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Abstract: Undernutrition is associated with gut microbiota unbalance, and probiotics are believed
to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted
to evaluate the efficacy of gummy L. plantarum Dad-13 (108−9 CFU/3 g) to prevent the progression
of severe undernutrition. Two groups of moderate undernutrition infants were involved in this
study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the
product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and
gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of
both groups was recorded using food records. Our results revealed that the probiotic group had
better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum
Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of En-
terobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total
SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic
intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity.
Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.

Keywords: gummy probiotic; L. plantarum Dad-13; moderate undernutrition; gut microbiota modu-
lation; Short-Chain Fatty Acid

1. Introduction

As a developing country, Indonesia is facing a double burden of malnutrition. Accord-
ing to the Indonesia Ministry of Health data, the number of infants with undernutrition
exceeds that of infants with overnutrition [1]. Therefore, the management of undernutri-
tion is prioritized rather than overnutrition. Undernutrition is classified as stunting (low
height-for-age), wasting (low weight-for-age), and underweight (low weight-for-height) [2].
According to the Z-score’s cut-off value, the severity of undernutrition is classified as
moderate (between −2 and −3 SD) and severe (<−3SD) malnutrition [2].

Furthermore, 17.7% of children in Indonesia suffer from wasting, of which 13.8% and
3.9% are moderate and severe, respectively [1]. Children with undernutrition may experi-
ence delayed growth and deficiency in energy, proteins, and micronutrients. They also have
a higher risk of cognitive and motor developmental impairments. In addition, improving
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the health of children under five years old is the golden key to creating remarkable human
resources. Therefore, the consequences of undernutrition incidence are undesirable.

Several published studies have indicated that perturbation of gut microbiota composi-
tion occurs in children with undernutrition [3–6], leading to the malabsorption of nutrients
known as Environmental Enteric Dysfunction (EED) [7,8]. Our recent study showed that
gut microbiota perturbation with Proteobacteria predominance occurred before the children
were classified with severe undernutrition [9]. Children with moderate undernutrition
also exhibit low stool Short-Chain Fatty Acid (SCFA) concentrations compared to normal
children, in which SCFA is a vital regulator to maintain our gut’s health [9]. Therefore,
the strategy to intervene in children with moderate malnutrition is one way to prevent
the progression to severe malnutrition. According to Velly et al. [10], an intervention with
antibiotics, prebiotics, and/or probiotics can restore gut microbiota perturbation toward
normobiosis. However, antibiotics are less concerned due to their broad effect on the gut
microbiota [11].

A probiotic is a living microorganism that, when adequately consumed, promotes
the host’s health [12]. L. plantarum Dad-13 is an indigenous probiotic strain isolated from
spontaneously fermented buffalo milk called “dadih”. This strain is known for its probiotic
properties, such as resistance in gastrointestinal and antibacterial activity [13]. In addition, it
has been assayed for its safety, in which no bacterial translocation occurred in the organs of
the rat model [14]. The ability of probiotics to modulate the immune system and inhibit the
growth of pathogenic bacteria may beneficially improve the anthropometry and nutritional
status of children with undernutrition [15–17]. However, the lack of a gut microbiota
analysis in the previous studies was a limitation. Therefore, to fill this knowledge gap, this
study aimed to evaluate the gut microbiota modulation, anthropometry, and nutritional
status improvement of infants with moderate undernutrition after an intervention with
gummy L. plantarum Dad-13. In this study, gummy was used as a matrix for probiotic cells,
as it can deliver the probiotic cells to pass gastrointestinal simulations [18].

2. Materials and Methods
2.1. Ethical Approval

The research protocol was approved by the Medical and Health Research Ethics
Committee, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(approval date: 6 November 2019; reference number: KE/FK/1303/EC/2019) and was reg-
istered in https://www.thaiclinicaltrials.org/ (TCTR20220209009) (accessed on 9 February
2022) and https://ina-registry.org/ (INA-DC4CNNS) (accessed on 30 December 2021).

2.2. Sample Size Calculation

The sample size calculation followed the hypothesis tests for two population means
(two-sided test) (Equation (1)) according to Lwanga and Lemeshow [19]:

n =
2δ2

(
Z1− α

2
+ Z1−β

)2

(µ1− µ2)2 (1)

where n is the sample size, δ is the standard deviation of the population (assumed to be
0.95), β is the statistical power (assumed to be 10%), µ1 is the mean of the intervention
group’s body weight increment (1.28 ± 0.94 kg; Surono et al. [17]), and µ2 is the mean of
the control group’s body weight increment (0.99 ± 0.99 kg; Surono et al. [17]). The obtained
sample size was then multiplied by the correction factor (lost-to-follow, assumed to be
20%). Therefore, 13 subjects for each group would be needed.

2.3. Research Subjects and Randomization

The research was conducted in Tirtoadi Village, Sleman, Yogyakarta. A list of under-
nourished infants was obtained from public healthcare (Puskesmas Mlati II) and a home
visit survey. They were prescreened according to their location, age, and the presence

https://www.thaiclinicaltrials.org/
https://ina-registry.org/
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of a congenital disease. The infants’ parents or guardians who passed the prescreening
were socialized based on research backgrounds. The parents or guardians who agreed to
participate in the study signed the informed consent and assent forms for further screening.
The inclusion criteria were having a Z-score cut-off between −2 and −3 standard deviation
and not consuming probiotics, prebiotics, or antibiotics a month before the study. The
infants who passed the screening were divided randomly into two groups: placebo and
probiotics. Randomization was performed using Ms. Excel (2016) formulas = RAND() by
an independent technician from the Centre for Food and Nutrition Studies. The research
products were secretly coded for the placebo and probiotic groups. Both researchers and
subjects did not know the product until the technician revealed it at the end of the study.

2.4. Research Product

Skim milk powder containing L. plantarum Dad-13 was used for gummy production
and was produced by the Center for Food and Nutrition Studies, Universitas Gadjah
Mada, according to Kamil et al. [20]. Gummy L. plantarum Dad-13 was produced according
to the previous research by Kamil et al. [18]. The main ingredients consist of bovine
gelatin, sucrose, glucose, water, and skim milk containing L. plantarum Dad-13. The
gummy L. plantarum Dad-13 has viable cells 8.96 × 108–1.16 × 109 CFU/3g. The placebo
product was also produced using the same formula. Instead of using skim milk containing
L. plantarum Dad-13, skim milk powder (Lactona) was used. The gummy probiotic and
placebo gross energy were 286.66 ± 0.88 [18] and 277.56 ± 1.12 kcal/100 g, respectively.

2.5. Research Design

This study was conducted from 21 January to 23 March 2020. A randomized double-
blind controlled trial research design was used in this study for 90 days and was conducted
with a per-protocol analysis approach. However, due to the constraints imposed by the
COVID-19 pandemic, the intervention period was reduced to 50 days. Ten days before
intervention, the subjects were prohibited from consuming prebiotics, probiotics, and
laxatives to acclimate the gut condition. During the investigation, subjects were asked
to consume gummy L. plantarum Dad-13 (3 g) once a day until the end of the study. The
research design can be seen in Figure 1.
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2.6. Research Outcome

During the intervention period, the daily food intake was recorded using a food
record. The stool sample was collected before and after the study (±one day) for the gut
microbiota, SCFA profile, and stool pH analysis. In addition, anthropometric measurement
was conducted before and after the study to evaluate the nutritional status improvement.
The primary outcomes of this research were subjects’ anthropometry and gut microbiota
compositions. Meanwhile, the secondary outcomes were the dietary intake, SCFA profile,
and stool pH.

2.6.1. Anthropometric Measurement

Bodyweight was measured using digital weight scales with the infant wearing a light
cloth and no shoes (accuracy: 0.1 kg). Meanwhile, body height was measured using a
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2-m-long microtoise without shoes (accuracy: 0.1 cm). The nutritional status of the subjects
was calculated using the WHO Anthro 2005 program (https://www.who.int/toolkits/
child-growth-standards/software) (accessed on 30 December 2021).

2.6.2. Dietary Intake Analysis

Dietary intake was analyzed from food records. The type of food and its portion was
input into the Nutrisurvey 2007 program, a nutritional calculation and survey program, an
English version of German commercial software (EBISpro) (http://www.nutrisurvey.de/)
(accessed on 30 December 2021). The nutritional intake was then calculated according to
the Indonesian Food database downloaded on the same website.

2.6.3. Stool Sample Collection and DNA Extraction

During the intervention period, all subjects were asked to record their defecation
time, frequency, and Bristol stool scale. Most subjects had normal Bristol stools (scale: 3
to 4). The stool samples were collected with the help of their parents or guardians. The
subjects were asked to defecate on sterile trail paper while avoiding contamination from
any water sources (urine or toilet water). A fresh stool sample was then scooped into
two sterile container tubes. The first tube contained glass beads and 2 mL of RNA-later
(Sigma-Aldrich; R0901; St. Louis, MO, USA) for the gut microbiota analysis. Meanwhile,
the second tube was an empty tube for SCFA analysis. The collected stool samples were
delivered to the laboratories within an icebox no more than 5 h from the defecation time
and were immediately stored at −40◦C until the analysis day. The Bead-beating method
was used for DNA extraction according to Nakayama et al. [21], with modifications as
previously described by Kamil et al. [9].

2.6.4. DNA Quality Control and Purification for 16S rRNA Sequencing

All the PCR reactions were performed with the Phusion® High-Fidelity PCR Master
Mix (New England Biolabs, Boston, MA, USA). The obtained amplicon was then mixed
with loading buffer (containing SYBR green) at the same volume, followed with 2% agarose
electrophoresis for detection. Samples that had bright main strips ranging from 400 to
450 bp were chosen for further steps. The PCR products at equal density ratios were mixed
and purified with the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).

2.6.5. 16S rRNA Sequencing

The sequencing was conducted only for selected subjects (randomly selected) from
both groups (4 similar subjects for each group). However, one subject from the placebo
group did not pass the DNA quality control (see Supplementary Figures S1 and S2). 16S
rRNA sequencing and data processing were performed by NovogeneAIT (Singapore),
targeting the V3 to V4 variable regions (F (341F): CCTAYGGGRBGCASCAG; R (806R):
GGACTACNNGGGTATCTAAT)). The libraries were generated with the NEBNext® Ul-
traTM DNA Library Prep Kit for Illumina (New England Biolabs, Boston, MA, USA) and
were quantified via Qubit and qPCR. The 250 paired-end sequencing was performed on an
Illumina HiSeq 2500 platform.

2.6.6. Sequencing Data Processing

The raw obtained sequence was merged using FLASH (V1.2.7) [22], followed with
quality filtering according to the Quantitative Insights into Microbial Ecology (QIIME)
(V1.7.0) quality control process [23]. The effective tag (removed chimera) was obtained with
the UCHIME algorithm [24]. Uparse software (v7.0.1001) was used to analyze the effective
tag [25], in which sequences with >97% similarity were assigned to the same OTUs. For
the taxonomic annotation of each OTU representative, Mothur software was performed
against the SSUrRNA database of the SILVA database (threshold: 0.8~1) [26]. Furthermore,
the phylogenetic relationship of all OTUs representatives was obtained with MUSCLE
(V 3.8.31) [27]. OTU abundance information was normalized using a standard sequence
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https://www.who.int/toolkits/child-growth-standards/software
http://www.nutrisurvey.de/


Nutrients 2022, 14, 1049 5 of 19

number corresponding to the sample with the least sequences. Alpha diversity indices (ob-
served species, Chao1, Shannon, and Simpson) were used to analyze the complexity of the
biodiversity. In addition, Beta diversity indices (weight and unweighted unifrac) were used
to analyze species complexity. All these analyses were performed using QIIME (V1.7.0).

2.6.7. qPCR Analysis

The qPCR analysis was conducted to calculate the absolute number (log10 bacterial
cells/g stool) of interest bacteria L. plantarum, Bifidobacterium, and Enterobacteriaceae. Bio-
Rad CFX96 (Bio-Rad, Berkeley, California, CA, USA) was used for qPCR analysis. The
specific primer used for each bacterium can be seen in Table 1.

Table 1. The specific primers used in this study.

Primer 5′–3′ Annealing (◦C) Ref

Bifidobacterium
g-Bifid-F CTCCTGGAAACGGGTGG

g-Bifid-R
GGTGTTCTTCCCGATATCTACA

58.8 [28]

L. plantarum

sg-Lpla-F
CTCTGGTATTGATTGGTGCTTGCAT

sg-Lpla-R
GTTCGCCACTCACTCAAATGTAAA

60 [29]

Enterobacteriaceae

En-lsu-3F
TGCCGTAACTTCGGGAGAAGGCA

En-lsu-3’R
TCAAGGACCAGTGTTCAGTGTC

60 [30]

The sample was prepared by mixing 7-µL ddH2O (Otsu), 10-µL PCR mix (SMO-
BIO (ExcelTaqTM)), 1 µL of each forward and reverse primer, and 1-µL DNA template
(DNA concentration was adjusted to 10 ng/µL). The standard curve was constructed by
amplifying the single strain L. plantarum DNA ranging from 0.0001 to 50 ng/µL.

2.6.8. Stool pH and SCFA Analysis

The calibrated pH meter, pH Spear Eutech (Eutech Instruments, Paisley, United
Kingdom), was directly dipped into the stool sample to measure the pH. Meanwhile, SCFA
quantification was done as previously described by Kamil et al. [9]. In brief, 0.2 g of stool
sample were diluted with 2-mL aquabidest, followed with sonication for 20 min. The
supernatant was injected into GC (Shimadzu GC-2010 Plus) (Shimadzu, Kyoto, Japan) after
centrifuging twice.

2.7. Statistical Analysis

All the processed data were obtained from the infants who finished the study. The
Wilcoxon rank-sum test was performed to analyze the difference between groups (placebo–
probiotic). Meanwhile, the Wilcoxon paired test was performed to analyze the differences
within groups (before–after intervention). A MetaStats analysis was conducted to identify
gut microbiota composition differences via the nonparametric t-test, Fisher’s exact test,
and false discovery rate. All those analyses were performed using R software (V2.15.3).
The Linear Discriminant Analysis Affect Size (LEfSe) was conducted by LEfSe software to
determine the overrepresentation of specific bacteria as biomarkers. Nonmetric Multidi-
mensional Scaling (NMDS) based on Bray–Curtis dissimilarity was used to visualize the
differences in microbial composition. In addition, the permutational multivariate analysis
of variance (PERMANOVA) using Adonis function was used to analyze the significant
differences. The results were considered significant at p < 0.001, p < 0.05, and p < 0.1.



Nutrients 2022, 14, 1049 6 of 19

3. Results
3.1. Demographic Data and Participant Flowchart

Forty infants passed the screening and were allocated for this study (20 infants for each
group). However, only 15 subjects in each group finished the study. Five and four subjects
in the placebo and probiotic groups resigned before the study began. One subject in the
probiotic group did not collect the first stool sample. The subject participation flowchart is
shown in Figure 2, and the subject characteristics are presented in Table 2.
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Table 2. Characteristics of the study subjects.

Placebo
(n: 15)

Probiotic
(n: 15) p

Male 10 (66.67%) 9 (60.00%)
Female 5 (33.33%) 6 (40.00%)

Age (months) 37.80 ± 11.78 37.93 ± 12.98 0.977
Weight (kg) 11.20 ± 1.96 10.84 ± 1.43 0.563
Height (cm) 88.88 ± 8.00 87.06 ± 6.84 0.509

WHZ −1.40 ± 0.61 −1.19 ± 0.87 0.436
WAZ −2.22 ± 0.74 −2.28 ± 0.94 0.838
HAZ −2.21 ± 0.79 −2.55 ± 1.03 0.512

Data are presented as the mean ± SD. Wilcoxon rank-sum test (p < 0.05). WHZ: Weight for Height Z-score; WAZ:
Weight for Age Z-score; HAZ: Height for Age Z-score.
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3.2. Dietary Intake

Table 3 shows the nutrition intake between the two groups before and after the
intervention. There were no significant changes in macronutrient and fiber intake in both
groups. However, in the placebo group, an increment in the intake of vitamins E and C
was observed, as well as a decrement in the vitamin K intake. Meanwhile, an increased
intake of vitamins B1 and C was observed in the probiotic group.

Table 3. Nutrition intake in the placebo and probiotic groups before and after the intervention.

Unit
Placebo

p
Probiotic

p
Before After Before After

Energy kcal 677.13 ± 189.46 653.84 ± 185.74 0.733 681.99 ± 262.33 747.42 ± 263.18 0.427
Protein g 27.58 ± 6.82 26.63 ± 7.79 0.570 27.39 ± 8.21 29.56 ± 10.57 0.670

Fat g 26.13 ± 8.07 25.21 ± 8.38 0.638 26.74 ± 11.97 29.37 ± 12.26 0.320
Carbohydrate g 83.15 ± 28.38 80.05 ± 25.79 0.776 82.93 ± 34.05 91.49 ± 33.36 0.363

Fiber g 3.56 ± 1.73 3.17 ± 1.53 0.197 3.09 ± 1.37 3.13 ± 1.33 0.861
Vit. A µg 386.71 ± 207.88 376.87 ± 140.36 0.955 584.82 ± 401.09 442.17 ± 240.49 0.532
Vit. E mg 2.75 ± 1.40 3.33 ± 1.19 0.094 2.83 ± 1.33 3.43 ± 1.84 0.207
Vit. D µg 2.83 ± 2.26 3.82 ± 2.09 0.152 3.17 ± 2.16 4.15 ± 3.06 0.147
Vit. B1 mg 0.28 ± 0.10 0.28 ± 0.10 0.971 0.25 ± 0.10 0.31 ± 0.14 0.058
Vit. B2 mg 0.50 ± 0.20 0.53 ± 0.18 0.558 0.57 ± 0.23 0.58 ± 0.25 0.969
Vit. B6 mg 0.43 ± 0.14 0.40 ± 0.12 0.371 0.41 ± 0.16 0.43 ± 0.14 0.587
Vit. K µg 5.47 ± 3.76 3.22 ± 3.14 0.050 3.53 ± 1.48 2.71 ± 2.19 0.686

Folic acid µg 75.93 ± 30.71 64.83 ± 20.56 0.211 89.82 ± 36.89 79.85 ± 36.92 0.649
Vit. C mg 19.18 ± 16.25 33.08 ± 19.75 0.009 24.91 ± 19.07 35.46 ± 22.79 0.078

Na mg 245.35 ± 124.63 298.76 ± 165.15 0.363 256.49 ± 110.42 323.35 ± 147.23 0.281
K mg 681.55 ± 341.62 754.07 ± 274.48 0.363 747.73 ± 360.18 859.49 ± 411.01 0.460
Ca mg 291.37 ± 251.24 379.77 ± 212.47 0.140 340.08 ± 246.67 443.14 ± 315.65 0.281
Mg mg 96.25 ± 32.86 92.79 ± 30.55 0.460 93.69 ± 36.68 99.03 ± 37.24 0.460
P mg 432.19 ± 180.76 471.27 ± 169.25 0.427 437.97 ± 188.58 515.21 ± 254.79 0.307
Fe mg 5.29 ± 3.00 5.61 ± 2.54 0.670 6.52 ± 3.65 6.24 ± 3.49 0.615
Zn mg 3.47 ± 1.08 3.35 ± 1.07 0.801 3.39 ± 1.17 3.77 ± 1.49 0.460

Data are presented as the mean ± SD. Wilcoxon paired test (p < 0.05 and p < 0.1).

3.3. The Changes in Anthropometry and Nutritional Status

The changes in the anthropometry and nutritional status in both groups can be seen
in Table 4. The weight and height in both groups increased significantly (p < 0.001).
However, the increment of body weight in the probiotic group was higher than that in the
placebo group, even though not significant when compared with the placebo group. An
improvement in nutritional status was also observed in each group, but only the probiotic
group had a significant improvement in all nutritional status categories (p < 0.05 and
p < 0.1). Meanwhile, a significant improvement was only observed in the WAZ parameter
for the placebo group (p < 0.05). Although nutritional status improvement was observed in
the probiotic group, they were still categorized as having moderate malnutrition.

3.4. The Changes of Gut Microbiota Taxonomic between Groups

The 16S rRNA sequencing, targeting the V3 to V4 regions, produced a total high-quality
read number of 1,512,897 (108,064.1± 25,956.43) and a total OTUs of 13,314 (951 ± 277.647).
The taxonomy (top 10 relative abundance) of each group can be seen in Figure 3. Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria were observed as the most dominant
phylum in both groups. Furthermore, the major genus detected in both groups was
Prevotella_9.
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Table 4. Anthropometry and nutritional status of the placebo and probiotic groups before and after
the intervention.

Parameter Group Before After p Increment p

Weight (kg) Placebo 11.20 ± 1.96 11.59 ± 1.96 0.000 0.39 ± 0.30
0.109Probiotic 10.84 ± 1.43 11.43 ± 1.38 0.000 0.59 ± 0.36

Height (cm) Placebo 88.88 ± 8.00 90.17 ± 8.25 0.000 1.29 ± 0.68
0.980Probiotic 87.06 ± 6.84 88.35 ± 6.67 0.000 1.29 ± 0.75

WHZ
Placebo −1.40 ± 0.61 −1.30 ± 0.74 0.140 0.11 ± 0.39

0.187Probiotic −1.19 ± 0.87 −0.90 ± 0.76 0.022 0.30 ± 0.48

WAZ
Placebo −2.22 ± 0.74 −2.04 ± 0.78 0.012 0.18 ± 0.24

0.187Probiotic −2.28 ± 0.94 −2.01 ± 0.76 0.080 0.27 ± 0.30

HAZ
Placebo −2.21 ± 0.79 −2.04 ± 0.74 0.256 0.17 ± 0.27

0.806Probiotic −2.55 ± 1.03 −2.35 ± 1.03 0.015 0.20 ± 0.26

Data are presented as the mean ± SD. Wilcoxon rank-sum test, Wilcoxon paired test (p < 0.05 and p < 0.1). WHZ:
Weight for Height Z-score; WAZ: Weight for Age Z-score; HAZ: Height for Age Z-score.
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The figure shows that there is no significant effect of the placebo and probiotics at
the phylum level. However, the intervention of probiotic L. plantarum Dad-13 tends to
increase the number of the Firmicutes phylum (40.17–53.67%). In contrast, an expressive
increment of the Bacteroidetes phylum was observed in the placebo group (30.51–47.36%).
These relative abundance changes of the Firmicutes (p: 0.011) and Bacteroidetes (p: 0.005)
phyla were significantly different if compared between groups according to the MetaStats
analysis (see Supplementary Table S1).

The significant effect of the probiotic intervention was observed at the genus level,
in which there was an increase of Faecalibacterium (9.71–15.34%; p: 0.029) and a decrease
of Agathobacter (5.10–2.54%; p: 0.012) belonging to the Firmicutes phylum. The relative
abundance change of Faecalibacterium in the probiotic group was significantly different
from that of the placebo group (15.34% vs. 7.19%; p: 0.007) or was 2.13 times higher. In
addition, Prevotella_9 belonging to the Bacteroidetes phylum decreased twice (29.82% and
14.51%; p: 0.009) and was significantly lower than in the placebo (14.51% vs. 33.72%;
p: 0.036). Other significant changes of a nondominant phylum and genus can be seen
in Supplementary Tables S1 and S2. The elevation of the genus-related Firmicutes phy-
lum was also observed in the probiotics group, which were Clostridium_sensu_stricto_1,
Subdoligranulum, [Eubacterium]_hallii_group, [Eubacterium]_corprostanoligenes_group, Lach-
nospiraceae_NK4A136_group, Blautia, and Ruminococcus_2 (Figure 4). Collinsella, belonging
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to the Actinobacteria phylum, was also perceived for its increment after the probiotic
intervention.
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3.5. The Changes in Gut Microbiota Diversity and Composition

Alpha diversity reflects the gut microbiota richness, represented as observed species,
and Chao1, Simpson, and Shannon indices, as shown in Figure 5A–D. Even though gut
microbiota taxonomy changes were observed in the probiotic group, there were no sig-
nificant changes in alpha diversity as calculated using the Wilcoxon and Tukey tests in
all the indices (p < 0.05). Furthermore, beta diversity reflects the gut microbiota variation,
which is calculated using weighted and unweighted unifrac. The weighted unifrac was
determined based on the OTU abundance, and the unweighted unifrac was based on the
phylogenetic relationship of the OTU. After 50 days of intervention, there was no signif-
icant difference between the placebo and probiotic groups regarding both beta diversity
parameters (Figure 6A,B). It indicates that both groups’ gut microbiota community compo-
sition and relative abundance were not affected by the placebo or probiotic intervention, as
statistically calculated using the Wilcoxon and Tukey tests (p < 0.05).
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ProbPre.

NMDS is a ranking method applicable to ecological studies. According to the given
treatment (placebo and probiotic), it involves grouping the subject’s gut microbiota compo-
sition. The stress factor of NMDS was 0.065, which ensures the NMDS reliability result. As
shown in Figure 7, the baseline in both groups was gathered closely on the negative axis
of MDS1. In contrast, after the intervention of the placebo and probiotic, it was separated
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from the baseline on the positive axis of MDS1. In addition, according to the PERMANOVA
(Adonis) analysis, an analysis of the grouping factor, and significance estimation based
on a permutational test, a significant difference was detected between the placebo and
probiotic groups after 50 days of intervention (p: 0.001) (Table 5). It indicates that pro-
biotic intervention contributes to the changes in gut microbiota taxonomy in moderate
undernourished infants.
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Table 5. PERMANOVA analysis based on Bray−Curtis dissimilarity between the placebo and
probiotic groups.

vs. Group R2 p

PlcbPre–ProbPre 0.1519 0.646
PlcbPost–ProbPost 0.33456 0.001
PlcbPre–PlcbPost 0.21162 0.500
ProbPre–ProbPost 0.19063 0.265

R2: Grouping factor based on differences of the samples calculated from the ratios of grouping variance and total
variance.

3.6. Gut Microbiota Biomarker Identification

The LEfSe analysis was usually performed to determine the overrepresentation of
specific bacteria in ecosystems as biomarkers [31]. This analysis emphasizes the statistical
significance, biological relevance, and effect correlation. The results are shown as LDA
scores and a cladogram (Figure 8A,B). The LDA score threshold was 4, and the length of
each box represents the effect size. In addition, in the cladogram, the circle from inside to
outside shows the phylum level of the genus. As indicated by the PERMANOVA analysis, a
significant difference was only observed in both placebo and probiotic groups after 50 days
of intervention, as shown from the LEfSe results.
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Figure 8. LEfSe analysis identified gut microbiota biomarkers between the placebo and probiotic
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As shown in Figure 8A,B, after 50 days of placebo intervention, only one genus was
overrepresented, which was Prevotella_2 (LDA score: 4.606; p: 0.034). In contrast, five genus
overrepresentations were found in the probiotic group after 50 days of intervention, which
were Collinsella (LDA score: 4.437; p: 0.034), belonging to the Actinobacteria phylum, and
Faecalibacterium (LDA score: 4.587; p: 0.034), Catenibacterium (LDA score: 4.29; p: 0.032),
Subdoligranulum (LDA score: 4.212; p: 0.034), and Streptococcus (LDA score: 4.261; p: 0.034),
belonging to the Firmicutes phylum.

3.7. Specific Bacterial Quantification

L. plantarum, Bifidobacterium, and Enterobacteriaceae were selected as bacteria of
interest, and their numbers were determined by qPCR analysis (Table 6). The quantification
of L. plantarum aimed to evaluate its resistance in the gastrointestinal tract. Furthermore,
according to our previous research, Bifidobacterium was found to be high in normal body
weight infants [9]. In addition, Enterobacteriaceae represents potentially pathogenic bacte-
ria. Table 6 shows the number of specific bacteria.

Table 6. The number of specific bacteria analyzed by qPCR.

Group
Log 10 Bacterial Cells/g Feces

p
Before After

L. plantarum Placebo 4.89 ± 0.32 4.89 ± 0.54 0.887
Probiotic 4.85 ± 0.30 5.53 ± 0.79 0.027

Bifidobacterium Placebo 6.24 ± 1.54 6.07 ± 0.84 0.087
Probiotic 6.24 ± 1.21 6.50 ± 0.93 0.776

Enterobacteriaceae
Placebo 6.55 ± 0.68 6.28 ± 0.56 0.221

Probiotic 6.27 ± 0.67 5.80 ± 0.76 0.027
Data are presented as the mean ± SD. Wilcoxon paired test (p < 0.05 and p < 0.1).

There were no significant changes in the number of L. plantarum and Enterobacteriaceae
in the placebo group. However, the number of Bifidobacterium tended to decrease. In
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contrast, an expressive increment of L. plantarum and decrement of Enterobacteriaceae
in the probiotic group were observed. However, there was no significant change in the
number of Bifidobacterium.

3.8. SCFA Concentration and Stool pH

Table 7 shows the SCFA concentration and stool pH between the groups. A notable
difference was observed in the probiotic group, mainly the elevation of total SCFA, propi-
onic, and butyric acid concentrations after 50 days of intervention. In addition, a significant
reduction of butyric acid was observed in the placebo group. However, the changes in
SCFA concentration in both groups did not alter the stool pH significantly.

Table 7. The changes of the SCFA concentration and stool pH between the groups after the intervention.

SCFA (mmol/g Feces)

Group Before After p

Total SCFA
Placebo 35.83 ± 17.22 29.28 ± 15.26 0.185

Probiotic 23.55 ± 9.03 33.78 ± 14.16 0.024

Acetic acid
Placebo 21.77 ± 12.07 17.41 ± 9.79 0.194

Probiotic 15.28 ± 7.61 19.40 ± 7.63 0.156

Propionic acid Placebo 6.57 ± 3.75 6.92 ± 4.70 0.930
Probiotic 4.43 ± 2.46 6.89 ± 3.95 0.053

Butyric acid Placebo 5.04 ± 2.64 3.56 ± 2.32 0.023
Probiotic 2.62 ± 1.59 4.67 ± 2.95 0.017

Stool pH

Group Before After p

pH Placebo 6.23 ± 0.29 6.29 ± 0.35 0.607
Probiotic 6.28 ± 0.28 6.10 ± 0.46 0.185

Total SCFA was the sum of acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, and iso-caproic acid. Data
are presented as the mean ± SD. Wilcoxon paired test (p < 0.05 and p < 0.1).

4. Discussion

The restoration of the gut microbiota balance is the target for malnutrition treatment,
since gut microbiota perturbation has been described in several studies [3–6]. Probiotic
intervention is one of the alternatives. In this randomized double-blind controlled trial,
L. plantarum Dad-13 was used and incorporated into gummy candy as a carrier. In addition,
all the subjects were moderately stunted and wasted. Both groups had an insufficient
intake of macronutrients (<70% RDA), especially energy, carbohydrate, and fat, whereas,
according to the Indonesian RDA, the recommended intake of energy, carbohydrate, and
fat for infants was 1350 (kcal), 215 (g), and 45 (g), respectively. In addition, the fiber intake
in both groups was also less than 70% RDA, which was 19 (g).

Even though the change of macronutrient intake in both groups was not significant, it
tended to decrease and increase in the placebo and probiotic groups, respectively, which
may affect the improvement of the anthropometry and nutritional status in the probiotic
group. Research by Anukam et al. [32] suggested that probiotic intervention increases the
appetite in rat models, supported by the study by Kazemi et al. [33] in which probiotic
intervention also increased the energy intake in patients with depressive disorder. How-
ever, the relation between probiotic intervention and appetite or energy intake may differ
depending on the subject’s physiology [33].

A review by Harahap and Suliburska [34] suggested that probiotic intervention may
improve bone health, even though the paradoxical results and the mechanisms remain
unclear. Besides that, the placebo group had a decrement intake of vitamin K. Vitamin K
is essential for growth and mainly helps bone development (ossification), maintains bone
density, and prevents the occurrence of osteoporosis. On the other hand, the probiotics
group had an increment intake of vitamins B1 and C, which regulate growth and body
metabolism [35,36]. Vitamin C also helps the absorption of iron that plays a role in bone
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development. Therefore, the improvement of the anthropometry and nutritional status in
the probiotic group may be affected by the micronutrient intake.

The improvement of the anthropometry and nutritional status in the probiotic group
aligns with a previous study by Surono et al. [17], although a different probiotic species and
strain was used. The beneficial effect of probiotics to modulate the gut microbiota balance
is by promoting the growth of beneficial bacteria that normally inhabits the intestine [37].
In this study, gut microbiota modulation tended to occur at the genus rather than at the
phylum level. However, modulation did not commute the gut microbiota diversity and
composition. This result aligns with the research by Gargari et al. [38], in which the
alteration of alpha and beta diversity was not observed after a Bifidobacterium bifidum
intervention in healthy adults. This result is probably due to the enormous size of the
overall gut microbiota compared to the administered probiotics. In contrast, a study by
Li et al. [39] indicated that a combination of L. plantarum LK006, Bifidobacterium longum
LK014, and B. bifidum LK012p significantly reduced the alpha diversity indices (ACE,
Chao1, Shannon, and Simpson) after 28 days of intervention in very low birth weight
infants. The authors considered that the depletion of harmful bacteria, especially those
belonging to the Proteobacteria phylum, affect the alpha diversity, whereas this was not
observed in this study.

Cumulating data suggest that undernourished infants have a high relative abundance
of Proteobacteria [3–6]. In addition, our recent research indicates that normal infants have
a high relative abundance of Actinobacteria and Bacteroidetes and a low abundance of
Proteobacteria [9]. The intervention of L. plantarum Dad-13 in moderately undernourished
infants seemed not to have ameliorated the phylum level, as in normal infants. However, the
administration of L. plantarum Dad-13 modulates the increase of the beneficial genus-related
Firmicutes phylum. The elevation of the genus-related Firmicutes phylum was also ob-
served in the study by Li et al. [39] and Castro-Mejía et al. [40] after administering probiotics.
In addition, several genera belonging to the Firmicutes phylum have the ability to produce
butyric acid, especially Faecalibacterium, Roseburia, Butyrivibrio, Anaerostipes, Coprococcus,
Oscillospira, Catenibacterium, Eubacterium, Ruminococcus, Clostridium, and Blautia [41–44].

The gut microbiota modulation in the probiotics group was distinguishable from
that in the placebo group, as indicated by the PERMANOVA result. It suggests that the
probiotic treatment has a significant effect compared to the placebo on gut microbiota
composition. In addition, the LEfSe analysis identified the overrepresented bacteria that
distinguishes between the probiotic and placebo groups after the intervention. In the
probiotics group, Faecalibacterium, Catenibacterium, Subdoligranulum, Streptococcus, and
Collinsella were identified. Faecalibaterium is one of the genera that was identified as high in
normal infants [10]. It is also known as the human source probiotic candidate, especially
Faecalibacterium prausnitzii [45]. Several studies also mentioned its anti-inflammatory and
immunomodulatory properties [41,46]. In addition, Catenibacterium is an obligate anaerobe
bacterium that can produce not only butyric acid but also acetic, lactic, and iso-butyric
acid [43]. This bacterium was also depleted in moderate acute malnutrition, especially
Catenibacterium mitsuokai [5]. Our previous research also revealed that Catenibacterium was
high in normal infants [9]. Subdoligranulum is also one of the butyric acid producers [44]
that is less identified in Crohn’s disease cases [47].

On the other hand, Streptococcus has the ability to act as a probiotic, such as Strepto-
coccus thermophilus [48]. It also exhibits immunomodulatory properties [49]. Even though
Collinsella belongs to Actinobacteria, it also produces butyric acid [42] and is found high in
normal infants [9]. In contrast, in the placebo group, Prevotella_2 was identified. Prevotella is
commonly found in the human intestine, especially in Indonesia, indicating the enterotype
(P-type) [50,51]. In addition, the enrichment of Prevotella stercorea and Prevotella copri was
associated with stunting incidence in a longitudinal birth cohort study in India [52].

To emphasize that gut microbiota modulation is affected by the probiotic intervention,
we evaluated the number of specific bacteria. The increment in the number L. plantarum in
the probiotic group indicated that L. plantarum Dad-13 could survive in the gastrointestinal
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tract, as described in other studies [13,53]. According to Velly et al. [10], undernourished
infants lack beneficial bacteria such as Bifidobacterium and have an increase in potentially
pathogenic bacteria (i.e., Enterobacteriaceae). In addition, probiotics intervention exhibits
beneficial effects, promoting the number of beneficial bacteria and inhibiting pathogenic
bacteria [41]. L. plantarum Dad-13 administration was able to inhibit Enterobacteriaceae
growth. This result aligns with the study by Rahayu et al. [54]. Even though there was no
significant effect on the number of Bifidobacterium, L. plantarum Dad-13 was able to promote
butyric acid bacteria, as shown in the 16S rRNA sequencing results.

According to the investigation by Pekmez et al. [55], the SCFA concentration in infants
with severe acute undernutrition was low, especially propionic and butyric acid. Thus, it
is also observed in moderate undernutrition [9]. Additionally, during recovery, the SCFA
concentration increases, along with the fecal bacterial number [55]. In parallel with the
enrichment of the butyric acid producer, an elevation of total SCFA, propionic, and butyric
acid in the probiotic group was observed after 50 days of intervention. Faecalibacterium,
Catenibacterium, Subdoligranulum, and Collinsella have activity of acetyl-CoA acetyltrans-
ferase, acetyl/propionyl-CoA carboxylase, and butanol dehydrogenase, which contribute
to butyric acid production [44]. In addition, Subdoligranulum exhibits glutaconyl-CoA
decarboxylase activity, which is involved in butyric acid production from glutarate [44]. In
contrast, in the placebo group, butyric acid was decreased. This indicates that there was
no improvement in the gut environment of the placebo group, and also, the potentially
pathogenic bacteria, Enterobacteriaceae, was highly found. Moreover, fiber intake as a
substrate for producing SCFA was also decreased in the placebo group. According to
Li et al. [56], organic acid production in the intestine affects the stool pH. In the probiotic
group, the stool pH tends to be more acidic after 50 days of intervention. The acidification
of the gut environment increases the bioavailability of Mg, Fe, and Ca [57].

It is suggested that SCFA, a product from the bacterial fermentation of nondigestible
carbohydrates, is able to alter the energy metabolism and inhibit the pathogens and the adi-
pogenesis process [55]. On the surface of intestinal epithelia are embedded SCFA-dependent
receptors, which are free fatty acid receptor 3 (FFAR3/GPR41) and FFAR2 (GPR43). Notably,
these receptors can also be found in white adipose tissue, skeletal muscle, and the liver [58].
It implies that SCFA might influence the substrate and energy metabolism in peripheral
tissue. Furthermore, the activation of GPR41/43 maintains energy homeostasis through
intestinal gluconeogenesis and ameliorates insulin sensitivity. According to Soty et al. [59],
in malnutrition or low enteral intake, intestinal gluconeogenesis occurs approximately 20%
higher than in the normal condition, which is only 5–7%. Therefore, the increment of SCFA,
mainly propionic and butyric acid, acts as a substrate for gluconeogenesis.

Moreover, butyric acid activates peroxisome proliferator-activated receptor gamma
(PPR,) to maintain the hypoxia state of the intestine. The activation of PPR, manages
colonocyte metabolism with regard to mitochondrial β-oxidation of fatty acids [60]. This
mechanism suppresses the growth of facultative anaerobe pathogenic bacteria. It is also
known that SCFA is involved in adipogenesis [61]. Butyric acid improved the activity
of SREBP-1c (Streol Regulatory Element-Binding Protein 1c), which is a key regulator of
adipogenesis. It also activates receptors in the stage of differentiation of adipogenesis,
which are PPARγ, C/EBPα, and C/EBPβ. These explain the possible mechanisms of body
weight increment after the probiotic intervention. In addition, L. plantarum Dad-13 has
been proven to have the ability to produce folic acid, which is an essential micronutrient
for growth [62].

Even though the intervention of gummy L. plantarum Dad-13 shows positive results,
mainly in modulating butyric acid-producing bacteria, the low sample size and short
intervention time were limitations of this study. The confounding factors such as physical
activity, food availability, and supplement consumption may also affect the results. The
use of the per-protocol analysis approach also led to bias, in which the analysis was only
conducted for subjects who finished the research. In addition, in this study, the mechanism
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by which SCFA played the suggested role remains unclear. Hence, future validation studies
are needed.

5. Conclusions

In conclusion, a 50-day intervention with gummy L. plantarum Dad-13 modulated
the gut microbiota composition. It helped to improve the anthropometry and nutritional
status of moderately undernourished infants. Gut microbiota modulation occurs at the
genus level, and it mainly promotes the growth of butyric acid producer bacteria. Thus,
it aligns with the increment of total SCFA, propionic, and butyric acid. The increment of
the SCFA profile is suggested to be beneficial for energy balance, pathogen inhibition, and
adipogenesis. Therefore, L. plantarum Dad-13 has the potential to prevent the progression
of severe undernutrition in infants.
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Probiotic group.
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