was specifically developed to be a “pan tissue” 

clock by using training datasets with DNAm data generated from many biological tissues 

(e.g., brain, kidney, blood) whereas the Hannum and Levine clocks were developed using 

only DNAm data generated from the blood (though they have been subsequently examined 

and validated in other tissues). Of the clocks mentioned here, the Zhang clock was 

developed most recently and was designed to outperform all others as it was developed using 

training data from 13,661 blood and saliva samples, a number that far exceeds the sample 

sizes of its predecessors. To better understand epigenetic aging, an expanded investigation of 

clocks in diverse sets of tissues and diseases are needed, including longitudinal evaluations 

[12]. Although DNAm age has been examined in a wide range of biological tissues (e.g., 

blood, kidney, liver, tumor, brain [2]), it has not been examined in cerebrospinal fluid (CSF), 

a tissue that is critical for normal neuronal function; provides protection, nourishment, and 

local environmental regulation for the brain and spinal cord [13]; and can be used for clinical 

analyses.

Under normal physiological conditions, CSF is clear and contains ions, vitamins, and 

very few cells (less than five cells per milliliter) [13]. Following aSAH, however, blood 

accumulates in the subarachnoid space and mixes with CSF [14]. The neuronal response 

to this contamination is immediate degradation of hemoglobin, resulting in an increase 

in reactive oxygen species, cellular damage/repair, inflammation, and an acute immune 

response [15] which often leads to secondary injuries that could impact DNAm age [16, 

17]. Because DNAm is dynamic and responsive to external stimuli [18], and that CSF 

composition and secretion are finely regulated and renewed approximately four times 

every day [13], peripheral cell types may behave differently in this new environment, 

potentially resulting in cellular reprogramming, polycreodism, and DNAm patterns not 

typically observed in the blood [19]. Further, while the peripheral blood contaminates the 

CSF following aSAH, it gradually clears during recovery. Likewise, cell types originating 

in the brain (e.g., ependymal) and ruptured vessel can be observed in post-aSAH CSF [13, 

20]. As such, in many cases of neurologic injury where CSF is drained as part of clinical 
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management to reduce intracranial pressure, including aSAH, this tissue may support an 

improved understanding of the local environment of the central nervous system. Trajectories 

of age acceleration during recovery from neurologic injury may offer insight into the 

stability of DNAm age in acute pathological conditions such as aSAH and improve our 

understanding of both DNAm age and recovery post-aSAH. Despite this, the validity and 

potential utility of DNAm age computed using CSF is not understood, which is an important 

gap in our knowledge.

Therefore, the purpose of this longitudinal, observational study was to characterize CSF 

DNAm age over the immediate 14 day recovery period following aSAH. As part of this 

characterization, we wanted to better understand the relationships between CSF DNAm age 

and chronological age, the concordance between DNAm ages calculated using CSF versus 

peripheral blood, the stability (i.e., trajectories) of CSF age acceleration during recovery 

from aSAH, and the correlations between four epigenetic clocks (Horvath [3, 4], Hannum 

[5], Levine [6], and Zhang [7]). Given our focus on CSF in a pathological condition, a 

critical piece of this study included examination of the effects of cell-type heterogeneity 

(CTH) as cell-type proportions can vary across time, tissues, and individuals and can 

impact DNAm [21]. Therefore, all of our analyses were conducted both with and without 

considering the effects of CTH to better understand how CTH impacts DNAm age as a 

whole in CSF, a complex tissue.

Results

Sample characteristics

Our final sample size consisted of n = 273 aSAH participants (n = 850 observations). All 

participants had CSF DNAm data at up to five cross-sectional time points over 14 days 

post-aSAH including time 1 (days 0 to 2), time 2 (days 3 to 5), time 3 (days 6 to 8), time 

4 (days 9 to 11), and time 5 (days 12 to 14). Of the overall sample, n = 72 participants 

also had blood DNAm data available at cross-sectional time point 1 (days 0 to 2). Sample 

characteristics are presented (Table 1). Our overall sample (n = 273) had a mean (± standard 

deviation) age of 52.9 (± 11.1) years and was 68.5% female and 87.2% White with Fisher 

grades of 2, 3, or 4 accounting for 29.7%, 49.5%, and 20.9% of the sample, respectively. The 

mean body mass index (BMI) was 28.1 (± 7.2) kg/m2, and 53.8% of participants were active 

smokers. We observed similar statistics in the subset of participants with both CSF and 

blood DNAm data available on days 0 to 2 post-aSAH (n = 72). The sample characteristics 

observed were comparable to statistics observed in the general aSAH population [22].

Correlation between DNAm age and chronological age

Across all CSF samples (n = 273 at up to five time points over 14 days post-aSAH), DNAm 

age was moderately to strongly correlated with chronological age in the Horvath (R = 0.86, 

p < 2.2E−16), Hannum (R = 0.82, p < 2.2E−16), Levine (R = 0.66, p < 2.2E−16), and 

Zhang (R = 0.97, p < 2.2E−16) clocks (Fig. 1). The relationship between DNAm age and 

chronological age was similar for the Horvath, Hannum, and Levine clocks and strongest in 

the Zhang clock (Fig. S1). We noted between participant variation and that the relationship 

between CSF DNAm age and chronological age differed as a function of chronological 

Heinsberg et al. Page 4

Epigenetics Commun. Author manuscript; available in PMC 2022 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age, most notably in the Horvath, Hannum, and Levine clocks (Fig. 1). Specifically, we 

observed higher DNAm age than expected in younger participants and lower DNAm age 

than expected in older participants. Within cross-sectional time points, we observed similar 

correlations between chronological age and DNAm age in CSF over time, with the strongest 

correlations observed in the Zhang clock (Figs. S2, S3, S4, and S5).

Within the subset of participants for which blood was available (n = 72 on days 0 to 2 

post-aSAH), chronological age was strongly correlated with DNAm age in the Horvath (R = 

0.88, p < 2.2E−16), Hannum (R = 0.92, p < 2.2E−16), Levine (R = 0.83, p < 2.2E−16), and 

Zhang (R = 0.97, p < 2.2E−16) clocks (Fig. 2). The relationship between DNAm age and 

chronological age was similar for the Horvath, Hannum, and Levine clocks and strongest 

in the Zhang clock (Fig. S6). Correlations between chronological age and DNAm age were 

stronger in blood compared with CSF for the Horvath, Hannum, and Levine clocks but 

were the same for the Zhang clock. In all clocks, the relationship between DNAm age and 

chronological age again differed as a function of chronological age.

Correlation between DNAm age and age acceleration in CSF and blood

Within the subset of participants for which both CSF and blood DNAm data were available 

(n = 72 on days 0 to 2 post-aSAH), we observed moderate to strong correlations between 

DNAm ages measured in CSF versus blood in the Horvath (R = 0.87, p < 2.2E−16), 

Hannum (R = 0.84, p < 2.2E−16), Levine (R = 0.69, p = 1.2E −10), and Zhang (R = 0.98, p 
< 2.2E−16) clocks (Fig. 3).

Next, we used the subset of participants with both CSF and blood available (n = 72 at 

cross-sectional time point 1 on days 0 to 2 post-aSAH) to compare DNAm age (Fig. 

S7) and age acceleration (Fig. 4) computed from all clocks with optional correction for 

CTH. Correlations between DNAm age in all clocks and tissues ranged from R = 0.60 

(Levine [CSF] and Zhang [blood]) to R = 0.98 (Zhang [CSF] and Zhang [blood]) (Fig. S7). 

Correlations between age acceleration in all clocks ranged from R = 0.08 (Hannum [blood] 

and Horvath [CSF]) to as large as R = 0.97 (Zhang [CSF] and Zhang [CSF + CTH]) (Fig. 4). 

CSF CTH data used to compute the age acceleration metric adjusted for CTH are presented 

graphically (Figs. S8 and S9).

Finally, we compared the age acceleration data distributions and densities between clocks 

with optional correction for CTH (Fig. 5). Levine CSF age acceleration had the widest range 

of values while Hannum CTH-adjusted blood age acceleration had the narrowest range of 

values. Of the four clocks, the Zhang clock data distributions looked most similar regardless 

of tissue and CTH-adjustment.

Trajectories of CSF age acceleration

Horvath clock—Finally, in an effort to understand the stability (i.e., trajectories) of CSF 

age acceleration over time during recovery from aSAH, we used group-based trajectory 

analysis (GBTA) to examine age acceleration over time (both with and without adjusting for 

CTH). Inferred age acceleration trajectory groups for the Horvath (adjusted and unadjusted 

for CTH), Hannum (adjusted and unadjusted for CTH), and Zhang (unadjusted for CTH) 
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clocks are presented (Fig. 6). As discussed in more detail below, the trajectory models for 

the Levine clock (both unadjusted and adjusted for CTH) and the Zhang clock (adjusted 

for CTH) did not pass posterior model quality control (QC), so are not included in Fig. 6. 

For age acceleration data computed using the Horvath clock, both unadjusted and adjusted 

for CTH, four distinct, flat trajectory groups (groups 1 through 4) were inferred, suggesting 

that Horvath DNAm age acceleration did not change over time during recovery from aSAH 

(Fig. 6, Horvath and Horvath + CTH). All unadjusted and CTH-adjusted model selection 

parameters including the Bayesian Information Criterion (BIC) computed from iterative 

model testing as well as posterior model QC indices are presented (Tables S2a, S2b, S3a, 

and S3b).

Hannum clock—For age acceleration data unadjusted for CTH computed using the 

Hannum clock, we again inferred four distinct trajectory groups. While the two groups 

with the highest age acceleration (groups 3 and 4) did not change over time, we observed 

a slow increase in age acceleration in group 2 and an increase followed by a return to 

baseline in group 1 (Fig. 6, Hannum). When we controlled for CTH in the calculation of 

age acceleration, this temporal variation was washed out resulting in four flat trajectory 

groups with no change over time (Fig. 6, Hannum + CTH). All model selection parameters 

including the BIC computed from iterative model testing as well as posterior model QC 

indices are presented (Tables S4a, S4b, S5a, and S5b). It should be noted that the plots 

in Fig. 6 depict inferred trajectory groups and are not directly comparable because group 

membership changes after adjustment for CTH as shown in Table 2 (e.g., in Fig. 6, 

Hannum, group 1 has only 8 participants while in Fig. 6, Hannum + CTH, Group 1 has 

23 participants).

Levine clock—GBTA plots for the Levine clock are presented (Fig. S10). Neither the 

trajectory model unadjusted for CTH nor the trajectory model adjusted for CTH passed 

QC procedures due to inadequate odds of correct classification of the middle groups. In 

other words, while we were confident in group participant assignment in the highest and 

lowest DNAm groups (groups 4 and 1, respectively), participant assignment could not be 

distinguished with high confidence for the middle groups. All model selection parameters 

including BIC computed from iterative model testing as well as posterior model QC indices 

are presented (Tables S6a, S6b, S7a, and S7b).

Zhang clock—For age acceleration data unadjusted for CTH computed using the Zhang 

clock, we inferred four distinct trajectory groups with no change over time (Fig. 6, Zhang). 

When we controlled for CTH in the calculation of age acceleration, the trajectory model for 

the Zhang clock did not pass our posterior model QC, again due to a low odds of correct 

classification (Fig. S10). All model selection parameters including the BIC computed from 

iterative model testing as well as posterior model QC indices are presented (Tables S8a, S8b, 

S9a, and S9b).

Characterization of trajectory groups (Horvath, Hannum, and Zhang)—Next, we 

computed participant characteristics for identified trajectory groups for the trajectory models 

that passed posterior QC (Horvath, Hannum, and Zhang [unadjusted for CTH]). For all 
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clocks, we noticed a difference between sexes with a decreasing proportion of females as 

age acceleration increased, though this was only statistically significant in the Hannum clock 

(p < 0.0001). This is particularly notable in the age acceleration trajectory groups unadjusted 

for CTH computed using the Hannum clock. The group with the lowest age acceleration 

(group 1) was 93.3% female while the group with the highest age acceleration (group 4) 

was only 16.7% female. We observed no other differences in participant characteristics by 

trajectory group.

Bivariate associations between DNAm age acceleration and participant characteristics

Lastly, we wanted to understand if DNAm age acceleration was associated with participant 

characteristics independent of inferred trajectory groups (Table 3). We observed associations 

between sex and Horvath CSF DNAm age acceleration (p = 0.02), Hannum CSF DNAm 

age acceleration (p < 0.0001), and Hannum CSF DNAm age acceleration controlling for 

CTH (p = 0.0001). We also observed associations between race and Hannum DNAm age 

acceleration in the blood (p = 0.04), Levine CSF DNAm age acceleration (p = 0.03), and 

Levine CSF DNAm age acceleration controlling for CTH (p = 0.003). Finally, we observed 

an association between smoking and Levine CSF DNAm age acceleration controlling for 

CTH (p = 0.003).

Discussion

This study is the first to characterize CSF DNAm age over the first 14 days post-aSAH. 

While we observed similarities between the tissues and epigenetic clocks applied, the Zhang 

clock outperformed the Horvath, Hannum, and Levine clocks in a complex tissue and 

pathological state, living up to its name as the “Improved Precision” clock. Specifically, of 

the four clocks examined, the Zhang clock was the most robust to systematic differences 

in DNAm age by chronological age discussed in detail elsewhere [23] (Fig. 1, CSF; Fig. 

2, blood). Furthermore, while we observed generally strong correlations between DNAm 

ages measured in CSF versus blood (Fig. 3), we observed a near perfect correlation in the 

Zhang clock (R = 0.98). Likewise, neither tissue nor CTH made a substantial difference in 

the distribution of the data from the Zhang clock, further supporting the clock’s robustness. 

Although the relationship between chronological age and DNAm age was generally steady 

in CSF over the five cross-sectional time points examined, we observed trending time-

dependent changes in the Horvath, Hannum, and Levine clocks but not in the Zhang clock 

(Figs. S2 through S5). While it is somewhat surprising that the clock performed so well 

despite being developed in non-CSF tissues, the performance of the clock can likely be 

credited to its development in the largest training data set to date [7].

CSF DNAm training data was not used in the development of any of the clocks we 

examined. While this appears to be a potential source of variability in the Horvath, 

Hannum, and Levine clocks, it did not impact our results when using the Zhang clock. 

This is a particularly notable finding and relevant for researchers using DNAm data from 

complex tissues such as CSF. Specifically, post-aSAH in particular, CTH requires careful 

consideration as CSF is heavily contaminated with blood immediately following aneurysm 

rupture but gradually clears over time during recovery. As discussed below, no reference-
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based method for cell type deconvolution exists for CSF DNAm data. While we carefully 

controlled for CTH using a reference-free method [24], it would be interesting to compare 

our CTH-adjusted results to a reference-based method developed specifically for CSF post-

aSAH. Likewise, if we had RNA sequencing data for our samples in parallel, a much more 

nuanced exploration of the cell types would be possible [19, 25]. While the true identities 

of cell types present in the CSF post-aSAH would be scientifically and clinically useful for 

the aSAH research community, because this study focused on characterizing DNAm age 

over time, direct biological interpretation of cell-type specific results was not a focus of our 

study. Likewise, the Zhang clock was robust to CTH, making these data unnecessary in this 

context.

Aside from CTH, we did not control for the influence of participant characteristics (e.g., 

sex, race, smoking, or BMI) in our calculation of age acceleration as justified below. We 

observed that sex was associated with inferred trajectory group assignment in the Hannum 

clock (Table 2) which is consistent with existing literature suggesting that men have higher 

DNAm age than women [26]. This finding was confirmed by examining the associations 

between participant characteristics and ungrouped age acceleration metrics independent 

of trajectory group (Table 3). These associations were not observed in the other clocks, 

however, further highlighting clock differences. A surprising observation in this study was 

that the trajectory groups did not have other notable differences in participant characteristics.

Although this study has many strengths, there are some limitations that should be 

acknowledged. First, several measurements of age acceleration are reported in the literature. 

Most commonly, we observed (1) Δage, defined as the difference between DNAm age and 

chronological age, and (2) age acceleration, defined as the residuals of DNAm age regressed 

on age (often with the addition of covariates such as CTH). Initially, we performed our 

analyses using Δage and then realized that there was a systematic difference in delta age 

based on chronological age as described above. In contrast, the residual-based method of 

computing age acceleration applied here results in a metric that has no correlation with 

chronological age. The downside to this method, however, is that it results in a metric that 

is an attribute of the group and not specific to the individual. Therefore, the residual method 

has a higher potential sensitivity to outlying DNAm age values, though outliers were not 

found to be influential in our results. Clinically, Δage may be of more interest than the 

residual definition of age acceleration because it could be calculated for only one participant. 

On this note, we also want to highlight a shift in the epigenetic age literature in which 

a call for disease- and tissue-specific clocks [12] is being answered (e.g., placental aging 

clock [27], hippocampal and cortical tissue clocks [28]). A clock specifically trained using 

CSF DNAm data from the acute period post-aSAH would have the greatest potential clinical 

utility, particularly when examining patient recovery.

An additional potential limitation of this study was that all blood samples were included on a 

separate plate from CSF samples, so we were unable to adjust for possible CSF-blood plate 

batch effects. A strength of this design, however, is that there were no chip batch effects 

in the blood DNAm data. Additionally, the correlation coefficient does not vary by change 

in origin and scale [29]. Therefore, any potential CSF-blood plate effects that differ in this 

manner will not distort the results of our correlational analyses, which is supported by the 
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results comparing blood and CSF DNAm age computed using the Zhang clock (Fig. 3D). 

Furthermore, only a subset of 72 of our participants had blood DNAm data available making 

our comparisons involving blood DNAm age or age acceleration quite small. Likewise, for 

participants with blood available, the DNAm data were only collected at one cross-sectional 

time point (on days 0 to 2 post-aSAH) which prevented us from comparing the trajectories 

of blood age acceleration over time during recovery from aSAH with CSF. Finally, aside 

from the cohort studied in the present analyses, no other aSAH sample with serial CSF 

DNAm data exists. Therefore, we were unable to replicate our findings in an independent 

sample.

Conclusion

The Zhang clock outperformed the Horvath, Hanum, and Levine clocks in post-aSAH CSF 

and was robust to changes in CTH. Despite being developed in non-CSF tissues, DNAm age 

computed from all clocks was generally accurate in post-aSAH CSF. CSF age acceleration 

measured in all clocks was largely stable over time during recovery from aSAH, particularly 

once adjusting for CTH, suggesting that DNAm age is not impacted in the acute aSAH 

recovery period. As such, we conclude that (1) future studies could increase power by using 

a single measurement from more participants, rather than generating DNAm data for each 

participant longitudinally, and (2) it is unlikely that CSF DNAm age acceleration from the 

clocks examined here offers additional predictive value for recovery post-aSAH.

Materials and methods

Study design, setting, and sample

This study was an observational, longitudinal, secondary data analysis that capitalized on 

existing genome-wide DNAm data collected from a cohort of aSAH research participants. 

All research protocols were approved by the Institutional Review Board of the University 

of Pittsburgh, and informed consent was obtained from participants as part of the larger 

study. Participants were prospectively recruited from UPMC Presbyterian Neuro-vascular 

Intensive Care Unit in Pittsburgh, Pennsylvania, between 2000 and 2013 as previously 

described [30]. In brief, participants were included if they were diagnosed with subarachnoid 

hemorrhage caused by an aneurysm rupture, were at least 18 years of age, had no history 

of debilitating neurological disorder, and required an external ventricular drain to reduce 

intracranial pressure and manage CSF as part of standard care in the hospital. As part of 

the larger study, (1) participants were followed over 14 days post-aSAH in the hospital as 

complications that are predictive of long-term outcomes can occur during this acute window 

(e.g., cerebral vasospasm, delayed cerebral ischemia) and (2) genome-wide DNAm data 

were generated as described below.

Participant characteristic data

Participant data were extracted from the medical record and included standard demographic 

data (e.g., age, sex, and self-reported race), BMI and smoking history (given associations 

between these factors and DNAm levels [31, 32]), and Fisher grade, which is a clinical 

variable measuring the initial extent of aSAH injury based on the amount and distribution of 
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blood observed on a computed tomography (CT) scan. Clinically, Fisher grades can range 

from 1 (no blood detected) to 4 (intraventricular or intra parenchymal blood present) [33]. 

Of note, all participants in this study had severe enough injury (Fisher grade > 2) to require 

drainage of CSF as part of their standard clinical management.

DNA methylation data collection

DNA was extracted from two biological tissue sources including (1) CSF (for all study 

participants [N = 279] with serial sampling over 14 days after aSAH) and (2) blood (for 

a subset of study participants [n = 88] at one time point after aSAH). CSF samples from 

ventricular drains placed as standard of care were selected for targeted post-injury days of 1, 

4, 7, 10, and 13 (± 1 day) as described elsewhere [30]. DNA was extracted from CSF using 

the Qiamp Midi kit (Qiagen, Valencia, CA, USA) and from blood using a simple salting out 

procedure [34]. All DNA was stored in 1× TE buffer at 4 °C until DNAm data collection. 

All samples were collected, stored, processed, and extracted using identical standardized/

validated protocols. Genome-wide DNAm data were generated using the Infinium Human 

Methylation450 BeadChip and scanned using the Illumina iSCAN (Illumina, Incorporated, 

San Diego, CA, USA) at the Center for Inherited Disease Research using laboratory QC 

procedures described in detail [30]. Standard DNA concentration and quality checks were 

performed prior to data collection and all DNA carried forward for data collection was 

considered to be high quality and high yield. Raw genome-wide DNAm data were analyzed 

using Genome Studio Software (Illumina, Incorporated, San Diego, CA, USA). Our data 

cleaning and QC process included removal of poorly performing samples, probes, and 

outliers [30] as well as functional normalization and robust batch correction (i.e., chip, row, 

and column effects) using the funtooNorm package [35]. Of note, funtooNorm was designed 

to handle data gathered across time and allows for interactions between tissue types [35], 

making it ideal for complex tissues and serial measurements. Our final post-QC sample size 

consisted of N = 273 participants with serial CSF DNAm data over 14 days post-aSAH (N = 

850 samples) and blood DNAm data for a subset of n = 72 of those participants as described 

below.

Cell-type heterogeneity

Because cell-type proportions can vary across time, tissues, and individuals, and that overall 

DNAm levels are computed using the proportion-weighted average of the cell-type specific 

methylation levels, CTH should be considered carefully as a potential confounder in studies 

of DNAm [21]. CTH is particularly important in the current analyses because, as we 

discussed above, CSF post-aSAH is heavily contaminated by blood cells that could take 

on different properties in this new space, cells originating in the brain, and cells from the 

ruptured vessel, which will gradually clear causing CTH to change over time.

Careful consideration was given to our choice of cell type deconvolution. Reference-based 

methods to infer CTH data do not exist for CSF or for blood that is now found surrounding 

the brain and spinal cord. We did not feel that the application of a peripheral blood 

reference-based method was appropriate given the poor performance of these tools in cord 

blood, a tissue with similar complexities to CSF (i.e., cord blood contains all components 

of peripheral whole blood as well as other cell types) [36]. Thus, CTH data were 
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generated from the genome-wide DNAm data using Houseman’s reference-free method 

which provided estimated proportions of five cell types for each sample [24]. While this 

method has been shown to result in accurate proportions of major putative cell types, similar 

to standard principal components analysis, the true cell type identities are not known. Cell 

types were plotted over time using sina with violin [37] and spaghetti plots (Figs. S8 and 

Figs. S9).

DNA methylation age

DNAm age was calculated using four epigenetic clocks (Horvath [3, 4], Hannum [5], Levine 

[6], and Zhang [7]). These methods use linear functions and clock-specific probes and 

coefficients to compute DNAm age as shown in Eq. 1:

DNAmAge = m0 + m1β1 + m2β2 + … + mnβn (1)

where DNAmAge is the predicted DNAm age for a given individual; m is a clock-specific 

coefficient corresponding to a clock-specific probe; β is the DNAm measurement, a beta 

value as measured on a 0 to 1 scale, for a clock-specific probe within a given individual; 

and m0 is a clock-specific model intercept. It should be noted that the Horvath method also 

uses an age transformation function as described [3, 4] and shown in the Supplementary 

Material (Additional File 1, Section 1.1). Calculations for the Horvath, Hannum, and Levine 

clocks were performed using a modified function from the wateRmelon package [38] in 

R [39] (wateRmelon: agep). The wateRmelon package supplies both Horvath and Hannum 

coefficients for use with the “agep” function, and we modified this function to also compute 

Levine DNAm age as described in detail in the Supplementary Material. Calculations for the 

Zhang clock were made using publicly available code [40].

DNAm age was computed using both CSF DNAm data and blood DNAm data. To allow for 

comparability between tissues, only clock-specific probes available in both CSF and blood 

were used in our analysis. Following implementation of the QC pipeline described above, 

for the Horvath, Hannum, Levine, and Zhang epigenetic clocks, we were missing DNAm 

data for 1, 3, 5, and 11 probes, respectively, as detailed in Table S1. Following calculation 

of DNAm age, CSF data were reshaped into five cross-sectional time points including time 

1 (days 0 to 2 post-aSAH), time 2 (days 3 to 5 post-aSAH), time 3 (days 6 to 8 post-aSAH), 

time 4 (days 9 to 11 post-aSAH), and time 5 (days 12 to 14 post-aSAH). The vast majority 

of the blood samples available were collected at time 1 (days 0 to 2 post-aSAH), so blood 

samples collected outside of this cross-sectional time point (n = 16) were excluded from 

further analyses.

DNA methylation age acceleration

For each of the three epigenetic clocks, we computed age acceleration defined as the 

residuals of DNAm age regressed on chronological age within each cross-sectional time 

point. We computed age acceleration both with and without adjustment for CTH, including 

putative cell type proportions as a covariate in our regression. Because the CTH data 

resulted in a proportioned phenotype which added up to one, we excluded the cell type 

with the lowest amount of variation within our study sample to minimize confounding 
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the results. Age acceleration was computed both with and without adjusting for extreme 

outliers (DNAm age > 3 times the interquartile range), and the results were found to be 

concordant. Therefore, we present only the age acceleration metrics unadjusted for outliers. 

Additional participant factors were not included in our calculation of age acceleration but 

were carefully examined as described below.

Statistical analysis

Statistical analyses were conducted using R (version 3.6.0) [39] and SAS (version 9.4, 

SAS Institute Incorporated, Cary, NC, USA). Demographic and clinical characteristics of 

our sample were examined using standard descriptive statistics. CSF and blood DNAm age 

computed from all three clocks was compared with chronological age using scatterplots and 

Pearson correlations. For participants with both CSF and blood samples, we compared the 

correlation between DNAm age and age acceleration both with and without adjusting for 

CTH using Pearson correlations and heatmaps.

Next, we examined age acceleration over time during recovery from aSAH using GBTA 

implemented with the Proc TRAJ macro in SAS [41, 42]. While there are several methods 

to perform trajectory analyses such as hierarchical modeling or latent curve analysis, these 

methods estimate the sample average trajectory and use covariates to explain the variability 

around this average. In contrast, GBTA assumes the sample is composed of distinct groups, 

each with a different underlying age acceleration trajectory [41, 42]. This method allows 

us to infer trajectory groups based solely on age acceleration while also estimating how 

participant characteristics differ between group membership.

GBTA was performed through iterative modeling, comparing models with varying group 

numbers and shapes (i.e., intercept-only, linear, and quadratic terms) to infer distinct 

trajectory groups. BIC was used as our primary indicator of model fit, with a larger BIC 

indicating a better model fit [41, 42]. Following selection of a best-fitting model, we 

performed a posterior QC check of the model using several model-fit indices including 

ensuring (1) the average posterior probability of group assignment was at least 0.7, (2) the 

odds of correct classification was greater than 5, and (3) the estimated group assignment 

percentages were approximately equal to the observed group assignment percentages [41, 

42].

As described above, chronological age was adjusted for in the calculation of age 

acceleration. Although sex, BMI, smoking status have been shown to be associated with 

DNAm, we did not adjust for additional covariates during GBTA because we wanted 

to use a data-driven approach to characterize and identify trajectory groups based solely 

on age acceleration. However, following the identification of the trajectory groups, we 

used one-way analysis of variance and chi-square/Fisher’s exact tests to understand how 

participant characteristics (e.g., sex, BMI, smoking status, Fisher grade) differed between 

inferred trajectory groups. Finally, we used linear regression to understand the associations 

between participant characteristics and age acceleration metrics independent of trajectory 

groups.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Chronological age versus DNAm age in CSF on days 0 to 14 post-aSAH using the Horvath, 

Hannum, Levine, and Zhang epigenetic clocks. A Horvath. B Hannum. C Levine. D Zhang. 

Sample size, n = 273 at up to 5 time points (N = 850 observations over 14 days post-

aSAH); dashed line, x = y; solid line, predicted model fit. DNAm, DNA methylation; CSF, 

cerebrospinal fluid; aSAH, aneurysmal subarachnoid hemorrhage; R, correlation computed 

using Pearson method
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Fig. 2. 
Chronological age versus DNAm age in the blood at time 1 (days 0 to 2) post-aSAH using 

the Horvath, Hannum, Levine, and Zhang epigenetic clocks. A Horvath. B Hannum. C 
Levine. D Zhang. Sample size, n = 72 with both CSF and blood DNA methylation data at 

cross-sectional time point 1 (days 0 to 2 post-aSAH); dashed line, x = y; solid line, predicted 

model fit. DNAm, DNA methylation; aSAH, aneurysmal subarachnoid hemorrhage; R, 

correlation computed using Pearson method
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Fig. 3. 
DNAm age in CSF versus blood at time 1 (days 0 to 2) post-aSAH using the Horvath, 

Hannum, Levine, and Zhang epigenetic clocks. A Horvath. B Hannum. C Levine. D Zhang. 

Sample size, n = 72 with both CSF and blood DNA methylation data at cross-sectional time 

point 1 (days 0 to 2 post-aSAH); dashed line, x = y; solid line, predicted model fit. DNAm, 

DNA methylation; CSF, cerebrospinal fluid; aSAH, aneurysmal subarachnoid hemorrhage; 

R, correlation computed using Pearson method
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Fig. 4. 
Correlation heatmap of unadjusted and CTH-adjusted age acceleration at time 1 (days 0 to 

2) post-aSAH computed in CSF and blood using the Horvath, Hannum, Levine, and Zhang 

epigenetic clocks. Sample size, n = 72 with both CSF and blood DNA methylation data 

at cross-sectional time point 1 (days 0 to 2 post-aSAH). CSF, cerebrospinal fluid; aSAH, 

aneurysmal subarachnoid hemorrhage; CTH, cell-type heterogeneity. All values presented 

are R values indicating age acceleration correlation computed using Pearson method
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Fig. 5. 
Sina plots of unadjusted and CTH-adjusted age acceleration at time 1 (days 0 to 2) 

post-aSAH computed in CSF and blood using the Horvath, Hannum, Levine, and Zhang 

epigenetic clocks. Sample size, n = 72 with both CSF and blood DNA methylation data 

at cross-sectional time point 1 (days 0 to 2 post-aSAH). CSF, cerebrospinal fluid; aSAH, 

aneurysmal subarachnoid hemorrhage; CTH, cell-type heterogeneity
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Fig. 6. 
Age acceleration trajectory plots for Horvath, Hannum, and Zhang epigenetic clocks. Note 

that the above plots portray inferred trajectory groups and are not directly comparable as 

the group membership changes between plots as shown in Table 2; n = 273 at up to five 

time points (N = 850 observations over 14 days post-aSAH condensed to 5 cross-sectional 

time points); times listed correspond to cross-sectional time points (time 1 [days 0 to 2], 

time 2 [days 3 to 5], time 3 [days 6 to 8], time 4 [days 9 to 11], time 5 [days 12 to 14]); 

95% confidence intervals shown are for estimated trajectories and not observed trajectories. 

CSF, cerebrospinal fluid; CTH, cell-type heterogeneity; aSAH, aneurysmal subarachnoid 

hemorrhage. Note that the Levine trajectory models and Zhang CTH-adjusted model did not 

pass posterior quality control and are presented in the Supplementary Material
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Table 1

Sample characteristics

Variable Overall sample
a
 (n = 273) Sample subset with both CSF and blood (n = 72)

Age, mean (SD) 52.9 (11.1) 53.0 (11.5)

Sex, female, n (%) 187 (68.5) 50 (69.4)

Race, White, n (%) 238 (87.2) 61 (84.7)

Fisher, n (%)

 2 81 (29.7) 20 (27.8)

 3 135 (49.5) 37 (51.4)

 4 57 (20.9) 15 (20.8)

Smoking, n (%)

 No 88 (32.2) 28 (38.8)

 Yes 147 (53.8) 37 (51.4)

 Social 3 (1.1) 2 (2.8)

 Quit 31 (11.4) 3 (4.2)

 Unknown 4 (1.5) 2 (2.8)

BMI, mean (SD) 28.1 (7.2) 28.8 (8.8)

CSF, cerebrospinal fluid; SD, standard deviation; BMI, body mass index

a
All participants in this study had longitudinal CSF samples available over 14 days post-aSAH
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