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a b s t r a c t

Medical ultrasound (US) image segmentation and quantification can be challenging due to signal dropouts,

missing boundaries, and presence of speckle, which gives images of similar objects quite different appear-

ance. Typically, purely intensity-based methods do not lead to a good segmentation of the structures of in-

terest. Prior work has shown that local phase and feature asymmetry, derived from the monogenic signal,

extract structural information from US images. This paper proposes a new US segmentation approach based

on the fuzzy connectedness framework. The approach uses local phase and feature asymmetry to define a

novel affinity function, which drives the segmentation algorithm, incorporates a shape-based object comple-

tion step, and regularises the result by mean curvature flow. To appreciate the accuracy and robustness of

the methodology across clinical data of varying appearance and quality, a novel entropy-based quantitative

image quality assessment of the different regions of interest is introduced. The new method is applied to

81 US images of the fetal arm acquired at multiple gestational ages, as a means to define a new automated

image-based biomarker of fetal nutrition. Quantitative and qualitative evaluation shows that the segmen-

tation method is comparable to manual delineations and robust across image qualities that are typical of

clinical practice.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Organ and tissue delineation is essential for underpinning image-

based measurements of organ dimensions or tissue region prop-

erties. However, manual delineation is a tedious, subjective, time-

consuming, and error prone task highly related to the image charac-

teristics and the expertise of the observer. Development of automatic

methods for quantitative analysis is especially challenging in ultra-

sound (US) images, where objects can show strong inhomogeneities

and boundaries, can appear fuzzy or are not visible, and in the case

of fetal analysis (which motivated this work) further issues are the

change in appearance across gestational age and the challenge of fe-

tal movement artefacts. Typically, purely intensity-based methods do

not lead to good segmentation results. Several approaches are avail-

able at present for segmenting B-mode US images (Noble and Bouk-

erroui, 2006). Among these, the use of local phase, derived from the

monogenic signal (Felsberg and Sommer, 2001), has proven useful
∗ Corresponding author. Tel.: +44 1865 617722; fax: +44 1865 617701.
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or a variety of image analysis tasks including segmentation (Belaid

t al., 2011; Hacihaliloglu et al., 2008), registration (Mellor and Brady,

005), image enhancement (Boukerroui et al., 2001), tissue character-

zation (Szilágyi et al., 2009), and feature detection (Bridge and Noble,

015; Mulet-Parada and Noble, 2000; Rahmatullah et al., 2012), since

ocal-phase methods extract structural image information while be-

ng invariant to contrast.

Among the many image segmentation methods that are currently

vailable, the fuzzy connectedness (FC) framework can potentially

eal with the fuzziness inherently present in US images and is de-

ned by a discrete mathematical formulation, which makes it easy to

mplement. Fuzzy connectedness (Udupa and Saha, 2003; Udupa and

amarasekera, 1996) is a region-based approach. The main idea con-

ists of defining the strength of local “hanging togetherness” of pix-

ls within an image taking into account their spatial relationship and

heir intensity similarities within the object of interest. Some vari-

nts such as Iterative Relative Fuzzy Connectedness have been shown

o be equivalent to other segmentation methods such as graph cuts

Ciesielski et al., 2012) and the Absolute Fuzzy Connectedness with

radient based affinity to level-sets (Ciesielski and Udupa, 2012). This
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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pproach has proven to be effective in terms of precision, accuracy,

nd efficiency (Udupa et al., 2006) in segmenting tissues in the pres-

nce of intensity gradation in MR and CT images over numerous ap-

lications (e.g. Multiple Sclerosis, Udupa et al., 2001, artery-vein sep-

ration, Lei et al., 2001, brain tumour segmentation, Moonis et al.,

002, etc.). To our knowledge this article is the first to consider de-

ign of a solution specially formulated for US images.

The particular segmentation challenge considered in this paper is

D fetal US image segmentation. Previous automatic methods devel-

ped for this task have focused on extracting standard biometry (size)

arameters over a narrow gestational age range. Examples include

ethods developed for the fetal head (Chalana et al., 1996; Hanna

nd Youssef, 1997; Lu and Tan, 2000; Lu et al., 2005; Pathak et al.,

997a; 1997b), the fetal femur (Rahmatullah and Besar, 2009; Shri-

ali et al., 2009; Thomas et al., 1991a; 1991b), and the fetal abdomen

Chalana et al., 1996; Ciurte et al., 2012; Nithya and Madheswaran,

009; Yu et al., 2008b) by using active contour models, morphologi-

al operators, machine learning, deformable models, or Hough trans-

orm approaches. Further, there are a limited number of papers in the

iterature that have proposed to estimate multiple standard fetal bio-

etric measurements using a general method (Carneiro et al., 2008c;

u et al., 2008a). The latter work, was subsequently translated into a

ommercial tool, called Auto OB (Carneiro et al., 2008b). Finally, state-

f-the-art segmentation methods for automatic biometry of the fetal

ead and femur were recently compared on ultrasound data acquired

cross gestational age in a recent medical image analysis challenge

Rueda et al., 2014).

In 3D ultrasound, Yaqub et al. (2014a) has considered segmenta-

ion of 3D femur bone volumes using Random Forests, Cuingnet et al.

2013) has considered automatic detection and alignment of the fetal

ead from 3D US volumes, and automatic standard plane localization

rom 3D ultrasound volumes has been considered for the fetal ab-

omen (Ni et al., 2014) and 3D fetal neurosonography (Carneiro et al.,

008a; Yaqub et al., 2014b). Other fetal organs that have been investi-

ated from a quantitative biomedical image analysis perspective are

he fetal lungs (Prakash et al., 2002), heart (Deng et al., 2012; Dindoyal

t al., 2005; Veronese et al., 2012), fetal face (Feng et al., 2009), and

he fetal brain (Namburete and Noble, 2013; Namburete et al., 2012;

015; Gutiérrez Becker et al., 2010; Yaqub et al., 2013).

Most previous studies were designed to work over a particular

estational age range (particularly 18–22 weeks which corresponds

o the interval of the abnormality screening scan). This avoids the

ain challenges (articulated later in the paper) of developing seg-

entation solutions applicable across gestation. To our knowledge,

he only previous work to propose estimation of a fetal ultrasound

iomarker across a large gestational age range is the framework

Namburete et al., 2015; 2014) that accurately predicts the gestational

ge of the fetus based on analysis of brain structures using a regres-

ion forest model.

None of the previous works have attempted to relate the quality

f the images to the quality of segmentation results which is an orig-

nal contribution of this paper, and most prior work only uses a small

umber of images to develop and validate a method.
Fig. 1. Proposed feature-based s
As with the work of Namburete et al. (2014) and Namburete et al.

2015) the development of this method was motivated by the clini-

al need for cost-effective and simple image-based biomarker tools

or supporting pregnancy care in the developing world. Ultrasound-

ased tools are natural to consider for this purpose. Specifically, fe-

al adipose tissue in the limbs has been shown to be representative

f fetal nutritional state (Larciprete et al., 2003), and its quantifica-

ion has been hypothesised to be a good indicator of fetal growth

Bernstein et al., 1997). Motivated by this, recent clinical studies by

ur group (Knight et al., 2012a; 2012b) have shown that estimation of

dipose tissue from US images of fetal limbs (fat and fat-free regions),

ia manual delineation, can characterise differences between healthy

etuses and neonates and relates to fetal nutrition. The method pro-

osed in the paper was designed to automate estimation of this

mage-based biomarker. We are not aware of any previous work on

utomatic segmentation of arm adipose tissue on fetal US images.

The contributions of this article are three fold. First, we consider

ow to extend the Absolute Fuzzy Connectedness (AFC) approach to

S images by defining a new affinity function. This is done by incor-

orating information extracted from local phase features instead of

mage intensities into the AFC framework affinity function. The re-

ulting local phase-based FC framework becomes invariant to con-

rast and thus is well-suited for US image segmentation. Second, we

resent a new shape-based method for object completion of one

r more ‘gaps’, to deal with missing information resulting from re-

ions without an ultrasonic signal response (for example due to ultra-

onic shadows). The result of object completion is then regularised by

ean curvature flow. Thirdly, we introduce an approach to quantify

he image quality (which can vary considerably between US image

cquisitions) of an ultrasound image segmentation validation dataset

o appreciate the accuracy and robustness of the developed analysis

ethodology across clinical data of varying appearance and repre-

entative of potential real world applications. The latter is especially

mportant for US image analysis methods, where results are normally

inked to the quality of the images and general practice (with few ex-

eptions) is to report findings on good acoustic window data.

Preliminary versions of parts of this article appeared in Rueda

t al. (2011); 2012b). The present paper presents a more general for-

ulation of the complete analysis method, an in-depth evaluation on

linical data, and the new method for quantitative US image quality

ssessment is introduced for the first time.

The outline of the remainder of the paper is as follows. In

ection 2, the overall segmentation framework is introduced and ex-

lained in detail. Qualitative and quantitative evaluations, including

he proposed method of quantitative image quality assessment, are

resented in Section 3. A discussion and conclusions are given in

ection 4.

. Segmentation framework

The overall segmentation framework is composed of several

teps summarised in Fig. 1. Each step is explained in the following

ubsections.
egmentation framework.
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Fig. 2. Gaussian derivative kernels for σ > 0. (a) Even component; (b–c) quadrature pair of odd filters.

t

l

2

s

(

p

d

c

F

w

s

t

(

t

M

p

t

t

a

i

o

n

m

p

b

t

fi

p

p

a

f

p

u

a

2

e

F

o

n

s

2

l

2.1. Local phase derived from the monogenic signal

Let fA(t) be the complex analytic signal derived from f(t) and its

Hilbert transform fH(t) as fA(t) = f (t) − i fH(t). This representation

allows the extraction of the local amplitude (energy) A(t) and local

phase ϕ(t) of f(t) defined as A(t) = ‖ fA(t)‖ =
√

f 2(t) + f 2
H(t), and

ϕ(t) = arctan( fH(t)/ f (t)), respectively.

The monogenic signal (Felsberg and Sommer, 2001) IM(x, y) of an

image I(x, y) generalises the analytic signal to 2D (and higher dimen-

sions) using the Riesz transform instead of the Hilbert transform.

From the monogenic signal, the local phase, local energy, and local

orientation can be estimated.

In the spatial domain, the convolution kernels of the Riesz trans-

form are defined as

h1(x, y) = x

2π(x2 + y2)
3
2

and h2(x, y) = y

2π(x2 + y2)
3
2

, (1)

which in the frequency domain are expressed as

H1(u, v) = u√
u2 + v2

and H2(u, v) = v√
u2 + v2

, (2)

respectively. The quadrature pair (H1, H2) define the Riesz transform.

The implementation requires a pair of bandpass quadrature filters

to extract the local properties of an image (amplitude, phase, and ori-

entation). The image I(x), where x = (x, y), is first convolved with

a bandpass filter b(x), to give Ib(x) = b(x) ⊗ I(x), where ⊗ denotes

the convolution operation. The bandpass filter chosen was a Gaussian

derivative filter (Boukerroui et al., 2004) defined in the frequency do-

main as

B(u) = |u| exp (−u2σ 2), (3)

where u = (u, v) and σ is the selected scale of the filter.

This filter was empirically chosen, giving better visual maps than

other candidate bandpass filters. This is not a critical part of the

methodology and other filters, such as Cauchy (Boukerroui et al.,

2004), may be better suited for other applications. An example of

a Gaussian derivative bandpass filter and the resulting bandpass

quadrature pair of odd filters is shown in Fig. 2.

The monogenic signal IM(x) of I(x) is then expressed as

IM(x) = (Ib(x), h1(x) ⊗ Ib(x), h2(x) ⊗ Ib(x)). (4)

The local amplitude (energy) A(x), local phase ϕ(x), and local orienta-

tion θ(x) of I(x) are derived from IM(x) and defined as

A(x) =
√

Ib(x)2 + (h1(x) ⊗ Ib(x))2 + (h2(x) ⊗ Ib(x))2, (5)

ϕ(x) = arctan

(
Ib(x)√

(h1(x) ⊗ Ib(x))2 + (h2(x) ⊗ Ib(x))2

)
, (6)

and θ(x) = arctan

(
h2(x) ⊗ Ib(x)

h1(x) ⊗ Ib(x)

)
, (7)

respectively. The structural information is invariant to contrast and

contained in the local phase, whereas the local amplitude represents
he energy, which is dependent on intensity values. An example of

ocal phase image can be seen in Fig. 15(a) for the image in Fig. 11(b).

.2. Feature asymmetry

Computing the local phase at different scales, allows one to detect

tep edge features as points where there is local phase congruency

Kovesi, 1999). In other words, a positive step edge will have a local

hase value of 0° and a negative step edge will have a value of 180°. To

etect step edge features, we use the feature asymmetry FA measure,

alculated over a number of scales, and defined as

A(x) = 1

N

∑
s

�|odd(x)s| − |even(x)s| − Ts�√
even(x)2

s + odd(x)2
s + ε

, (8)

here even(x) = Ib(x), odd(x) = (h1(x) ⊗ Ib(x), h2(x) ⊗ Ib(x)), �.�
ets to zero the negative values, s represents the scale, N is the to-

al number of scales, ε is a constant that avoids the division by zero

typically ε = 0.01), and Ts is an orientation independent threshold

hat controls the spurious responses to noise at scale s (Kovesi, 1999;

ulet-Parada and Noble, 2000). Ts can be estimated from statistical

roperties of the energy response (Kovesi, 1999) or by approximating

he statistical mode (Mulet-Parada and Noble, 2000).

The FA image consists of thick detected edges with values close

o 1 and with homogeneous regions close to 0 values. An example of

feature asymmetry image can be seen in Fig. 15(b) for the image

n Fig. 11(b). However, a good localization of the edges of the object

f interest is essential in this framework. Therefore, we need a tech-

ique to thin the feature asymmetry edge features while retaining

ost of the information present in the FA image. A non-maximal sup-

ression technique (such as Sonka et al., 2008) could be used for this,

ut it will be unable to retain information in directions other than

he local orientation direction at each edge pixel. Therefore, a modi-

ed non-maximal suppression technique was developed. First, for each

ixel in the FA image, non-maximal suppression is performed in all

ossible directions. Then, at each pixel, the maximum value among

ll directions is retained. This strategy captures the relevant edge in-

ormation with good localization while retaining the same intensity

resent in the FA image, thus obtaining the edge map E that will be

sed in this work. An example can be seen in Fig. 15(c) for the feature

symmetry image in Fig. 15(b).

.3. Feature-based fuzzy connectedness

Although several variations of the fuzzy connectedness method

xist (e.g. Iterative Relative Fuzzy Connectedness - IRFC, Relative

uzzy Connectedness - RFC), in this paper we have chosen to employ

ne of the original formulations of FC, namely Absolute Fuzzy Con-

ectedness (AFC), to study how it would perform using the affinities

pecially formulated for US imagery.

The Absolute Fuzzy Connectedness strategy (Udupa and Saha,

003; Udupa and Samarasekera, 1996) is based on a global fuzzy re-

ation that assigns a strength of connectedness to every pair of pixels
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n an image to define objects via dynamic programming. The key step

f this region-based approach relies on the definition of a local fuzzy

elation μκ , called affinity, which defines the local “hanging togeth-

rness” between any two adjacent pixels. If two pixels c and d are ad-

acent, the affinity depends on how homogeneous the region is and

n how close the intensity values at c and d are from the expected

ntensity value of the object of interest. The affinity is equal to 0 for

on-adjacent pixels.

The affinity values are used to define a global relation, called Fuzzy

onnectedness, where the strength of connectedness between any

wo pixels is calculated as the largest of the strengths of all paths

etween c and d on the discrete image grid. Each path corresponds

o a sequence of adjacent pixels starting from c and finishing in d

nd has a corresponding strength value, which is the smallest affinity

f any pair of consecutive pixels along the path (weakest link). The

bsolute Fuzzy Connectedness is represented as a connectivity map,

here the object of interest is obtained by thresholding the image

t TFC. The detailed mathematical description of the method can be

ound in (Udupa and Saha, 2003; Udupa and Samarasekera, 1996).

The initialisation of the general method is based on manually plac-

ng one or several seeds within the object of interest. A minimal train-

ng stage is required once to define the typical mean and standard

eviation of the intensity values of the object of interest.

The AFC framework was adapted to US segmentation by defining

new affinity function that uses structural and edge feature informa-

ion instead of intensities and intensity gradients. The affinity func-

ion was designed as follows. Assume that every fuzzy subset A in a

et is characterised by its membership function μA with values in [0,

]. Given an image, the affinity is composed of three factors: an ad-

acency component μα , an object feature-based component μφ , and

homogeneity-based component μψ . The adjacency component μα

s a non-increasing function of the distance in pixels (i.e. integers)

c − d‖ defined as

α(c, d) =
{

1, if c = d or ‖c − d‖ = 1,

0, otherwise.
(9)

n the original framework by Udupa and Samarasekera (1996), the

bject feature-based component μφ1
was defined based on the in-

ensities of the image, whereas the homogeneity-based component

ψ1
was a measure of intensity gradient. The proposed method in-

orporates the local phase information into the object-feature based

omponent, extracting structural information and making the image

nvariant to contrast. The edge map E, derived from the feature asym-

etry image, directly gives a measure of homogeneity, since smooth

egions have small values and regions near boundaries have large

alues (cf. Section 2.2). Therefore, it is natural to consider it in the

efinition of the homogeneity-based component. Let ϕ(c) be the lo-

al phase at pixel c and E(c, d) the thinned pixel edge derived from

eature asymmetry between pixels c and d. The homogeneity-based

omponent μψ2
will have a high affinity in homogeneous regions and

mall affinity at the edges. Since E is close to 0 in homogeneous re-

ions and close to 1 at edge features, we can express the homogeneity

omponent as

ψ2
(c, d) = 1 − E(c, d) = g3(E(c, d)), (10)

here g3 is a function of E(c, d). The object feature-based component

φ2
takes into account characteristic features of the object of inter-

st. In this paper, a recent formulation (Ciesielski and Udupa, 2010)

as applied directly to the local phase image instead of intensities, as

ollows:

φ2
(c, d) = e− max{‖ϕ(c)−mo‖,‖ϕ(d)−mo‖}2/2σ 2

o = g4(ϕ(c), ϕ(d)), (11)

here mo and σ o are the mean and standard deviation of the inten-

ity values of the object of interest, previously calculated in a training

tage, and g is a function of ϕ(c) and ϕ(d).
4
There exist several ways of combining the affinity components to

orm the fuzzy affinity μκ (Ciesielski and Udupa, 2010). One general

orm commonly used is

κ(c, d) = μα(c, d)[ω1g1(I(c), I(d)) + ω2g2(I(c), I(d))], (12)

here I(c) and I(d) correspond to the intensities at pixels c and

, respectively (Udupa and Samarasekera, 1996), g1(I(c), I(d)) =
ψ1

(c, d), and g2(I(c), I(d)) = μφ1
(c, d). The equivalent affinity func-

ion μ∗
κ for the proposed approach is expressed as

∗
κ(c, d) = μα(c, d)[ω1g3(E(c, d)) + ω2g4(ϕ(c), ϕ(d))], (13)

here ω1 + ω2 = 1, and with g3 and g4 as defined in (10) and (11),

espectively.

.4. Delineating closed regions

The segmentation resulting from the feature-based FC only in-

orporates regions of the object of interest present in the image.

owever, it is unable to delineate object boundaries in shadowed

reas (e.g. shadow under the humerus bone in Fig. 11(b)), as there

s no ultrasonic signal response from these regions. Furthermore, in

ome cases, the object of interest can be formed by several connected

ieces with missing information between them that we would like

o retrieve. To overcome this, a new object completion technique has

een developed. This first detects the region of the object of interest

ith missing information, and then fills the gap(s) in by using local

hape constraints (Rueda et al., 2008). In the preliminary version of

he method (Rueda et al., 2012b), only one gap was corrected. In this

aper we have generalised the approach to the detection and com-

letion of any number of gaps appearing in the object of interest af-

er segmentation. The object completion step is described in the next

ubsection.

.4.1. c-scale shape descriptor

At each point p on a boundary, a local curvature scale segment

Rueda et al., 2008), called c-scale segment C(p), is defined as the set

f connected points at a distance smaller than a threshold t from the

ine connecting the two end points of the set (red dashed curve in

ig. 3). Each C(p) is obtained after symmetrically and progressively

xamining the adjacent boundary elements to p until the distance is

o greater than a threshold t.

A c-scale value Ch(p) (green dashed line in Fig. 3) can then be ob-

ained as the chord length corresponding to C(p), which is the length

f the straight-line segment between the end points in C(p). Large

h(p) values indicate small curvature at p, whereas small values de-

ote high curvature (Rueda et al., 2008). Values of c-scale are very

seful in estimating actual segments and their curvature by consid-

ring the local morphometric scale of the object, and are independent

f digital effects and noise. The c-scale method has proven to be ro-

ust in obtaining a complete description of shape directly applied to

igital boundaries. More details can be found in Rueda et al. (2008).

An extension of this implementation was developed to obtain the

ormal np at each point p in the boundary as the line perpendicu-

ar to Ch(p) passing through p (Fig. 3). The direction of the normals

s always selected pointing to the inside of the object. Only the nor-

al information is needed for the object completion step, which is

escribed in the following.
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Convex Hull

(a)
Convex Hull

(b)

Fig. 4. Convex hull boundary for (a) one connected component; and (b) several connected components. The convex hull boundary is represented by a red dashed line. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 5. Gap detection. (a) Normals are calculated around the convex hull boundary using the c-scale shape descriptor. (b) Thickness of the segmented object is calculated at each

boundary element of the convex hull. Zero thickness indicates the presence of a gap.
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2.4.2. Object completion

The object completion is performed in three steps: convex hull

boundary extraction, gap detection, and gap completion.

First, the convex hull of the segmentation result is computed and

its boundary extracted (Fig. 4). If the segmented object is composed

by several connected components, the convex hull contains all of

them, as shown in Fig. 4(b). In the following, the completion strat-

egy is illustrated on an example with three gaps to describe a general

case. In our application, all the objects will have at least one gap to

complete.

For each boundary element in the convex hull boundary, the c-

scale shape descriptor (Rueda et al., 2008) is used to define the tan-

gent (chord) at each point in the curve. From the tangents, the nor-

mals to the convex hull boundary are calculated at each bound-

ary point in the direction pointing towards the inside of the object

(Fig. 5(a)). Then, the binary intersection between each normal and

the segmented object (resulting from the feature-based fuzzy con-

nectedness step) is retrieved and the connected object closest to the

convex hull boundary element is retained. The width (thickness) is

then calculated (Fig. 5(b)) by measuring the length of the connected

object previously extracted for each boundary element of the convex

hull. The gap(s) is(are) detected by finding the region(s) with zero

width, as represented in Fig. 6.

The last step consists of filling in the gap(s) in the segmented ob-

ject. Two normals on each side of each detected gap are then iden-

tified at a fixed distance D (Fig. 7(a)). A polygon is constructed by

connecting the two detected normals on each side of the hole at the

level of the convex hull boundary from one side, and the segmented

object boundary from the other side (Fig. 7(b)). The corrected ob-

ject is obtained from the binary union between the polygon and the

segmented object. Note that a different completion strategy could

have been used instead of a polygon. For example, curvature infor-

mation could be used to complete the gaps after detection using
urves. However, in this case, we tried to follow the same strategy

linicians were using to complete the shapes in our particular appli-

ation. Algorithm 1 summarises the object completion step.

lgorithm 1 Object completion.

nput: Segmented binary image S resulting from the AFC step.

utput: Completed object.

1: Compute the convex hull C of S;

2: Extract the boundary B = {pi : i = 1, . . . , q} of C;

3: for each pi; i = 1 : q do

4: Calculate the c-scale value Ch(pi) and c-scale segment C(pi);

5: Calculate the normal npi
at each pi as the line perpendicular to

Ch(pi) passing through pi and pointing towards the inside of the

object;

6: Calculate the thickness T (pi) at pi as the connected object re-

sulting from the binary intersection between npi
and S and

closest to B.

7: end for

8: Output T (pi) for all i;

9: Detect the gap(s) G j , j = 1 : m, as region(s) where T (pi) = 0;

10: for each G j; j = 1 : m do

11: Identify the two normals n f and nb at both sides of G j at a fixed

distance D from G j;

12: Construct a polygon by connecting the lines n f and nb at the

level of C from the outside and the segmented object in S from

the inside;

13: end for

14: Output completed object as the binary union between the poly-

gon(s) and the segmented object in S .
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gap

gap

gap

Fig. 6. Gaps detected after identification of zero thickness regions as shown in Fig. 5.
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.5. Regularisation

The resulting object boundary is finally smoothed using a mean

urvature flow (MCF)1 regularisation strategy (Sethian, 1999). The

ethod is based on the evolution of the curve using implicit func-

ions. The points in the contour are moved in the normal direction

ith a speed proportional to the curvature at each point. A Matlab

oolbox (Mitchell, 2008) was used for this purpose.

.6. Implementation details

Local phase and feature asymmetry were estimated as described

n Sections 2.1 and 2.2. The bandpass filter used within this frame-

ork is a Gaussian derivative filter, as defined in Eq. (3). Since the

cale considered for local phase calculation (Eq. 6) depends on the

ize of the structure of interest, two different scales were consid-

red, one for gestational ages below 30 weeks (s = 27), and one for

estational ages above or equal to 30 weeks (s = 35). For the calcu-

ation of the feature asymmetry (Eq. 8), three scales were considered

N = 3), with s = [23, 25, 27] for gestational ages below 30 weeks and

= [27, 30, 35] for gestational ages above 30 weeks. Ts was obtained

rom statistical properties of the local phase image (Kovesi, 1999), and

et to Ts = 0.155.

Within the AFC framework (cf. Section 2.3), for the object feature-

ased component of affinity (11), the mean mo = 2.44 and the stan-

ard deviation σo = 3 × 0.086 were estimated from a region of fat in

he local phase image from a training stage performed on three im-

ges, since the local phase value of a region of fat was very similar

mong images and didn’t require a larger training set. The images

sed for training were not part of the evaluation set. The final affinity

13) was calculated with ω1 = ω2 = 0.5. The method is multi-seeded
1 http://www.cs.ubc.ca/˜mitchell/ToolboxLS/

DD

(a)

ig. 7. Gap completion using polygons. (a) Normals are found at either side of the gap at a

bjects. The polygons are represented by green dashed lines. (For interpretation of the refer

rticle).
ith one or more seeds in the fat layer of the image used for initial-

sation. In the set of images used, most of the images required one

eed and a few required more, if presenting disconnected fat appear-

nce. No more than 5 seeds were used in any of the images. The ob-

ect of interest was thresholded from the connectivity map by using

FC = 0.85. This value was set empirically but could have been au-

omatised for each seed as in (Miranda et al., 2008).

The c-scale shape descriptor used for delineating closed regions of

dipose tissue (cf. Section 2.4) only required one parameter t, which

as set to t = 5.

The AFC part of the method was implemented in Matlab, using

mex files for faster computation. The other steps of the presented

ramework were implemented in Matlab.

. Results and evaluation

This section presents results of evaluation of the new segmen-

ation method on a large clinical dataset. We begin by presenting

he clinical image protocol in Section 3.1. The proposed framework

s then directly compared to the original Absolute Fuzzy Connect-

dness method based on intensities and qualitatively and quantita-

ively against manual segmentations in Sections 3.2 and 3.3, respec-

ively. We then, in Section 3.4, look more deeply at the performance

f the algorithm by firstly characterizing the variability of the data

n the clinical dataset, and use this characterization to gain better

nderstand into the potential performance of the new segmentation

ethod on real world clinical data.

.1. Image acquisition

The clinical dataset used for evaluation is 81 cross-sectional US

mages of the fetal arm across gestation acquired perpendicularly to

he arm at mid-humeral level (Fig. 8) from 73 healthy fetuses be-

ween 20 and 36 weeks of gestation. For eight of these fetuses, images

cquired at two different gestational ages were included. The distri-

ution of gestational ages within the dataset is shown in Fig. 9.

The images were acquired with a Philips HD9 machine (Philips

ltrasound, Bothell, WA, USA) at the Nuffield Department of Ob-

tetrics and Gynaecology, John Radcliffe Hospital, University of Ox-

ord, Oxford, U.K. The fetuses involved in this clinical study are

art of the INTERGROWTH-21st (2009)2 and INTERBIO-21st (2012)3

ohorts.

The protocol used for the acquisition of the US fetal arm cross-

ections was as follows. First, the sagittal view of the humerus

Fig. 10(a)) was acquired to visualise the full humerus length longitu-

inally, ideally horizontal and in the centre of the screen. The probe
2 http://www.intergrowth21.org.uk
3 http://www.interbio21.org.uk

(b)

fixed distance D. (b) A polygon is constructed using the normals and the segmented

ences to colour in this figure legend, the reader is referred to the web version of this

http://www.cs.ubc.ca/~mitchell/ToolboxLS/
http://www.intergrowth21.org.uk
http://www.interbio21.org.uk
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Fig. 8. US cross-section acquisition of the fetal arm at mid-humeral level (purple

cross-section).
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Fig. 9. Distribution of gestationa

Fig. 10. Fetal arm at 28 weeks of gestation. (a) Sagittal view w

Fig. 11. (a) Schematic of arm composition. (b) Arm cross-section of a 27 weeks fetus with ch

from that region. Notice intensity inhomogeneities within the adipose tissue (B).
as subsequently rotated 90° to obtain an axial cross-section of the

rm at mid-humeral level (Fig. 10(b)).

Referring to Fig. 11, arm cross-sections are formed by a central

yperechoic bone surrounded by hypoechoic muscle and then an

chodense fat layer. To ensure that the cross-sections were acquired

erpendicular to the humerus, the probe was swept along the longi-

udinal axis of the humerus bone. If the axial view appeared to be

erpendicular to the longitudinal axis then the image of the bone

emained in the centre of the screen as the probe was moved. Ad-

ustments were made until this was achieved and then returned to

idpoint of humerus to acquire the 2D image.

Image appearance was found to vary across gestation as illustrated

n Fig. 12. The following general observations can be made to illus-

rate some of the challenges in image segmentation for this partic-

lar application. First, the shape of the fetal arm is not always cir-

ular and can vary globally or regionally due to the pressures cre-

ted by surrounding structures - this is especially the case at later

estational ages. Second, the adipose tissue layer can produce pro-

ounced intensity inhomogeneities, which are characteristic of this

maging modality. Changes in tissue texture can also create different
l ages within the dataset.

ith horizontal humerus bone. (b) Axial cross-section.

aracteristic shadow under the humerus bone, due to lack of ultrasonic signal response
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Fig. 12. Image appearance of the fetal arm US cross-sections across gestational age.

Fig. 13. Manual segmentations performed twice by two different experts. (Expert 1: green and yellow contours. Expert 2: magenta and cyan contours). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article).
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peckle patterns at different gestational ages. Third, maternal and fe-

al tissues (e.g. as shown in Figs. 12(d, f and h) normally surround the

rm, and can make the segmentation task difficult. Fourth, at early

estation, the layer of fat is very thin and hardly visible, since it is

een more clearly from 18–20 weeks. Fifth, the adipose tissue bound-

ries are usually fuzzy, which makes manual segmentation difficult

nd can cause discrepancies, as shown in Fig. 13, where the adipose

issue layers were manually segmented by two experts twice. Finally,

bserve that there is always a characteristic shadow appearing under

he humerus bone (Figs. 11(b) and 12), which prevents the visual-

zation of adipose tissue in that area. In manual segmentations, this

egion is typically approximated by joining the delineations on either

ide of the shadow by a straight line (Fig. 13).

.2. Qualitative evaluation

In this subsection, the proposed method is compared to the

ntensity-based Absolute Fuzzy Connectedness approach. However,

ue to the large intensity variability within the adipose tissue layer

cross the different images in our dataset, it proved impossible to

et representative algorithm parameters for the intensity-based AFC

ethod during the training stage. This situation is avoided when

sing local phase, as it is contrast invariant. A typical example

f intensity-based segmentation is shown in Fig. 14. We observed

hat the intensity-based approach could not cope with the inhomo-

eneities present within the object of interest. This can be seen in

ig. 14(c), where high intensity regions within the adipose tissue area
re not segmented. In this case, the variability of intensities within

he region of interest is too high for the intensity-based method to

orrectly segment the overall adipose tissue layer.

Fig. 15 shows the outputs of key image analysis steps of the pro-

osed methodology reported in this paper. Qualitative results com-

aring the automated method output with manual delineations at

number of discrete gestational ages are shown in Fig. 16. These

esults illustrate that the automated method appear visually similar

o the manual delineations.

.3. Quantitative evaluation

In this subsection, we quantitatively assess the proposed segmen-

ation method by using a number of established region-based and

istance-based metrics. First, region-based evaluation metrics, de-

ned as area overlap measures, were selected as a way of assessing

mage segmentation precision (repeatability of the method) and ac-

uracy (sensitivity and specificity). These metrics are as defined in

dupa et al. (2006). Experimental results were performed twice on

ach image of the dataset to assess the precision of the proposed

ethod. Accuracy was reported as in Udupa et al. (2006), where de-

ineation sensitivity is given by the true positive area fraction (TPAF)

nd delineation specificity by 1-FPAF where FPAF is the false positive

rea fraction. These two independent metrics are sufficient to quan-

ify the general accuracy of a segmentation method. In each case, a

arger value indicates a better segmentation performance.
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Fig. 14. Intensity-based FC segmentation results. (a) Arm cross-section of a 28 weeks fetus. (b) Intensity-based FC connectivity map. (c) Segmentation for TFC = 0.75. (d) Segmen-

tation for TFC = 0.9. Dashed lines: averaged manual segmentation. Continuous lines: FC segmentation results.

(a) Local Phase (b) Feature Asymmetry (c) Edge map

(d) FC connectivity map (e) Feature-based FC only (f) Final Segmentation

Fig. 15. Main steps of the proposed method applied to Fig. 11(b). (a) Local Phase at σ = 27. (b) Feature asymmetry with σ = 23, σ = 25, σ = 27. (c) Edge map extracted from

feature asymmetry using non-maximal suppression in all directions. (d) FC connectivity map. (e) Feature-based FC segmentation result. (f) Final segmentation obtained from

feature-based FC after completion and regularisation. Manual segmentations are displayed in dashed lines. Continuous lines show the proposed segmentation results.

(a) 21 weeks (b) 23 weeks (c) 26 weeks

(d) 28 weeks (e) 33 weeks (f) 36 weeks

Fig. 16. Segmentation results across gestational ages. Manual segmentations are displayed in dashed lines. (Expert 1: green and yellow lines. Expert 2: magenta and cyan lines.)

Continuous red lines show the proposed segmentation results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article).
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We also report the commonly used Dice similarity metric.

Distance-based metrics (maximum symmetric contour distance:

MSD; average symmetric contour distance: ASD; and root mean

square symmetric contour distance: RMSD), as described in Heimann

et al. (2009), are also reported. As we do not have a “ground-truth”

segmentation (the true arm composition is not known but only im-
ged indirectly), segmentation results were compared to manual de-

ineations of the structures, segmented twice by each of the two

xperts. The results per image were averaged to obtain the over-

ll performance for a particular expert and for all experts. More

etails on these particular metrics can be found in Rueda et al.

2014).
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Table 1

Intra and inter-observer variability. Manual delineations from Expert 1 (E1) and Expert 2 (E2)

are evaluated against themselves and against each other using area overlap and distance-

based metrics. The area overlap metrics evaluated are precision, accuracy (sensitivity and

specificity), and Dice similarity as defined in Udupa et al. (2006). The distance-based met-

rics evaluated are the maximum symmetric contour distance (MSD), the average symmetric

contour distance (ASD), and the root mean square contour distance (RMSD) as defined in

Heimann et al. (2009).

Intra-expert Inter-expert

variability variability

E1 E2 E1 vs E2

Precision (%) 83.49 ± 4.10 87.06 ± 3.06 80.29 ± 3.99

Accuracy (%) Sensitivity 90.15 ± 4.75 94.19 ± 2.72 88.10 ± 5.29

Specificity 98.11 ± 0.95 98.11 ± 0.93 97.59 ± 1.38

Dice (%) 90.95 ± 2.46 93.05 ± 1.77 88.99 ± 2.49

MSD (mm) 1.02 ± 0.52 0.93 ± 0.49 1.27 ± 0.68

ASD (mm) 0.29 ± 0.13 0.23 ± 0.10 0.36 ± 0.16

RMSD (mm) 0.38 ± 0.18 0.31 ± 0.15 0.47 ± 0.22

Table 2

Quantitative evaluation. Automatic segmentations (auto) are evaluated against the ground

truth, generated from manual delineations from Expert 1 (E1) and Expert 2 (E2), using area

overlap and distance metrics. The area overlap metrics evaluated are accuracy (sensitivity and

specificity) and Dice similarity as defined in Udupa et al. (2006). The distance-based metrics

evaluated are the maximum symmetric contour distance (MSD), the average symmetric con-

tour distance (ASD), and the root mean square contour distance (RMSD) as defined in Heimann

et al. (2009).

Auto vs E1 Auto vs E2 Mean

Accuracy (%) Sensitivity 85.63 ± 4.55 88.98 ± 4.38 87.30 ± 3.84

Specificity 96.86 ± 1.41 97.23 ± 1.12 97.05 ± 1.17

Dice (%) 86.02 ± 2.90 88.21 ± 2.79 87.11 ± 2.60

MSD (mm) 1.72 ± 0.86 1.65 ± 0.86 1.68 ± 0.82

ASD (mm) 0.46 ± 0.19 0.36 ± 0.18 0.41 ± 0.18

RMSD (mm) 0.58 ± 0.24 0.49 ± 0.24 0.54 ± 0.23
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Table 1 presents the results for the intra and inter-observer vari-

bility assessment, obtained from the manually segmented images by

wo experts, segmented twice. The results show similar performance

etween experts, Expert 2 having slightly better results.

The segmentation evaluation results of the proposed approach

ere then compared to both experts and to the average manual seg-

entation, as shown in Table 2.

The proposed method performs similarly to manual delineation

ith mean results very close to those obtained for each metric cal-

ulated for the inter-expert variability (cf. Table 1) in terms of mean

nd standard deviation. The precision of the proposed segmentation

pproach, in terms of repeatability, was evaluated by repeating each

egmentation twice using different seed locations as initialisation.

he presented framework has a precision of 99.89%, which means

hat the results are very consistent. Very slight differences were noted

n certain cases due to the selection of the seed positions. The re-

eatability is much higher than the one obtained from manual adi-

ose tissue delineations (cf. Table 1) as expected.

.4. Quantitative image quality assessment

This subsection firstly explains how we define image segmenta-

ion quality for our dataset and then interprets the automated algo-

ithm performance with respect to the resulting image segmentation

uality metrics.

It would be greatly beneficial to report segmentation results with

measure of image quality to characterise the dataset used and how

ell the method performs considering the quality of the images.
owever, establishing overall image quality measures is difficult,

ince the quality of images relies on tissue appearance. Ultrasound

mage quality can vary considerably between acquisitions, which

ay affect the performance of different segmentation methods.

In this paper, we propose a new solution to quantify image qual-

ty of a clinical dataset designed to provide deeper insight into seg-

entation performance. This is, to our knowledge, the first attempt

o correlate segmentation results with a quantitative measure of US

mage quality.

US image quality depends on a number of factors including: the

S machine (transducer, time-gain control, use of harmonics versus

undamental, persistence, and depth), the object being scanned (tis-

ue properties (speckle), effects of attenuation (depth), shadows, and

everberations), and the orientation of the probe with respect to the

bject.

In fetal ultrasound imaging, object appearance varies with ges-

ational age with the structures surrounding the object of inter-

st showing high variability. Overall fetal US image quality tends to

ecrease towards later gestation as a result of the fetus becoming

igger with relatively less amniotic fluid, thus the fetal structures are

ore likely to be compressed resulting in the clear soft tissue/fluid

nterface. The bone density in the fetus also increases, creating more

hadows and artefacts in the images. Another factor that can af-

ect ultrasound image quality is the increase of maternal body mass

ndex, attenuating the signal especially towards the end of preg-

ancy. Specifically, the proposed quantitative image quality assess-

ent method relies on the principle that different tissues have spe-

ific sound propagation properties characterised by the complexity
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Fig. 17. Fetal arm image partitioning into 4 regions (cyan: background region, white:

adipose tissue layer, magenta: muscle region, and yellow: bone region) for a 27 week

fetus. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article).
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of the speckle pattern. These tissues do not evolve in the same way

across gestation and surrounding structures vary depending on the

acquisition angle and fetal position at that particular time. This is why

an overall global image measure would not be as appropriate as a re-

gional quality measure.

Traditional image processing quality measures such as SNR

(signal-to-noise ratio) and CNR (contrast-to-noise ratio) rely on the

estimation of the signal and noise from the entire image or regions.

In the case of ultrasound image processing, and particularly the lit-

erature on speckle-reduction, speckle has typically been treated as

the noise component. In our case a speckle-based measure would

only capture texture differences, not contrast changes, and requires

access to the RF signal to estimate a statistical model, for instance

see Destrempes and Cloutier (2010); Raju and Srinivasan (2002). Fur-

ther, the estimation of such models is non-trivial with accuracy de-

pending on the block size used for parameter estimation for instance

(Larrue and Noble, 2014). In our case, which is very typical of most

image analysis work conducted with clinical groups, we have access

to DICOM B-mode images only. Furthermore, due to the stochastic

nature of the speckle patterns, using CNR directly for characteris-

ing echogeneity is sub-optimal, because the tissue contrast resolution

depends on speckle variance and size. As these general image qual-

ity measures did not satisfy our needs we developed the approach

described next.

The proposed new method quantifies the complexity of each re-

gion (resulting from the speckle distribution) and the relationship

amongst tissues in an image without estimating a speckle model (sta-

tistical distribution). Specifically, first a manual image partitioning

is made to each image resulting in manual delineations of different

regions of interest. An entropy-based measure is then computed on

each of the image partitions to estimate the information content in

each region of interest. This quality measure is based on the appear-

ance and complexity of each region and not on contrast, absolute
Fig. 18. Entropy of the background region across gestational age for all the images in the d
ntensity, or edge information. The probability density function of a

egion, denoted pr, is first estimated from the gray-level histogram

f that region. The normalised histogram of a region Ar is defined

or each intensity value ak with k = 1, . . . , M, M being the maximum

umber of intensity levels in Ar. In our case, M = 256. The entropy H

f the random variable Ar can then be calculated as

(Ar) = −
M∑

k=1

pr(ak) log2 pr(ak). (14)

he entropy difference between adjacent regions can then be calcu-

ated to assess the overall image quality (as a whole complexity mea-

ure) and correlated with the segmentation results.

The proposed quantitative image quality assessment method was

pplied to the fetal arm dataset introduced in Section 3.1. The first

tep consisting of partitioning the images into different areas, is

hown in Fig. 17. These regions were manually delineated in all the

mages of the dataset and the entropy calculated for each of these

egions separately. The ideal image appearance, from an automated

egmentation algorithm perspective, occur when the background and

uscle regions have a hypoechoic appearance (dark) and the adi-

ose tissue layer a hyperechoic appearance (bright), which should be

learly distinguishable from the surrounding tissues.

In the evaluation dataset used within this study, we deliberately

and unusually) selected examples with a wide range of image qual-

ty. The examples discussed below are typical examples taken from

he whole dataset and were chosen to facilitate the understanding

f how entropy values relate to the fetal image regions analysed. We

ave studied in detail the relationship between all the image regions

n the dataset and the entropy values before concluding how to gen-

ralise our findings which are reported below.

The entropy of the background region is shown in Fig. 18 for all the

mages in the dataset. A selection of representative images with low,

edium, and high background entropy values in Fig. 18 are shown

n Fig. 19 to visually appreciate the difference. Observe that higher

ntropy values are correlated with the presence of more fetal and

aternal tissues surrounding the adipose tissue layer. The lower the

ntropy, the clearer the interface between background and adipose

issue.

Similarly, the entropy for the adipose tissue region (cf. white re-

ion in Fig. 17) across gestational age is shown in Fig. 20, with rep-

esentative examples for low, medium, and high entropy shown in

ig. 21.

The adipose tissue regions in Fig. 21(a and d) present more in-

ormation, showing higher intensity levels in these regions. Regions

utlined in Fig. 21(c and f) have lower entropy, and their appear-

nce looks fuzzier, visually corresponding to a lower quality. Ideally,

e would like the adipose tissue region to be associated with high

ntropy.

The entropy values for the muscle region (cf. magenta region in

ig. 17) are represented in Fig. 22 across gestation. Examples for low,

edium, and high entropy, as indicated in Fig. 22, are shown in
ataset. The numbers within the coloured bullets correspond to the images in Fig. 19.
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(a) High entropy (b) Medium entropy (c) Low entropy

(d) High entropy (e) Medium entropy (f) Low entropy

Fig. 19. Examples of background entropy as colour-coded in Fig. 18. (a,d) High entropy; (b,e) medium entropy; and (c,f) low entropy. The higher the entropy, the more fetal and

maternal tissues surround the adipose tissue layer.

Fig. 20. Entropy of the adipose tissue region across gestational age. The numbers within the coloured bullets correspond to the images in Fig. 21. High entropy denotes better

image appearance for the adipose tissue region.

(a) High entropy (b) Medium entropy (c) Low entropy

(d) High entropy (e) Medium entropy (f) Low entropy

Fig. 21. Examples of adipose tissue entropy as colour-coded in Fig. 20. (a,d) High entropy; (b,e) medium entropy; and (c,f) low entropy.
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Fig. 22. Entropy of the muscle region across gestational age. The numbers within the coloured bullets correspond to the images in Fig. 23. Ideally, we would like the muscle region

to have low entropy and a dark appearance.

(a) High entropy (b) Medium entropy (c) Low entropy

(d) High entropy (e) Medium entropy (f) Low entropy

Fig. 23. Examples of muscle entropy as colour-coded in Fig. 22. (a, d) High entropy; (b, e) medium entropy; and (c, f) low entropy.
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Fig. 23. Observe that low entropy muscle regions (Fig. 23(c and f))

are much darker than high entropy muscle regions (Fig. 23(a and d)),

showing that the information content in these regions is very differ-

ent. Ideally, we would like the muscle region to be dark, hence to have

low entropy.

The entropy for the humerus bone region (cf. yellow region in

Fig. 17) is represented in Fig. 24 across gestation. Representative ex-

amples for low, medium, and high entropy, as indicated in Fig. 24, are

shown in Fig. 25. In this case, the difference is not as noticeable as for

the other regions, due to the small size of the structure. However, it

can be seen that regions with lower intensity variability within the

region have lower entropy, as shown in Fig. 25(c and f).

Comparing the 4 regions, the highest mean entropy is observed for

the humerus bone region, with a value of 6.40 bits. Then, the adipose

tissue mean entropy has a value of 6.11 bits, the background region

has a mean entropy value of 5.38 bits, and the muscle region has a

mean entropy value of 5.27 bits. We conclude from this that, on aver-

age, the bone presents the highest information content, followed by

the adipose tissue region. Background and muscle regions have lower

information content.

Having looked at the entropy (and entropy variation across ges-

tational age) for different tissues of interest we now consider how

to define image segmentation quality metrics. Recall, that the goal

is to segment the adipose tissue layer. Thus the two interfaces of

interest are background–adipose tissue, and adipose tissue–muscle.

Therefore, we define two scores to assess the difference of en-

tropy between the background region and the adipose tissue re-

gion, and the adipose tissue region and the muscle region for each
mage in the evaluation dataset. Let Sab be the score representing

he difference in entropy between adipose tissue and background,

efined as

ab = H(Aadipose tissue) − H(Abackground); (15)

nd Sam the score associated with the difference of entropies between

dipose tissue and muscle, defined as

am = H(Aadipose tissue) − H(Amuscle), (16)

ith H(Aadipose tissue), H(Abackground), and H(Amuscle) as defined in (14).

oth scores are useful in assessing the overall image segmentation

uality, as shown in Fig. 26, where each value is colour-coded by its

orresponding gestational age.

Fig. 26 represents the image quality of each image by using the

cores Sab and Sam, derived from adjacent regions as previously de-

ned. Score values are low when adjacent regions are similar, and

ence image quality overall is lower. Higher score values translate

nto more distinct adjacent regions, and hence higher image quality

verall. Gestational age is incorporated into Fig. 26, as it is normally

orrelated to image quality (the image quality generally decreases

ith gestational age). This dataset was chosen to be representative

f this particular application, showcasing a variety of image quali-

ies as found in clinical practice. The entropy-based analysis shows

hat the dataset has a correspondingly high variability in terms of

ntropy, including several cases with negative Sab values, where the

ntropy in the background is higher than the information of the adi-

ose tissue layer. This can happen when the arm is surrounded by

ther organs (e.g. limbs, abdomen, placenta) as shown in Fig. 19 for
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Fig. 24. Entropy of the humerus bone region across gestational age. The numbers within the coloured bullets correspond to the images in Fig. 25.

(a) High entropy (b) Medium entropy (c) Low entropy

(d) High entropy (e) Medium entropy (f) Low entropy

Fig. 25. Examples of bone entropy as colour-coded in Fig. 24. (a, d) High entropy; (b, e) medium entropy; and (c, f) low entropy.

Fig. 26. Image quality assessment for the fetal arm dataset. Sab denotes the difference of entropy between adipose tissue and background, whereas Sam represents the difference

of entropy between adipose tissue and muscle. Each value has been colour coded with its corresponding gestational age given in weeks. The lower the score values, the more

similarity between adjacent regions, and the lower the image quality (bottom left hand side corner of the graph). The higher the score values, the more difference between adjacent

regions, and the higher the quality (top right hand side corner of the graph).
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Fig. 27. Segmentation precision (repeatability) with respect to image quality scores Sab and Sam. Varying the initial seeds result in mostly the same segmented object except for a

few cases where small differences appear.

(a) Sensitivity

(b) Specificity

Fig. 28. Segmentation accuracy with respect to image quality scores Sab and Sam. (a)

Sensitivity. (b) Specificity. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article).
the high entropy examples. These effects are important to consider in

the assessment of a segmentation method, as they present challeng-

ing conditions for any method.

Having explained how to define image segmentation quality met-

rics for our clinical dataset we can now look at how the auto-

mated segmentation method performs with respect to these metrics.

Figs. 27 and 28 show how precision and accuracy correlate with the

two image segmentation metrics, respectively.

The repeatability of the method is presented in Fig. 27. Observe

that in most cases the results obtained are very similar when varying

the position of the initialisation seeds. Only small differences can be

observed in a few cases (values below 1) across the whole range of

image qualities.

As shown in Fig. 28 the proposed segmentation method performs

robustly over a range of image qualities, giving high values of accu-

racy in most cases, independently of their image appearance. The

lowest accuracy values (blue colours) in terms of sensitivity occurred

for images in the bottom left hand side quadrant of Fig. 28.(a), where

more similarity between adjacent regions exits (lower quality since

adjacent tissue layers look similar) and where the background seems

to present more surrounding structures (negative Sab values). How-

ever, high precision and accuracy values (red and yellow colours) can

also be observed in that same quadrant. It is worth pointing out that

the lowest accuracy values observed are above 80%, which is good in

terms of segmentation performance. Therefore, we conclude that the

proposed segmentation method is robust across the variety of image

qualities present in the clinical evaluation dataset.

4. Discussion and conclusions

This paper has presented three main technical contributions: a

feature-based segmentation strategy adapted to US images, a gap

completion method, and a novel quantitative image quality assess-

ment approach to assess segmentation performance.

The complete US image segmentation framework introduced in

this paper is based on a feature-based fuzzy connectedness segmen-

tation method and requires manual placement of the seeds, after

which the remaining steps are performed automatically. The selec-

tion of the threshold was fixed for this application, in future might

be automated by, for instance, the method of Miranda et al. (2008).

The proposed approach uses structural and edge information based

on local phase, instead of intensities and intensity gradients, to drive
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he segmentation. The resulting segmentation is then completed by

lling one or more gaps caused by shadows or artefacts in the seg-

ented object of interest using a shape descriptor. A final regularisa-

ion based on mean curvature flow is performed to smooth the final

ontours.

Although more conceptually advanced fuzzy connectedness

ethods exist, such as RFC and IRFC, it remains to be seen how these

ould perform in US images. This paper reports results on AFC ap-

lied to US images, which is the most basic form of FC with affinities

pecially formulated for US image segmentation. Once this basic in-

estigation is reported and the behaviour of AFC understood in its

ost fundamental form, we can then take on investigations to study

ow more advanced forms of FC with the same forms of affinities on

multi-object setting would perform.

We argued that all segmentation methods should report their re-

ults in conjunction with a quantitative image quality analysis to

how that the dataset used is representative of a clinical application,

nd not selected to best suit a particular methodology. A novel quan-

itative image quality assessment protocol based on entropy was pre-

ented and applied to different image partitions to derive interface

cores to show the variability of qualities existing in the dataset, rep-

esentative of a real clinical application. This technique could readily

e adapted to suit images from different clinical applications.

A qualitative and quantitative evaluation was performed on 81

ross-sectional images of the fetal arm across gestation, by using re-

ion and distance-based metrics. The results showed a similar perfor-

ance to manual segmentations. Furthermore, the quantitative im-

ge quality assessment method showed that the performance of the

ethod was robust across a variety of image qualities representative

f a real clinical environment.

The proposed method has undergone clinical assessment on pi-

ot data (Knight et al., 2012a; 2012b; Rueda et al., 2012a) and is now

art of a large clinical study aimed at establishing normative nu-

ritional growth charts of healthy fetuses across gestation (Knight

t al., 2014). The presented framework estimates three main clini-

al measurements from US images: the amount of fetal arm adipose

issue, the fat-free (lean and bone) areas (useful for body composi-

ion assessment), and the adipose tissue percentages for each cross-

ection (normalised measurements with respect to arm size) across

estational ages. In this study, we have analysed cross-sectional data,

ut the method is also suitable to study longitudinal data, towards

chieving a personalised nutritional monitoring of the fetus.

The 2D feature-based FC implementation could readily be ex-

ended to 3D, as local phase and fuzzy connectedness can be eas-

ly extended to 3D. Finally, the proposed framework is motivated by,

ut not limited to this particular application or imaging modality and

ould equally be applied to other soft tissue segmentation problems,

uch as myocardium segmentation (Dietenbeck et al., 2012; Zhu et al.,

010), including contrast-enhanced US (CEUS) images, or intravascu-

ar US (IVUS) (Ciompi et al., 2012; Moraes and Furuie, 2011; Zhu et al.,

011).
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