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High density lipoprotein (HDL) cholesterol has beneficial effects
beyond its atheroprotective function in reverse cholesterol
transport, including cardioprotection against ischemia reper-
fusion (IR) injuries. Two major constituents of HDL, namely the
structural protein apolipoprotein AI (apoAI) and the sphingo-
lipid sphingosine-1-phosphate (S1P) appear to contribute
to this cardioprotective effect via the activation of intrinsic
prosurvival signaling pathways that still remain to be clarified.
Recently, a powerful prosurvival signaling pathway, termed

the survivor activating factor enhancement (SAFE) pathway,
which involves the activation of signal transducer and activa-
tor of transcription 3 (STAT3) and tumor necrosis factor a
(TNF), has been shown to protect against ischemia-reperfusion
injuries.
The present review summarizes the evidence for the roles of

HDL and S1P in cardioprotection and discusses the signaling
pathways that have been implicated. It thus provides support
for our contention that S1P should be considered in potential
formulations of reconstituted HDL (reHDL) that may be tested
for cardioprotection against coronary artery disease via the
activation of the SAFE pathway.

Introduction

Cardiovascular disease (CVD) is projected to be the leading cause
of worldwide mortality by 2020, with patients mainly affected by
ischemic heart disease.1,2

High density lipoprotein (HDL) is one of the three principal
serum macromolecular protein-lipid complexes. Its quantitatively
major components are phospholipids, cholesterol and the struc-
tural peptide, apolipoprotein (apo) AI, but there are numerous
other lipids and peptides associated with the lipoprotein. Albeit
of minor concentration, the latter appear to contribute to the
functioning of HDL [a prime example being sphinogosine-1-
phosphate (S1P), the focus of this review]. As HDL exist as
discrete spherical particles, the heterogeneous distribution of
these minor lipid and peptide components across the particles
is suggested to underlie functional heterogeneity between the

particles. For several decades, the principal clinical and vascular
interest of HDL has been their well-established strong negative
correlation with risk of atherosclerotic disease.3 It is thought to
reflect their ability to remove cholesterol from the blood vessel
wall and transport it to the liver for biliary excretion. With the
growing realization of the compositional heterogeneity of HDL
allied to demonstrations of other, beneficial influences on the
vasculature [anti-apoptotic, anti-inflammatory, anti-oxidant, anti-
thrombotic, protection against ischemia reperfusion injury (IR)4],
it is presently thought that the lipoprotein plays a much more
extensive role in cardioprotection.

New mechanisms involved in HDL-induced cardioprotection
are presently a subject of particular interest, with recent studies
suggesting that HDL are capable of influencing a number of
intracellular prosurvival signaling pathways. Recently, a powerful
prosurvival signaling pathway, named as the survivor activating
factor enhancement (SAFE) pathway, has been demonstrated to
protect the heart against stress situations.5 This pathway involves
the activation of cytokine tumor necrosis factor a (TNF) and the
transcription factor signal transducer and activator of transcrip-
tion 3 (STAT3).6 The SAFE path was initially discovered as a
protective signaling pathway activated by ischemic pre- and
post-conditioning.7,8 Recent data strongly suggest that HDL,
principally the constituent S1P, protect against injury during IR
via the activation of the SAFE pathway.

The present review looks at the cardioprotective role of
HDL with specific attention to its protective role against IR
injury. The delineation of the main constituents of HDL
involved in this effect (with particular emphasis on S1P) and
the understanding of the prosurvival signaling pathways (in
particular the SAFE pathway) activated by HDL and S1P may
lead to the development of reconstituted HDL (reHDL) of
defined composition as a novel therapy against ischemic heart
disease.

HDL and Cardioprotection

The beneficial effect of HDL on IR was first reported in an
isolated rat heart model where treatment with HDL, given during
the ischemic period, reduced post-ischemic arrhythmias.9

Similarly, HDL perfused for 10 min immediately before the
ischemic period improved left ventricular developed pressure
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(LVDP), decreased the coronary perfusion pressure (CPP) and
creatine kinase (CK) release, concomitant with a decrease of the
myocardial content of TNF and an increase in prostaglandins.10

In isolated cardiomyocytes, HDL limited the apoptosis of
hypoxia-reoxygenation11 and doxorubicin-induced cardiotoxi-
city.12 HDL, given in vivo prior to the ischemic insult, improved
the perfusion and reduced infarct size, neutrophil infiltration
and apoptosis.13,14 In humans, HDL reduced the risk and extent
of percutaneous coronary intervention (PCI)-related myocardial
infarction and improved long-term outcome in patients under-
going elective PCI.15

Role of S1P and ApoA1
in HDL-Induced Cardioprotection

The complex role of HDL mirrors the complexity of its
composition.4,16 Different components of HDL, including the
structural peptide apoAI and the lipid component S1P, are
thought to act as key players in HDL-induced cardioprotection4,17

after binding to their specific cell surface receptors, namely the
receptor scavenger receptor B1 (apoAI) and the S1P receptor
family (S1PR).

ApoAI and cardioprotection against IR. Several studies have
reported that treatment with reHDL containing apoAI, apoAI
Milano or apoAI mimetic protects the heart against IR injury.18-21

Perfusion of reHDL containing apoAI protects the isolated
rat heart subjected to an IR insult, with a beneficial effect on
myocardial function comparable to that of human HDL (increase
in LVDP, decrease in CPP and CK release and modulation of
TNF and prostaglandin release).18 Of note, post-ischemic treat-
ment with reHDL containing apoAI showed lesser improvement
in cardiac function than pre-ischemic treatment. This cardiopro-
tective effect of apoAI was confirmed with reHDL containing
apoAI mimetic peptide in both isolated rat and rabbit heart
models of IR injury.19,21 In vivo, treatment with reHDL weekly
for 4 weeks after permanent ligation of the left coronary artery
prevented left ventricular remodeling and improved myocardial
function after myocardial infarction.22 In addition to the pro-
tection of myocardial function, treatment with apoAI and apoAI
mimetic peptide was associated with a reduction of the endo-
thelial inflammatory response.21,23

An antiarrhythmogenic effect during IR was observed with
reHDL in vivo, whereas apoAI alone did not significantly reduce
the duration of ventricular tachycardia and ventricular fibrilla-
tion at reperfusion.24 This protective effect was inhibited by
specific inhibitors of Akt, nitric oxide (NO) or extracellular signal-
regulated kinase 1/2 (ERK1/2).24

The use of reHDL containing apoAI (15–80 mg/kg, but
principally 80 mg/kg) has been extended to humans in limited
pilot studies. Improvement in atherogenic parameters was
observed. Thus, infusion of reHDL for a 5 week period provoked
a change in atherosclerotic plaque morphology and/or reduction
of plaque volume, as analyzed by intravascular ultrasound.25,26

A single injection of reHDL reduced the lipid content of the
plaque after one week only, therefore suggesting that even a short
treatment period with apoAI may improve plaque composition to

limit plaque rupture and cardiovascular events.27 In addition to
the direct effect of reHDL on the atherosclerotic plaque, an anti-
inflammatory action was observed in diabetic patients.28

In patients with acute coronary syndrome, a single injection
of reHDL (80 mg/kg) improved the blood lipid profile (increase
in HDL and decrease in low density lipoprotein level), but failed
to improve vascular function.29 However, the composition of
reHDL was limited to apoAI alone; addition of S1P to reHDL
may have enhanced a cardioprotective effect in these patients.

S1P and cardioprotection against IR. HDL acts as a major
carrier for S1P in the plasma.30 This sphingolipid is particularly
present in the subpopulation of HDL type 3 with a density
between 1.12–1.21 g/ml.31 Recent data suggest that another
HDL component, apolipoprotein M (ApoM), may regulate the
content and the metabolism of S1P in HDL. Hence, the level of
circulating S1P is strongly reduced in ApoM knockout mice
and increased in ApoM overexpressing mice.32 Of note, S1P and
apoM levels were significantly reduced in heterozygous carriers
of mutations that lower HDL levels, but S1P and apoM levels
were not affected in heterozygous carriers of mutations that
increase HDL levels.33 Further investigations are required for the
delineation of the exact impact of apoM on S1P metabolism in
HDL particles.

The cardioprotective effect of S1P has been extensively studied
over the last decade with the delineation of a cardioprotective
role against IR for both extracellular and intracellular S1P.
Extracellular S1P actions are mediated via five receptor subtypes
(S1PR1–5) that belong to the family of G protein-coupled
receptors. Only three are expressed in the heart (S1PR1–3).17,34

Although these receptors stimulate some pathways in common,
they are not redundant.

Pre-incubation with S1P before an IR insult significantly
reduced the infarct size of both in vitro and in vivo models.35-38

Similar findings were reported when S1P was given at the onset of
reperfusion.39

The receptor subtypes S1P1 and S1P3 are thought to be
involved in the protective effect of S1P as VPC23019 (S1P1
and S1P3 antagonist) abolished the protection with S1P.39

Surprisingly, infarct size induced by myocardial IR in vivo is
not affected in S1P2 knockout mice or S1P3 knockout mice, but
the infarct size doubles in S1P2 and S1P3 double receptor
knockout mice.40

Intracellular S1P formation is mediated via two isoforms of
sphingosine kinase (SK): SK1 and SK2. Of note, the intracellular
formation of S1P may play a crucial role as a mediator of pro-
survival signaling events. Both SK1 and SK2 seem to be required
for cardioprotection by ischemic pre- and post-conditioning and
infarct size is increased in SK2-deficient mice subjected to IR
compared with their littermate controls.38,41-43 Correspondingly,
activation of SK with the ganglioside GM-1 in mice enhanced
cardioprotection against IR.38

There is some data from animal and human studies to suggest
that S1P plays a role in the cardioprotective effect of HDL.
Hence, HDL fails to protect in S1PR3-deficient mice subjected
to left coronary artery ligation.13 In isolated cardiomyocytes, the
actions of S1P receptor inhibitors indicate that protection of HDL

SPECIAL FOCUS REVIEW: JAK-STAT SIGNALING IN THE MYOCARDIUM

www.landesbioscience.com JAK-STAT 93



against simulated oxidative injury is dependent on both S1PR1
and S1PR3.11 Similarly, HDL protects against apoptosis induced
by doxorubicin via S1PR2.12 Compatible with these observations,
an alteration of both S1P and HDL levels in plasma is observed
in patients with coronary artery disease.15

In order to evaluate the precise role of apoAI and S1P in the
protective effects of HDL, we used reHDL containing only apoAI
or apoAI supplemented with S1P. Our data demonstrate that
S1P is essential to protect against the cardiotoxic effects of
doxorubicin in vitro.12 In agreement with these data we have
also recently observed that addition of S1P to classical reHDL
(containing apoAI) improves the protection against ischemia
reperfusion injury in a murine isolated heart model.44 Moreover,
the cardioprotective capacity of reHDL containing both apoAI
and S1P is comparable to that of native HDL.

HDL/S1P and Cell Survival Signaling

The direct actions of HDL on the signaling pathways in cardiac
cells have been poorly investigated. One study showed that HDL
protects cultured cardiomyocytes against hypoxia-reoxygenation
damage via the activation of ERK1/2 and Akt.11 This protective
effect occurred via S1PR1 and S1PR3, which are involved in
the activation of ERK1/2 and Akt, respectively. No role was
attributed to S1PR2 but this was not investigated.11 In neonatal
cardiomyocytes, we have shown that HDL and S1P prevent

apoptosis induced by doxorubicin via S1PR2 and subsequent
activation of ERK1/2 and STAT3; p38 MAPK was not involved
(Fig. 1).12 In neonatal cardiomyocytes, both HDL and S1P can
induce the phosphorylation of connexin 43 (Cx43) via the protein
kinase C (PKC), both being key players in cardioprotection.45

In cardiac cells, S1P induces the phosphorylation of Akt and
Bcl-2-associated death promoter (BAD) which are essential for
its ability to enhance survival during hypoxia/reoxygenation in
adult mouse cardiac myocytes.35 In neonatal rat cardiomyocytes,
S1P and the SK activator GM-1 protects against hypoxia-
associated cell death, whereas dimethylsphingosine, an inhibitor
of sphingosine kinase (SK), enhanced cell death.46 Similarly S1P
and GM-1 induce protection against ischemia-induced cardiac
damage in mice. Protection is absent in the hearts of PKC-ε
knockout mice.38 In the murine heart, Jin and colleagues also
showed that PKC-ε is recruited by ischemic preconditioning with
subsequent activation of SK1 that mediates cardioprotective
effects.43

In endothelial cells, HDL suppresses apoptosis. This protection
is mediated via S1P3 and subsequent activation of intracellular
signaling pathways involving ERK1/2, Akt and eNOS.47,48

Interestingly, ERK1/2 and Akt are both required for eNOS
upregulation, mediated via S1P3.49 Phosphorylation induces the
release of NO, which leads to vasodilation and protection of
the endothelium. Interestingly, one of the first applications of
reHDL containing S1P showed activation of ERK1/2 via S1P2

Figure 1. HDL and S1P induce ERK1/2 and STAT3 phosphorylation (serine 727 and tyrosine 705) via the S1P2 receptor subtype. HDL-induced STAT3
phosphorylation (both serine 727 and tyrosine 705) are abolished in the presence of U0126 (MEK1/2 inhibitor). HDL and S1P significantly reduce
the apoptosis (measured by DNA fragmentation) induced by doxorubicin treatment in isolated cardiomyocytes. This protective effect is significantly
inhibited when cardiomyocytes are pre-incubated with U0126 or AG490 (JAK2 inhibitor). Abbreviations as described in the text. Adapted from references
12 and 70.
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and 3 and this activation played a role in endothelium tube
formation.50

In conclusion, HDL and S1P can both activate intracellular
signaling pathways that may be involved in cardioprotection.
The precise mechanisms remain to be elucidated.

The SAFE Pathway and Cardioprotection against IR

An alternative protective signaling pathway activated by HDL/
S1P is the survivor activating factor enhancement (SAFE)
pathway. First described in 2009, the SAFE pathway involves
the activation of the pro-inflammatory cytokine TNF and
STAT3.5,6

TNF and cardioprotection. Generally considered cytotoxic,
activation of TNF during IR has proved to be paradoxically
cardioprotective in a dose- and time-dependent manner. Hence,
TNF protects against IR in a dose-dependent manner. Small
amounts of exogenous TNF (0.5 ng/ml, in vitro) given prior to IR
enhanced cell survival while higher concentrations (10–20 ng/ml,
in vitro) were cytotoxic.37,51,52 Also, TNF is an important endo-
genous cardioprotectant released by ischemic pre- and post-
conditioning7,8 and many other pharmacological agents such as
bradykinin, opioids, ethanolamine, melatonin and resveratrol
(for a review see refs. 53 and 54). This cardioprotective effect

appears to be mediated by TNF produced from the cardiomyo-
cytes as TNF cardiomyocyte specific knockout mice were resistant
to post-conditioning55 Low doses of exogenous TNF, given prior
to the ischemic insult or at the onset of reperfusion, confer
cardioprotection by modulation of free radical production and
inactivation of pro-apoptotic proteins such as Bad, after binding
to its specific receptors.7,52,56 Two TNF receptor isoforms have
been identified in the heart, TNF receptor type 1 (TNFR1) and
TNF receptor type 2 (TNFR2). Interestingly, exogenous TNF
confers cardioprotection in TNFR1 knockout mice but fails to
protect TNFR2 knockout mice, therefore suggesting that its
cardioprotective effect is mediated via the activation of TNFR2.8

In addition, mice with cardiac-restricted overexpression of TNF
receptor-associated factor 2 (TRAF2) are protected from IR,
therefore suggesting that TNF confers cardioprotection via
TRAF2 as a downstream target of TNFR2.57 TRAF2 is capable
of activating the formation of S1P via SK158 (see Fig. 2). The
protective effect of TNF is inhibited in the presence of the
sphingolipid pathway inhibitor, N-oleoylethanolamine, therefore
suggesting that S1P acts as a downstream target of TNF/TNFR2/
TRAF2 for cardioprotection.37

JAK-STAT3 and cardioprotection. Once TNF binds to its
specific receptors, another signaling path, the Janus kinase (JAK)-
STAT3 pathway, can be activated. JAKs are a family of tyrosine

Figure 2. HDL/S1P-induced activation of the SAFE pathway. Extracellular sphingosine-1 phosphate (S1P) activates the SAFE pathway that involves TNF
and STAT3. The activation of STAT3 may occur after activation of ERK 1/2 following the binding to its specific receptor or via the activation of TNF
receptor 2. Activation of STAT3 downstream of TNFR2 remains unclear but may involve the activation of intracellular S1P downstream of the activation of
TRAF2 and sphingosine kinase 1. Abbreviations as described in the text.

www.landesbioscience.com JAK-STAT 95



kinases that are associated with the cytoplasmic domain of cyto-
kine and growth factor receptors (including TNFR and gp130)
and play a major role in transducing signals from the cytosol to
the nucleus (for a review, see refs. 59 and 60). Upon activation of
the receptors, JAK2 phosphorylates and creates a docking site
for STAT3 proteins that, in turn, are activated by phosphoryla-
tion (Fig. 2). Tyrosine phosphorylation of STAT3 enables it to
homodimerize and translocate to the nucleus. Serine phospho-
rylation of STAT3 is required for its translocation to the
mitochondria where it regulates the electron transport chain.61-64

Neither TNF receptor contains protein tyrosine kinase acti-
vity or any motif suggesting a biochemical activity but TNF is
paradoxically capable to promote induction of specific tyrosine
phosphorylation.65 While TNFR1 can directly interact with and
form signaling complexes with JAK kinases, the interaction
between TNFR2 and JAK2 is still unclear.65 In fact, this inter-
action may involve the activation of SK1 and intracellular S1P.
Following the binding of TNF to TNFR2, activation of TRAF2
can upregulate SK1,58 which in turn, may catalyze the formation
of intracellular S1P and subsequent activation of JAK-STAT3.

Activation of the SAFE pathway with TNF-JAK-STAT3
signaling is required for the cardioprotective effect of ischemic
pre- and post-conditioning as TNF knockout or cardiomyocyte
STAT3 knockout abolishes protection with a conditioning
stimulus.7,8,66,67 It should be noted that activation of the JAK-
STAT3 pathway also occurs with many other cardioprotective
agents such as melatonin, resveratrol, erythropoietin, cannabinoid
agonists, insulin and prostaglandins.53,68 More recently, a link
between HDL and JAK-STAT3 has also been unveiled.69

HDL/S1P and the SAFE Pathway for Cardioprotection

HDL/S1P and TNF signaling. Using an isolated heart model,
our recent data suggest that TNF activation is required in HDL-
induced cardioprotection as HDL failed to protect against
ischemia-reperfusion in TNF knockout mice.69 If TNF seems
to require the presence of intracellular S1P for cardioprotection,
exogenous S1P paradoxically requires the activation of TNF
signaling for cardioprotection as S1P failed to protect against IR
in TNF-deficient mice (see Fig. 3). The mechanisms involved
in S1P-induced activation of TNF signaling remain unclear but
may involve STAT3 activation following S1P receptor binding.70

In cancer cells, very recent data suggest that STAT3 may also
promote TNFR2 activation,71 therefore suggesting that exogenous
activation of S1P may trigger the SAFE pathway via TNFR2,
following the activation of STAT3 (see Fig. 2). Stimulation of
TNFR2 will then mobilize TRAF2 that, in turn, activates SK1
and the endogenous sphingolipid pathway to promote JAK-
STAT3 activation and downstream prosurvival signaling cascades.

HDL/S1P and JAK-STAT3 signaling. Our recent data
support a link between HDL and JAK-STAT3 signaling as
human HDL was not able to confer cardioprotection in the
isolated STAT3-deficient mouse heart subjected to an IR insult.69

In neonatal rat ventricular cardiomyocytes, human HDL, S1P or
reHDL containing S1P induced a time- and concentration-
dependent serine and tyrosine phosphorylation of STAT3 as well

as an increase in STAT3 binding to DNA.70 In contrast, reHDL
without S1P (containing apoAI only) had a weaker effect on
both STAT3 phosphorylation and DNA-binding. Both HDL
and S1P induced STAT3 phosphorylation principally through the
receptor S1P2, although, following treatment with HDL, a
possible involvement of an additional receptor with a lesser
impact may occur. Activation of STAT3 is also required in the
cardioprotective effect of HDL and S1P against doxorubicin-
induced apoptosis12 (see Fig. 1). Ethanolamine, a downstream
product of S1P, confers cardioprotection via the activation of
STAT3.72 In an ex vivo mouse model of global ischemia, post-
conditioning with S1P (10 nM) failed to protect against IR
in STAT3-deficient mice.73 Interestingly, S1P leads to a time-
dependent increase in serine phosphorylation of STAT3 in both
nucleus and mitochondria.73 The activation of STAT3 with

Figure 3. S1P and TNF for cardioprotection. In the isolated mouse heart
model, exogenous S1P fails to protect TNF knockout mice against an
IR insult (A), therefore suggesting that exogenous S1P requires TNF
signaling for cardioprotection. In contrast, exogenous TNF fails to protect
isolated rat heart subjected to IR in the presence of the inhibitor of
the sphingolipid pathway (NOE, N-oleoylethanolamine) (B), therefore
suggesting that intracellular formation of S1P is required in TNF-induced
cardioprotection. Abbreviations as described in the text. *p , 0.05 vs.
control group. Adapted from references 37 and 73.

96 JAK-STAT Volume 1 Issue 2



exogenous S1P in rat intestinal smooth muscle cells exerts a local
proinflammatory effect.74 Other studies suggest that STAT3 plays
an important role in cancer and in prostate cancer cells. A link
between STAT3 and HDL has been reported as both HDL and
S1P increase serine phosphorylation of STAT3 (but not tyrosine)
via S1P2 and S1P3 receptors.75 These data strongly support the
role of STAT3 as a downstream target of HDL/S1P.

HDL/S1P and downstream targets of the SAFE pathway. In
the context of cardioprotection, mitochondria appear to be the
main downstream target of the SAFE pathway as mitochondrial
activated STAT3 contributes to cardioprotection by stimulation
of respiration and inhibition of mitochondrial permeability
transition pore (mPTP) opening.64 In isolated cardiomyocytes,
the protective effect of HDL or S1P against simulated ischemia
was associated with an activation of mitochondrial STAT3 and
the inhibition of mPTP opening.76 In contrast, STAT3-deficient
mice were not protected with HDL or S1P with, likewise, failure
to inhibit mPTP opening.76

Another important mediator that may be stimulated by HDL/
S1P downstream of the SAFE pathway is Cx43. This major
myocardial gap junction protein is responsible for rapid and
synchronous transmission of the cardiac action potential.
Mitochondrial Cx43 is known as a key element of the signal
transduction cascade affording protection by ischemic precondi-
tioning (IPC).77 In neonatal rat cardiomyocytes, short-term
treatment with HDL or S1P induces phosphorylation of
Cx43.45 Modulation of Cx43 could be dependent on the JAK-
STAT3 pathway.78 Other targets of STAT3 have been identified
including pro- and anti-apoptotic proteins. In a mouse ex vivo
model of global ischemia, post-conditioning with S1P protected
the heart and simultaneously induced nuclear phosphorylation of
FOXO-1. This was not observed in STAT3-deficient mice.73

FOXO-1 is a pro-apoptotic protein known to enhance hyper-
trophy, oxidative stress and IR injury in its non-phosphorylated
(active) form.79,80 Caspase-3, responsible for the cleavage of key
cellular proteins leading to the typical morphological changes
observed in cells undergoing apoptosis, could be a downstream
target of HDL/S1P-induced STAT3 activation. Indeed, in a rat
model of left anterior descending coronary artery ligation,
inhibition of STAT3 results in an increase in caspase-3 activity
while in HUVEC cells submitted to apoptosis induced by growth
factor deprivation, HDL prevented activation of caspase-3.47,81

BAD and glycogen synthase kinase 3 β (GSK3β) are potential
downstream targets of the SAFE pathway but their implication in
HDL/S1P-induced cardioprotection needs to be clarified.8,52,82

Similarly, the pro-apoptotic protein Bax that promotes mito-
chondrial outer membrane permeabilization and release of cyto-
chrome c into the cytosol may also be a downstream target of
HDL. S1P is known to suppress cellular levels of Bax and STAT3
has been reported to regulate Bax protein levels.81 Nitric oxide
(NO) is another possible downstream target. The JAK-STAT3
pathway can increase inducible NO synthase protein and
activity.83,84 In an in vivo mouse model of coronary artery
ligation, HDL- and S1P-mediated cardioprotection is dependent
on NO.13 This effect may be mediated via SK1, which is known
to alter the expression and production of NO.85

Interaction of the SAFE Pathway
with Other Cell Survival Signaling

In ventricular cardiomyocytes ERK1/2, Rho kinase (ROCK),
phospholipase C (PLC) and Src were involved in the STAT3
activation promoted by HDL or S1P. Neither p38 MAPK, nor
phosphatidylinositol 3-kinase (PI3K) or PKC were implicated.70

In the isolated mouse heart model, ischemic post-conditioning
with S1P induced STAT3 activation and this effect was
decreased in presence of a PI3K/Akt inhibitor (wortmannin).73

Accordingly, STAT3 knockout mice failed to increase Akt
phosphorylation.73

Several studies exploring the interaction between JAK-STAT3
and PI3K/Akt have provided inconsistent results that may, in
part, be due to different models and experimental systems. Some
studies report a dual interaction between JAK-STAT3 and PI3K/
Akt: a reduction in Akt phosphorylation occurs in the presence
of a JAK-STAT3 pathway inhibitor (AG490) and vice versa,
STAT3 phosphorylation is diminished in the presence of a PI3K/
Akt inhibitor (wortmannin).86-88 Other studies suggest a one way
regulation with JAK-STAT3 being an upstream regulator of
PI3K/Akt82,89,90 or vice versa.91,92 Finally JAK-STAT3 and PI3K/
Akt can also act independently.8,87,89,93 The interaction of JAK-
STAT3 pathway with GSK3β, a downstream target of Akt, is
also controversial. Some studies suggest downregulation of
GSK3β phosphorylation in the presence of an inhibitor of
STAT382,86 while other studies do not support an involvement
for GSK3β as a downstream target of STAT3.8 Additional studies
are required to explore the exact interaction between Akt and
STAT3 in the context of HDL-induced cardioprotection.

Conclusion

Strong evidence, both in clinical and in experimental settings,
underlines the key role of S1P in HDL-induced cardioprotection
against coronary artery disease.

Evidently it focuses attention on the HDL-S1P association,
and how this could affect the cardioprotective influence of the
lipoprotein. It is known that HDL is the principal carrier of the
lipid,34 which, due to its hydrophobic nature, cannot circulate
freely in serum. It has also been suggested that S1P is limited to a
subfraction of HDL particles,31 reflecting the HDL functional
heterogeneity mentioned earlier. Further study of the precise
nature of this S1P-rich HDL would be of particular interest.
There is little data on the regulation of S1P association with
HDL, although recent studies indicate that binding occurs
through a minor HDL apolipoprotein, apoM.32 Little is known
about this peptide, which underlines the need to investigate the
impact of apoM on HDL-S1P function. Another important
point to address is whether the variations in the S1P content of
HDL can influence risk of vascular disease. Studies are presently
hampered by the analytical procedure, as quantification of
S1P presently requires a relatively cumbersome methodology.
Nevertheless, preliminary studies indicate that significantly lower
levels of HDL-associated S1P are a feature of patients with
coronary disease.15
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This protective effect is mediated, at least in part, via the
activation of the powerful prosurvival signaling pathway that
involves TNF and STAT3. Further studies are still required in
order to understand the exact signaling events involved in this
protective signaling cascade. This review also provides persuasive
evidence that modification of the basal composition of reHDL, by
addition of S1P, would improve their therapeutic potential against
coronary artery disease and other stress related pathologies.
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