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a b s t r a c t 

Background: The case count for coronavirus disease 2019 (COVID-19) is the predominant measure used to 

track epidemiological dynamics and inform policy decision-making. Case counts, however, are influenced 

by testing rates and strategies, which have varied over time and space. A method to interpret COVID-19 

case counts consistently in the context of other surveillance data is needed, especially for data-limited 

settings in low- and middle-income countries (LMICs). 

Methods: Statistical analyses were used to detect changes in COVID-19 surveillance data. The pruned 

exact linear time change detection method was applied for COVID-19 case counts, number of tests, and 

test positivity rate over time. With this information, change points were categorized as likely driven by 

epidemiological dynamics or non-epidemiological influences, such as noise. 

Findings: Higher rates of epidemiological change detection are more associated with open testing policies 

than with higher testing rates. This study quantified alignment of non-pharmaceutical interventions with 

epidemiological changes. LMICs have the testing capacity to measure prevalence with precision if they 

use randomized testing. Rwanda stands out as a country with an efficient COVID-19 surveillance system. 

Subnational data reveal heterogeneity in epidemiological dynamics and surveillance. 

Interpretation: Relying solely on case counts to interpret pandemic dynamics has important limitations. 

Normalizing counts by testing rate mitigates some of these limitations, and an open testing policy is 

key to efficient surveillance. The study findings can be leveraged by public health officials to strengthen 

COVID-19 surveillance and support programmatic decision-making. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), 

he cause of coronavirus disease 2019 (COVID-19), was first identi- 

ed in Wuhan, China in December 2019. Since then, countries have 

crambled to monitor the severity and trajectory of the COVID-19 

utbreak and to control its progression using non-pharmaceutical 

nterventions (NPIs). Disease surveillance has mainly relied on case 

ounts to inform public health policies ( WHO, 2020 ). However, 

here has not been a robust evaluation of case counts as a met- 

ic for epidemiological dynamics, nor the varied surveillance ap- 

roaches used to track disease trajectories. 

Case-based surveillance systems have known weaknesses, in- 

luding the strong influence of testing rates which vary widely 
∗ Corresponding author. Address: Institute for Disease Modeling at the Bill & 

elinda Gates Foundation, 500 5th Ave N, Seattle, WA 98109, USA. Tel.: + 1 (425) 

26 3104. 

E-mail address: mvangordon@idmod.org (M.M. Van Gordon). 

t

i  

D  

H  

ttps://doi.org/10.1016/j.ijid.2021.07.042 

201-9712/© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Soc

 http://creativecommons.org/licenses/by/4.0/ ) 
cross space and time ( Haider et al., 2020 ). Case counts can be 

easured inconsistently, testing capacity is limited, and eligibil- 

ty policies are variable. It is critical to understand the limitations 

f available data and to identify metrics that are robust to these 

hallenges, particularly for low- and middle-income countries 

LMICs). 

There is general recognition that surveillance system perfor- 

ance can be a challenge in LMICs, and that understanding dis- 

ase surveillance is key to system improvement and produc- 

ion of representative data ( Petti et al., 2006 ). Existing efforts 

o evaluate LMIC surveillance systems, however, are largely qual- 

tative, country-specific or based on commentary ( Alwan, 2020 ; 

arahbakhsh et al., 2020 ; Ibrahim, 2020 ). Further, most national- 

evel studies of NPI impacts focus on high-income countries, but 

here is evidence that these insights cannot be readily general- 

zed to LMIC settings ( Brauner et al., 2020 ; Chen et al., 2020 ;

ehning et al., 2020 ; Flaxman et al., 2020 ; Haider et al., 2020 ;

siang et al., 2020 ; Islam et al., 2020 ). This leaves an important
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Figure 1. Methods overview. Time series for cases (orange), tests (blue) and positivity (green) for South Africa and Bangladesh. Cases and tests are plotted in units per 10 0 0 

people. Vertical lines indicate detected change points on each series. National changes in testing policy are shown as blue bars (see Section 2.1 for policy descriptions). 

Positivity change points are overlaid with case and test changes. Change points from the three time series are grouped in time, and shading on positivity changes indicates 

grouping tolerance. Category labels for change point groups are shown above positivity and described in Figure 2 . Black arrows indicate changes in non-pharmaceutical 

interventions (NPIs); arrow direction indicates an increase or decrease in stringency. For Categories D and E, Y(es) and N(o) in boxes below positivity indicate whether there 

is a co-occurring NPI change inverse to the change in slope of positivity. 
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nowledge gap in understanding how to evaluate and interpret 

OVID-19 epidemiological data from LMICs. 

To address the gap in systematic interpretation and evalua- 

ion methods, statistical analysis techniques were leveraged to de- 

ect changes in underlying properties of COVID-19 time series 

urveillance data across 31 LMICs. With this information, detected 

hange points were categorized as likely driven by epidemiologi- 

al changes or non-epidemiological influences, such as noise. This 

rovides a quantitative and automated approach to analysing epi- 

emiological surveillance data. Imperfect information is used de- 

pite data weaknesses, deriving insights from information available 

n LMICs that may otherwise be overlooked. The approach is fast 

nd highly portable, well suited to looking across countries, and 

as minimal data requirements. 

This paper presents the methods for the analysis, including the 

tatistical model, change point categorization, and evaluation of 

pidemiological change co-occurrence with NPIs. Next, the paper 

iscusses validation of the method, the usefulness of open testing, 

omparisons of country surveillance characteristics, and considera- 

ion of subnational dynamics. Finally, the authors elaborate on the 

ignificance of the results, broader conclusions, and relevance for 

ublic health applications. 

ethods 

The methods are outlined in Figure 1 for two example coun- 

ries: South Africa and Bangladesh. Details about each step are pre- 

ented in the following subsections. 

ata 

National-level case and testing data were used, as well as 

ecords on national policies for testing and NPIs ( Hale et al., 
342 
020 ; Roser et al., 2020 ). Test positivity was calculated by divid- 

ng cases by tests. Testing policy is indicated by ordinal values: 

ero indicates no testing policy; one indicates testing of those 

ith symptoms who meet specific criteria (e.g. known contact 

ith a positive individual); two indicates testing of any symp- 

omatic individuals; and three indicates open public testing. For 

outh Africa, provincial-level data on COVID-19-confirmed deaths, 

ases, tests and excess mortality were also used ( Bradshaw et al., 

020 ; Mkhize, 2020 ; National Institute for Communicable Diseases, 

020 ; Statistics South Africa, 2020 ). 

Countries were selected for analysis based on three conditions: 

vailable case data, available testing data, and human development 

ndex (HDI) score. Of those with data, the countries in the lowest 

hird of HDI score were included, all of which are considered low- 

r middle-income in 2020–2021 by the World Bank. All data used 

n this research are public. Further details on data and definitions 

re given in Appendix A.1 . 

hange point detection 

ELT change detection 

Change point detection is a set of approaches for identifying 

oints in time where the statistical properties of a time series 

hange ( Truong et al., 2020 ). In this study, change point detec- 

ion was applied to epidemiological time series (cases, tests and 

ositivity) and national policy time series; details are given in 

ppendix A.2 . Without a-priori knowledge of the appropriate num- 

er of changes, the pruned exact linear time (PELT) algorithm must 

e assigned a penalty for the number of changes to identify. In the 

bsence of an established method for this parameterization when 

orking across time series, a novel systematic approach for penalty 

election was developed which enables comparison across time se- 

ies and countries; details are given in Appendix A.3 . 
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Figure 2. Summary of change group categories as determined by their constituent time series changes. Cases, tests and positivity time series are indicated as orange, blue 

and green, respectively. Details of the category interpretations are described in Appendix B . epi, epidemiological. 
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ethod validation 

PELT was applied to synthetic case count data generated by the 

tochastic agent-based COVID-19 simulator (COVASIM) in order to 

est PELT as a robust method for change detection in epidemio- 

ogical time series ( Kerr et al., 2021 ). The model scenario inputs 

nclude step-wise changes in contacts per person per time which 

epresent NPI implementation, as well as a change in testing policy 

rom symptomatic to asymptomatic testing. The model generates 

 simulated time series of cases and tests per 10 0 0 people, from 

hich a positivity time series was calculated. The change point de- 

ection methods described above are applied to the 7-day mean of 

he time series to align with the data smoothing used with the 

mpirical time series. 

hange type categorization 

Change detection identifies changes that may be related to 

ata quality, stochasticity and testing dynamics, in addition to epi- 

emiological changes. The likely causes of changes identified by 

he PELT algorithm were classified based on the co-occurrence of 

hanges from different time series. This categorization simplifies 

he interpretation of epidemiological surveillance, separates signal 

rom noise, and enables broad comparison across countries and 

esting dynamics. 

Detected change points were combined across cases, tests and 

ositivity time series to create change point groups. The tolerance 

or temporal association was set at ±7 days to account for 7- 

ay smoothing and weekly data reporting practices. These change 

roups were categorized as shown in Figure 2 , with details of the 

nterpretation described in Appendix B . To capture all changes that 

ay be epidemiological, both Categories D and E were included as 

pidemiological change in the analysis. These categories are heuris- 

ically defined, but they are informed by validation using the COV- 

SIM simulations and a qualitative understanding of epidemiolog- 

cal surveillance dynamics. 

PI alignment 

Change points classified as epidemiological were assessed for 

hether they were associated with NPI changes. Timings of known 

PIs in the empirical data were lagged by 9 days to account for 

irus incubation time and the delay from symptom onset to test- 

eeking ( Qin et al., 2020 ). A change point was considered to be

ligned with an NPI when two conditions were met: (1) an epi- 

emiological change co-occurs with an offset NPI; and (2) the 

hange in NPI stringency is inverse to the concurrent change in 

ositivity slope. The second condition included occasions when 

tringency increased and positivity decreased, as well as occasions 

hen stringency decreased and positivity increased. 
343 
esults 

ynthetic modelling validates PELT as a robust method for change 

etection in epidemiological time series 

Applicability of the PELT method for epidemiological systems 

as validated before applying it to the surveillance data. PELT 

hange detection was applied to data from the transmission model 

escribed above. The sensitivity of change point detection to pa- 

ameterization is illustrated in the top two case rate time series 

f Figure 3 . The bottom positivity time series shows the detected 

hange points for all time series, parameterized by the method de- 

cribed in Appendix A.3 . PELT successfully identifies step changes 

n NPI and testing policies, as well as slope changes in cases, tests 

nd positivity. Further, the categories of change point groups are 

orrectly identified in line with the classification scheme, labelled 

n the positivity time series in black and purple boxes and de- 

cribed in Figure 2 . 

esting rates and policies impact how surveillance measures should 

e interpreted 

The relevance of testing rates and the influence of testing pol- 

cy are illustrated using time series for Bangladesh in the context 

f local events ( Figure 1 ). Cases peaked in early July, an apparent

pidemiological turning point if cases were considered alone. Si- 

ultaneously, however, a new policy was implemented to charge 

or testing, and thus there was a decline in testing ( Cousins, 2020 ).

his resulted in no change in positivity, and contradicts the inter- 

retation of the case reduction as a declining outbreak. Similarly, 

he dip in case rate in early August was accompanied by a dip in 

esting during the Eid al-Fitr holiday; again, there was no change 

n positivity. 

While this recommends positivity as a surveillance metric in- 

tead of case counts alone, further consideration of testing policy 

omplicates the picture. Test eligibility in Bangladesh is based on 

ymptoms rather than open testing, meaning that positivity is in- 

uenced by the prevalence of both COVID-19 and other respira- 

ory illnesses. This limits the potential for positivity to detect epi- 

emiological changes, and the positivity curve for Bangladesh is 

argely flat. An elaboration of COVID-19 surveillance considerations 

s given in Appendix C . 

pidemiological change detection is more influenced by testing policy 

han by testing rate 

PELT change detection and change point categorization were 

pplied to all 31 LMICs in the dataset. Surveillance system effi- 

iency was quantified as the percentage of all detected change 

oints classified as epidemiological (i.e. epidemiological change de- 

ection rate). Linear fits of epidemiological change detection were 

ompared by tests per 10 0 0 people and by testing policy ( Figure 4 ).
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Figure 3. Synthetic model time series; detected change points are shown as vertical lines. The upper plot shows detected change points in the case time series using a high 

penalty, which promotes sparse change point detection. The middle plot shows detected change points in the same time series as above, but using a low penalty. The bottom 

plot shows positivity time series overlaid with detected change points from all time series, as indicated in the change point key. Change group categories are indicated in 

boxes above the plot as described in Figure 2 . NPI, non-pharmaceutical intervention. 

Figure 4. Percent of detected changes categorized as epidemiological (epi) for each country by tests per 10 0 0 people (left) and binned by testing policy (right) at the time 

of change detection. Linear regression shown as dotted line on left. Box and whisker plots on right show quartiles, range and median, with means plotted as gray diamonds. 

Note that binned calculations cause the maximum epidemiological change detection rate to differ between the two plots. 
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Figure 5. Margin of error for random sampling of 1% prevalence plotted by 95th 

percentile of national testing rate and population of each country in the dataset. 

See Appendix D for details on standard error calculations. DRC, Democratic Republic 

of Congo. 
he results indicate that the ability to identify epidemiological 

hange has a stronger relationship with testing policy than with 

ests per 10 0 0 people. Open testing is the only testing policy bin

ith a mean or median epidemiological change detection rate as 

igh as 50%, but with a wide range, indicating that open testing 

olicy is necessary but not sufficient for quality surveillance (with 

utlier exceptions). 

Further, LMICs have the testing capacity to measure prevalence 

ith precision. Based on the 95th percentile of their daily test- 

ng rates, nearly all LMICs could measure down to 1% prevalence 

ith a margin of error no larger than ±1% if random sampling 

as used for testing ( Figure 5 ). Only three countries hover around 

he margin of error to prevalence ratio of 1: Malawi, the Demo- 

ratic Republic of Congo and Togo. It should be noted that true ran- 

om sampling is difficult to achieve in any setting, but open test- 

ng policies can approximate random sampling more closely than 

ymptomatic testing. 

hange detection rates and NPI alignment frequency vary across 

MICs 

Figure 6 A shows the wide variation of epidemiological change 

etection rates across LMICs, with Rwanda the highest and 
344 
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Figure 6. Epidemiological change detection rates (A) and non-pharmaceutical intervention alignment rates (B) by country. DRC, Democratic Republic of Congo; Dom. Rep., 

Dominican Republic; NPI, non-pharmaceutical intervention. 
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thiopia the lowest. The percentage of NPIs that are aligned with 

 detected epidemiological change is shown in Figure 6 B, again 

ed by Rwanda. Rwanda performs well by these metrics regard- 

ess of change detection parameterization ( Appendix A.4 ). Nearly 

ll countries in this analysis show at least one detected epidemi- 

logical change. Conversely, approximately half of the countries in 

his analysis show zero alignment of any type of NPI with an epi- 

emiological change, although the number of NPIs implemented in 

hese countries spans a wide range. 

PI alignment with detected epidemiological changes is bimodal and 

ignificant 

The significance of NPI alignment with detected epidemiologi- 

al changes was tested through comparison with alignment rates 

hen NPIs were assigned a random date. All types of NPIs mea- 

ured in this study had significant rates of alignment with epi- 

emiological changes when the zero-alignment mode was ex- 

luded (maximum P -value = 1.38e-10). The distributions of ran- 

om NPI alignment were calculated by re-assigning random dates 

o NPIs by type and then finding alignment rates for n = 150 boot- 

trapping. Across NPIs, the rate of random NPI alignment with epi- 

emiological change had a mean of 11.6% and a standard devia- 

ion of 3.64% (grey violin distributions, Figure 7 ). When analysed 

y country, nearly all NPI alignment rates were either higher or 

ower than the random date distributions (cyan circles, Figure 7 ). 

his indicates two modes of detected NPI alignment. Excluding the 

ode of zero NPI alignment, mean NPI alignment ranged from 50% 

or restrictions on internal movement to 33% for restrictions on 
345 
athering (black squares, Figure 7 ). Differences in alignment rates 

etween NPI types were not significant. Potential differences in 

PI alignment rates were confounded by synchronous implemen- 

ation of NPIs, although there is some evidence to support the ef- 

ect strength of workplace closing and stay-at-home requirements 

 Appendix E ). 

ational-level results obscure subnational heterogeneity in 

pidemiological dynamics and surveillance 

To investigate subnational heterogeneity, the same analyses as 

bove were conducted but at the province level in South Africa. 

igure 8 A shows substantial variability in provinces by both NPI 

lignment rate and by epidemiological change detection rate. In 

ine with results from national-level data, the epidemiological 

hange detection rate was not correlated with mean tests per 10 0 0 

eople. Due to reporting limitations, the NPIs here are national 

olicies. 

Three edge cases were selected from the scatter plot in 

igure 8 A (Limpopo, Northern Cape and Western Cape) to com- 

are time series of positivity, COVID-19-confirmed deaths and to- 

al estimated excess mortality ( Figure 8 B). The differences in the 

iming and trajectories of the time series illustrate strong subna- 

ional variability in underlying epidemiological dynamics that may 

e overlooked when time series are aggregated to the national 

evel. 

Variation among provinces in the difference in magnitude be- 

ween excess mortality and COVID-19 deaths points to differences 

n their surveillance systems. Western Cape is the only province 
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Figure 7. Percentage of each type of non-pharmaceutical intervention (NPI) that is aligned with a detected epidemiological change. Cyan circles are data for individual 

countries, sized by total number of NPIs by type and country. Gray violins are distributions of NPI alignment for random NPI dates. Black squares indicate weighted mean of 

country data for NPI alignment greater than zero; error bars indicate standard error. NPIs include both easing and tightening of policy restrictions. 
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here the magnitude of excess deaths resembled that of COVID- 

9-confirmed deaths throughout the time series. In Northern Cape, 

he peak of excess deaths was approximately three times higher 

han the COVID-19-confirmed deaths, suggesting substantial under- 

eporting. 

iscussion 

This study demonstrated a standardized and quantitative ap- 

roach to the analysis of epidemiological surveillance time series 

hat can be automated for improved interpretation and comparison 

cross countries. The interpretation of epidemiological trajectories 

s more informative when cases are normalized by tests, highlight- 

ng the disadvantages of symptomatic testing for outbreak track- 

ng and public health purposes. These findings align with litera- 

ure emphasizing the importance of positivity and test sampling 

trategies ( Hilborne et al., 2020 ; Pearce et al., 2020 ). The finding

f strong alignment of NPIs with epidemiological changes is con- 

istent with existing literature on global NPI impacts ( Haug et al., 

020 ; Islam et al., 2020 ; Liu et al., 2020 ). When the analysis of

hange types are applied to evaluate the efficiency of national 

urveillance systems, Rwanda stands out as a country with a strong 

urveillance system, which is consistent with qualitative evaluation 

 WHO Regional Office for Africa, 2020 ). 

This approach substantially broadens the scope of previ- 

us analyses of COVID-19 surveillance data in LMICs. Statisti- 

al change detection methods were used on COVID-19 surveil- 

ance time series from 31 LMICs to differentiate epidemiological 

hanges from changes related to stochasticity, data quality and 

on-epidemiological dynamics. This maximizes the insights gained 

rom limited data, reduces erroneous interpretations of epidemio- 

ogical time series, and enables quantitative comparisons of disease 
346 
urveillance approaches. The epidemiological change detection rate 

as used as a proxy for surveillance system efficiency, and was 

hown to be not as strongly associated with testing rate as with 

pen testing policies. Substantial variation was found in epidemio- 

ogical and surveillance dynamics across countries and in the sub- 

ational analysis. 

This analysis has limitations related to the data as well as 

he methods. Simultaneously, these data challenges are precisely 

he motivation for developing the methods: maximizing informa- 

ion with limited data. The data are potentially biased by un- 

easured factors such as fluctuations in testing capacity and un- 

ocumented population sampling strategies over time, delays and 

emporal uncertainty due to reporting systems, and incentives for 

ase-finding. Defining co-occurrence when working with impre- 

ise time series is a challenge, partially mitigated by considering 

ncertainty bounds when defining change groups. Of course co- 

ccurrence does not establish causality. In PELT change detection, 

he changes detected are influenced by the choice of the spar- 

ity parameter. However, in a sensitivity analysis of the novel pa- 

ameterization approach, Rwanda remained the leader in surveil- 

ance system performance, regardless of the parameterization 

hoice. 

Results from this analysis highlight that surveillance data must 

e used carefully to ensure proper programmatic responses. As 

 sufficient and less resource-intensive approximation of random 

ampling, open testing would enable better estimation of disease 

revalence and examination of NPI impacts in geographies with- 

ut reliable hospitalization data, death records or seroprevalence 

urveys. NPIs without epidemiological changes may indicate inef- 

cacy of policies, but may also indicate shortfalls of surveillance 

ystems, which undermines the ability of policy makers to make 

vidence-based decisions. The methods could be further developed 
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Figure 8. (A) South African provinces by aligned non-pharmaceutical intervention (NPI) fraction vs epidemiological detection rate, with colour indicating the mean over time 

of tests per 10 0 0 people. (B) Time series from three example provinces. Positivity shown in green on left y-axis. Deaths per 10 0 0 people shown on the right y-axis: excess 

mortality in black; COVID-19-confirmed deaths in brown. 
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nd applied not just to COVID-19 but also to surveillance interpre- 

ation for other poorly measured diseases, enabling more informed 

ecision-making and targeted improvements in surveillance sys- 

ems. 
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ppendix A. Methods 

ppendix A.1. Data and definitions 

The case rate was defined as the number of individuals con- 

rmed positive for the SARS-CoV-2 virus per population, regard- 

ess of symptoms. The testing rate per population was defined as 

he number of people tested (i.e. excluding duplicate confirmatory 

ests) divided by the population, regardless of the test outcome. To 

ddress the dependence of case rate on testing rate, case counts 

ere normalized by the number of tests conducted, creating the 

lternate metric of test positivity rate. 

For the purposes of comparing between countries and over 

ime, ‘mean testing policy’ was defined as the average over time 

f the ordinal value representing the national testing policy. Thus, 

ower values represent more restricted testing over longer periods 
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f time. Social distancing policies tracked in the dataset include 

he following: closing schools, closing workplaces, cancelling public 

vents, restricting gathering sizes, closing public transport, stay-at- 

ome requirements, restricting in-country mobility, and restricting 

nternational travel. 

Weekly cases, testing and death data were interpolated using a 

ubic spline. All daily cases, testing and death data were smoothed 

sing a centred 7-day rolling average. Error bars on plots show 

tandard error. 

ppendix A.2. PELT change detection 

The naive approach to generating an exact solution to time se- 

ies segmentation is to test all possible solutions. For an unknown 

umber of changes, this also requires testing a sufficiently large set 

f possible number of changes. The PELT change detection method 

as used to address these computational tractability issues. 

PELT minimizes the sum of costs from a criterion function 

cross time series segments while balancing model complexity by 

mplementing a linear penalty function and change point pruning. 

t each iteration of cost minimization for a potential set of change 

oints, time points that cannot be a global minima are removed 

rom future consideration. The PELT method, developed with ap- 

lications in genetics and finance in mind, is increasingly used 

or climate and epidemiological applications ( Killick et al., 2012 ; 

issoko et al., 2017 ; Ouedraogo et al., 2018 ). 

To detect changes in slope of the epidemiological time series, 

he first derivative was used as input for the PELT algorithm. For 

etection of discrete step changes in policy time series, the data 

ere fed directly into the change detection algorithm without tak- 

ng a derivative. For all time series, the radial basis function kernel 

as used for the PELT detection algorithm. 

ppendix A.3. PELT parameterization 

To date, there is no established method for parameterizing the 

ELT change density penalty across time series when the number 

f changes is not known. One of the ways to choose penalty values 

cross time series would be to unify the number of changes de- 

ected in each time series. This, however, imposes the assumption 

hat all time series exhibit the same general change frequency and 

nly the point in time of a change is unknown. 

This paper presents a novel approach for systematic parameter- 

zation when identifying an unknown number of changes in slope 

ver many time series, as for this case with multiple epidemiolog- 

cal time series across countries. To accomplish this, change detec- 

ion was conducted in a sweep over parameter space. The change 

oints detected using a given value in parameter space slice the 

ime series into segments, each of which is input into a linear re- 

ression. The standard error for each of those linear regressions is 

alculated and then averaged, weighted by segment length. 

The mean standard error associated with each penalty value, 

hen plotted over parameter space, is characterized by a series 

f plateaus that correspond to plateaus in the number of changes 

ound with each penalty value ( Figure 9 , top row). Descending 

hrough penalty values in the penalty parameter space, the low- 

st penalty associated with each plateau is selected to represent 

hat plateau. 

Each time series is thus associated with a sparse set of penalty 

alues, ordered from largest penalty (low change point density) to 

mallest penalty (high change point density). The penalty values 

re unique to each time series, but represent the same ordered 

rogression of plateaus. To illustrate, change detection with differ- 

nt ranked penalties for South Africa and Bangladesh are shown in 

reen in Figure 9 . 
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Penalty values for each unique time series can then be cho- 

en based on their order in the ranked plateau list. This enables a 

rincipled approach to parameterization that creates change den- 

ity parity across time series, allowing for the likelihood that some 

ime series are characterized by more changes than others. Among 

ll time series and countries in this analysis, the minimum number 

f plateaus detected was four. Therefore, the fourth penalty value 

as chosen for all time series. 

ppendix A.4. Parameterization sensitivity analysis 

A parameterization sensitivity analysis was conducted to eval- 

ate the influence of penalty selection on the analysis results. Re- 

ults of country ranking by epidemiological change detection rate 

ere compared for different penalty plateau selections. Skipping 

enalty rank one for which no changes may be detected (see ex- 

mples in Figure 9 ), it was found that, regardless of the penalty 

ank used, Rwanda appeared at the top of the list with the highest 

pidemiological change detection rate ( Figure 10 ). 

ppendix B. Change categorization 

ppendix B.1. Heuristic interpretation 

Detected change points across cases, testing and positivity 

ime series are combined into groups by temporal co-occurrence. 

hese groups are then categorized by their constituent time series 

 Figure 2 ). Dynamical interpretation of the constituent time series 

ids in the characterization of each change group category, as fol- 

ows. 

ategory A: Single variable change 

As positivity is defined according to the arithmetic relationship, 

ositivity = Cases/Tests , a change in any one of the variables should 

e accompanied by a change in at least one of the other variables. 

 single change in only one of the variables indicates that the 

hange arises from issues in the data or noise. These single vari- 

ble changes often occur early in the time series, when the num- 

ers of cases and tests are smaller, signal-to-noise ratios are lower, 

nd confidence intervals are larger. 

ategory B: Cases and tests change 

Tests and cases move up or down together. What might look 

ike a significant change in cases is associated with a change in 

esting, likely not a change in epidemiology. Factors affecting test- 

ng include testing capacity, care-seeking behaviour, and testing 

ampling policy. With this change category, the change in test- 

ng could be a change in capacity or care-seeking, but the lack of 

hange in positivity indicates that testing is still sampling the same 

opulation in the same way, without changes in epidemiology. 

ategory C: Tests and positivity change 

Positivity change is driven by testing change, not a change in 

ases. An increase or decrease in testing does not impact abso- 

ute numbers of detected cases, which suggests a change in test 

ampling. Dynamics that would produce this pattern include, for 

xample, adding population with lower prevalence in the case of 

pen testing, or limiting testing to a higher-prevalence population 

n the case of symptomatic testing. It is also possible, however, that 

 change in testing sampling masks a simultaneous change in epi- 

emiology. In this situation, the change in testing would have to 

recisely offset the change in epidemiology to observe this cate- 

ory of change association. Category C is thus designated to likely 

ndicate a non-epidemiological change. 
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Figure 9. Top row: change detection results over parameter space for the positivity time series of South Africa (left) and Bangladesh (right). For each penalty value, the 

associated number of changes is plotted in purple on the left y-axis, and the mean standard error of linear regressions of the time series segments are plotted on the right 

y-axis. The parameter values selected to represent plateaus are shown as brown dotted vertical lines. Bottom row: positivity time series for South Africa (left) and Bangladesh 

(right) plotted with detected changes as vertical lines for each of the four penalty values selected to represent plateaus in the top row. std err, standard error. 
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ategory D: Cases and positivity change 

Positivity change is driven by a change in cases without a 

hange in testing. This suggests a change in epidemiology, but 

he significance may be different under random vs symptomatic 

esting. Under random testing, this type of change arises only 

ith a change in SARS-CoV-2 epidemiology. Under symptomatic 

esting, the restriction of sampling to COVID-like illness (CLI) 

eans that a change in the epidemiology may be confounded by 

 change in CLI epidemiology. Note also that symptomatic test- 

ng captures changes in symptomatic SARS-CoV-2 (i.e. cases of 

OVID-19) alone. Another possible explanation for this combina- 

ion of changes is a change in sampling without a change in 

he absolute number of tests. This might occur, for example, in 

 switch from symptomatic to open testing. For this reason, this 

hange combination was categorized as likely instead of certainly 

pidemiological. 
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ategory E: All three variables change 

With a change in cases, tests and positivity, it remains difficult 

o disentangle epidemiological from non-epidemiological factors. 

ategory E can be considered a combination of Categories C and D, 

nd the testing and case changes may or may not be independent. 

o capture all changes that may be epidemiological, Categories D 

nd E were considered as epidemiological changes, and Categories 

, B, and C were categorized as non-epidemiological changes. 

A principal component analysis (PCA) supporting the separabil- 

ty of change categories is detailed in Appendix B.2 . 

ppendix B.2. PCA analysis of change categories 

In addition to the dynamical interpretation of constituent time 

eries ( Appendix B.1 ), the separability of change categories is 

hown with PCA. The surveillance results of different countries are 
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Figure 10. Countries ranked by epidemiological change detection rate, as in Figure 6 , shown for different choices of penalty parameterization. Order top to bottom follows 

order of time series of Figure 9 , without rank one for which there are often no changes. Epi, epidemiological; DRC, Democratic Republic of Congo; Dom. Rep., Dominican 

Republic. 

Figure 11. Principal component analysis (PCA) of countries by change category detection rate (i.e. number of changes in each category divided by total changes detected for 

each country). (A) Explained variance ratio by PCA component number. (B) PCA factor loadings by change categories. 
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uantitatively characterized by PCA of the relative frequency with 

hich they detect different categories of changes. PCA establishes 

ow categories do or do not represent axes of difference across 

ountries. 

Based on the curve of explained variance ratio by PCA com- 

onents ( Figure 11 A), the first three PCA components were se- 

ected to examine factor loadings ( Figure 11 B). Each component 

s dominated by a single category, in PCA component order: Cate- 

ory D (epidemiological change); Category B (testing artifacts); and 

ategory E (confounded). Each of these PCA components is anti- 

orrelated with Category A (noise). These relationships between 

he different change categories are consistent with the dynamical 

i

350 
nterpretation. Figure 12 shows the frequencies of the change cat- 

gories that dominate the factor loadings for all countries in the 

ataset. 

ppendix C. Surveillance considerations 

The considerations for three components of SARS-CoV-2 epi- 

emiological surveillance – population, testing and their role in 

urveillance metrics – are laid out in basic terms below. The test- 

ng strategy of random testing with the surveillance metric of pos- 

tivity is shown to be the combination that best represents SARS- 

oV-2 prevalence. Here, the terminology of SARS-CoV-2 is used to 

nclude all asymptomatic and symptomatic infections. 
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Figure 12. Change category frequencies by country for Categories D, B and E, cho- 

sen according to the dominant categories in the principal component analysis factor 

loadings. DRC, Democratic Republic of Congo; Dom. Rep., Dominican Republic. 
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Population is composed of people with and without SARS-CoV- 

. Of those with SARS-CoV-2, some are asymptomatic and some 

re symptomatic. Of those without SARS-CoV-2, some are non- 

ymptomatic, others have symptoms of non-CLI and some have CLI 

ymptoms. 

Relevant components of testing include eligibility for testing 

nder a given testing framework, as well as testing rate and ca- 

acity. Under random sampling, the general population is eligible 

or testing; symptomatic testing restricts eligibility to people with 

LI symptoms. Testing rate is a measure of tests conducted per to- 

al population, while testing capacity indicates the proportion of 

ligible individuals who are actually tested. 

Detected cases as a surveillance metric is a function of the 

umber of tests, the eligible testing pool, and the total cases within 

he testing pool. Positivity is defined as detected cases per tests 

onducted. 

Applying these formulations to surveillance metrics, one can 

ee that detected cases under symptomatic testing is not only a 

unction of number of tests conducted, but also of the number of 

ndividuals exhibiting CLI symptoms. CLI, in turn, is a function of 

on-SARS-CoV-2 CLI and symptomatic SARS CoV-2. 

Positivity under symptomatic testing is normalized for number 

f tests conducted, measuring not general prevalence in the popu- 

ation, but the portion of CLI that is symptomatic COVID-19. Met- 

ics derived from symptomatic testing do not account for asymp- 

omatic SARS-CoV-2 and are confounded by non-SARS-CoV-2 CLI. 

As with symptomatic testing, detected cases under random 

esting are a function of number of tests. The sampling, however, is 

aken from the general population, and thus positivity under ran- 

om testing is a metric that represents prevalence. 

As testing rate approaches total eligible under symptomatic 

esting, cases detected approaches CLI COVID-19 cases. Note, how- 

ver, that testing coverage (i.e. tests/eligible) is not only influenced 

y the number of tests processed, but also by reporting rate. Those 

ho seek testing are a subset of those who would be eligible for 

esting. 

Assuming capacity to test all eligible individuals and perfect re- 

orting rates, symptomatic testing would still yield only the num- 
351 
er of symptomatic COVID-19 cases. For random testing, testing 

ate is equivalent to testing coverage, and case count depends on 

esting. The random testing positivity metric does not depend on 

esting rate, and captures both symptomatic and asymptomatic 

ases of COVID. The relationship shown empirically in Section 3.3, 

herein increasingly open testing policies are associated with in- 

reasingly effective epidemiological change monitoring, supports 

he equation-based result that random testing is more suited to 

pidemiological surveillance. 

Population components: 

Population = SARS - CoV - 2 + Non - SARS - CoV - 2 

SARS - CoV - 2 = SARS - CoV - 2 asympt + SARS - CoV - 2 sympt 

Non - SARS - CoV - 2 = Non - SARS - CoV - 2 non - sympt 

+ Non - SARS - CoV - 2 sympt non - CLI 

+ Non - SARS - CoV - 2 sympt CLI 

Testing components: 

Eligible rand = Population = SARS - CoV - 2 + Non - SARS - CoV - 2 

Eligible sympt = CLI = Non - SARS - CoV - 2 sympt CLI + SARS - CoV - 2 sympt 

testing r ate = Tests/Population 

testing coverage = Tests/Eligible 

Surveillance metrics: 

Cases total = SARS - CoV - 2 

Cases detected = Tests ∗ (Cases / Eligible) 

Positivity = (Cases detected / Tests) = (Cases / Eligible) 

Symptomatic testing: 

Cases detected sympt = Tests sympt ∗ (Cases sympt / CLI) 

Positivity sympt = ( Cases sympt / CLI) 

Random testing: 

Cases detected r and = Tests rand ∗ (Cases total / Population) 

Positivity rand = (Cases total / Population) = Prevalence 

ppendix D. Summary statistics 

For the purposes of understanding the sensitivity of a given 

evel of testing, the standard error for positivity (number of pos- 

tive tests per total number of tests), is defined as follows: 

E = 

√ 

p ( 1 − p ) 

N 

∗ N − n 

N − 1 

here n equals total number of tests, N equals population, and p 

quals the number of positive tests per the total number of tests. 

he corresponding margin of error equals one-half of the confi- 

ence interval, and when calculated at the 95% confidence level 

s as follows: 

ME ( 95 %) = 1 . 96 ∗ SE 

Note that this formulation of confidence interval is not reliable 

hen the number of tests is very small, or probabilities are very 

lose to zero or one. Under the condition of true random testing, 

ositivity is a direct measure of prevalence. At any given preva- 

ence, the margin of error can be calculated for the number of tests 

dministered and the total population. This calculation was carried 

ut for all LMICs in the dataset. The margin of error was then nor- 

alized by the given prevalence rate. Based on these relationships, 

E ( 95 %) /Prevalence is higher at lower prevalence. In other words, 

recise measurement becomes increasingly more difficult as preva- 

ence decreases. 

ppendix E. NPI correlation 

Figure 13 illustrates aligned NPI co-occurrence. Correlation 

core is an indicator of how often a given type of aligned NPI is 

mplemented simultaneously with another aligned NPI. Although 

lignment of an NPI with an epidemiological change can be estab- 

ished, in the case of co-occurrence of two or more aligned NPIs, 

t is challenging to separate possible effects among the NPI types. 

onetheless, low correlation score accompanied by high frequency 
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Figure 13. Top: Correlation matrix of co-occurrence of non-pharmaceutical inter- 

ventions (NPIs) aligned with epidemiological changes. Correlations are normalized 

along the y-axis: counts of co-occurring NPIs are divided by NPI counts on the diag- 

onal. Bottom: Correlation score and frequency of aligned NPIs by type. Correlation 

score is the sum of the correlation matrix along the y-axis, normalized to 1. Nor- 

malized frequency is the count of aligned NPI by type normalized to 1. 
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ay be indicative of NPIs more likely to be the dominant forcing. 

his is the case with stay-at-home requirements and workplace 

losing (bottom plot of Figure 13 ). Conversely, high correlation as- 

ociated with low frequency indicates NPIs that do not often align 

ith epidemiological change independently from other aligned NPI 

ypes. The NPIs of cancelling public events and restrictions on in- 

ernal movement are examples of this case. 
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