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ABSTRACT

A transcriptional module (TM) is a collection of
transcription factors (TF) that as a group,
co-regulate multiple, functionally related genes.
The task of identifying TMs poses an important
biological challenge. Since TFs belong to evolutio-
narily and structurally related families, TF family
members often bind to similar DNA motifs and
can confound sequence-based approaches to TM
identification. A previous approach to TM detection
addresses this issue by pre-selecting a single
representative from each TF family. One problem
with this approach is that closely related transcrip-
tion factors can still target sufficiently distinct genes
in a biologically meaningful way, and thus,
pre-selecting a single family representative may
in principle miss certain TMs. Here we report
a method—TREMOR (Transcriptional Regulatory
Module Retriever). This method uses the Mahalano-
bis distance to assess the validity of a TM and
automatically incorporates the inter-TF binding
similarity without resorting to pre-selecting family
representatives. The application of TREMOR on
human muscle-specific, liver-specific and cell-
cycle-related genes reveals TFs and TMs that were
validated from literature and also reveals additional
related genes.

INTRODUCTION

Precise spatio-temporal regulation of gene expression is
critical for normal functioning of all living organisms.
Gene expression is controlled largely at the level of
transcription. Transcriptional regulation is carried out
by cooperatively interacting transcription factor (TF)
proteins that bind to specific cis-regulatory regions in
the relative vicinity of the gene, often in a sequence-
specific manner (1,2). This cooperatively interacting group
of TFs is termed the transcriptional module (TM) and
the identification of TMs is important for elucidating the

transcriptional control underlying a set of coordinately
regulated genes (3–7).

The computational problem of TM identification can be
stated as follows. Given a positive set of gene promoters
(P) that are suspected to be transcriptionally co-regulated,
as well as a negative control (N), identify the group(s)
of TFs or DNA motifs as a proxy underlying the
co-regulation. Numerous computational approaches for
detecting TMs have been previously proposed that
essentially detect groups of motifs that are enriched in
P relative to N. Here, we focus specifically on the methods
that use known motifs compiled in databases such as
TRANSFAC (8) and JASPAR (9). Several tools, such
as Toucan (10), CONFAC (11) and oPOSSUM (12),
search for known and novel single motifs enriched in
P. Certain other tools search for enriched TF pairs and
are more relevant to TM identification. For example,
oPOSSUM2 searches for TF pairs or triplets that are
enriched in P relative to N using the Fisher exact test (13),
and CREME searches for enriched groups of motifs
within a pre-specified distance from each other (14).

TM identification methods, and indeed all sequence-
based analysis of transcriptional regulation, suffer from
one limitation. Structurally related TFs, usually classified
as a family, recognize similar DNA motifs, and it is
currently not possible to disambiguate TFs in the family
from one another based on a DNA element or motif
alone. One approach to address this ambiguity is to use
a single representative for a group of TFs with similar
binding motifs. Sandelin and Wasserman (15) have
previously provided family-based positional weight
matrices (PWM). In the TM detection tool oPOSSUM2,
TFs are first clustered (through single linkage) based on
their pairwise PWM similarities and then a single PWM
is selected as the representative for each cluster. The
arbitrariness of the pairwise distance threshold, as well as
low accuracy of single-linkage clustering can be proble-
matic. By considering TMs consisting only of the family
representatives, oPOSSUM2 drastically reduces the com-
putational time. Nevertheless, because assessing larger
combinations of PWMs can be computationally prohibi-
tive, oPOSSUM2 only assesses TMs consisting of at most
three PWMs. The groups of family representatives that are
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enriched in P relative to N are expanded into their
respective members, and all member combinations are
finally assessed for enrichment. As we argue in the
following, there may be problems with this approach of
pre-selecting PWM cluster representatives. Other TM
detection tools, such as CREME, that do not distinguish
among highly similar PWMs, must account for over-
lapping binding sites of similar PWMs in order to avoid
detecting invalid TMs.

We have previously shown that the binding sites for
a TF often fall into distinct subtypes and a mixture of
the subtype PWMs can better predict binding sites relative
to an overall PWM (16). These clusters can be similar
at a gross level but differ in subtle features. Thus, even
when two TFs have similar binding sites at a gross
level, these subtle differences may indeed be biologically
relevant. Therefore, by reducing an entire family of TFs
to a single representative PWM, we are likely to miss
biologically relevant targets. On the other hand, if we
incorporate similar PWMs in our analysis, we will be
overwhelmed by largely overlapping binding sites that
do not provide independent information, which is
required by the statistical tests for enrichment. Hence,
ideally we need a measure that automatically down-
weighs such largely overlapping (i.e. high covariance)
binding sites without completely eliminating them from
consideration to avoid missing biologically relevant
signals.

The ‘Mahalanobis distance’ measure was proposed
precisely to estimate distances between two vectors of
interdependent or co-varying variables (17). Given gene
sets P and N, and a potential TM C={c1, c2, . . . , cn}, for
each gene, we first compute the TM vector and then
compute its distance from a ‘Zero’ vector (see Methods
section) using the Mahalanobis distance (MD). Given the
|P| (where |�| represents the size of P) MD values for the
positive genes and |N| MD values for the negative control
genes, we estimate the TM enrichment using a non-
parametric test. To address the combinatorial explosion
when assessing large TMs, we iteratively search for TMs
of increasing size up to five TFs. For each iteration,
we consider all possible extensions of significant TMs
from the previous iteration, and retain only those
extended TMs that yield improvements over the smaller
subsets of TMs that are contained within them. It should
be noted that for the purposes of the analysis presented
here, our only restriction on the spatial clustering of the
binding sites within a TM is that they should be within the
1 kb promoter region in question. This definition of a TM
may differ somewhat from other definitions, which some-
times require more stringent proximity of the binding sites
comprising the TM.

We have applied our tool—TREMOR (this software
will be made available upon request)—to detect TMs in
three human datasets: genes involved in cell cycle, and
genes specifically expressed in liver and in muscle. We
detect several significant TMs involving the TFs known to
be involved in relevant processes or tissue functioning.
A genome-wide search of human promoters using the
significant TMs reveals additional genes that are likely to
be involved in a similar process.

METHODS

PWMmatch score computation

A positional weight matrix is a 4-by-m matrix representing
the DNA-binding specificity of a transcription factor that
binds to an m bases long DNA site. Given a DNA
sequence, the PWM score S is computed by summing for
each nucleotide in the sequence, the position-specific score
for the nucleotide in the corresponding PWM. Let MIN
and MAX be the minimum and the maximum scores
respectively, achievable by a PWM. Thus, the percentile
score for the DNA sequence is (S�MIN)/(MAX�MIN).
Given a 1 kb promoter sequence, we compute the
percentile score for every m long substring of the promoter
(in both strands) and record the maximum of all substring
scores as the promoter score.

Mahalanobis distance

Widely used in the statistical literature, the ‘Mahalanobis
distance’ (17) is a distance measure in the Euclidian setting
that takes into account the correlations among different
coordinates. The distance is defined as

dVðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞV�1ðx� yÞT

q
,

where x and y are two vectors of the same length, and V is
a covariance matrix of coordinates. The introduction of
the covariance matrix has two effects. First, the matrix
normalizes the effects of coordinates: when the coordi-
nates are independent, the distance reduces to the

‘normalized’ Euclidian distance
P

i xi � yið Þ=�i½ �
2

� �0:5
,

where �i is the SD along coordinate i. Second, the
Mahalanobis distance down weighs coordinates that are
highly correlated. Consider the artificial example where we
replicate one coordinate n times, add some small random
numbers (to avoid singularity), and append them to
the inputs x and y. Whereas Euclidian distance will
inflate the influence of the coordinate by (n+1)-fold,
in Mahalanobis distance the weights of the replicated
coordinates are adjusted by the covariance, so the total
weight for the (n+1) coordinates is (about) the same as
a single coordinate. This feature is very useful when some
coordinates are redundant due to the data collection
procedures.
We formulate the TF set enrichment problem using

the Mahalanobis distance as follows. Given positive
gene set P and negative gene set N and a potential TM
C={c1, c2, . . . , cn}, for each promoter g in P and N,
we first compute the vector of TM scores s(g)= [c1(g),
c2(g), . . . , cn(g)], where ci(g) is the score of PWM ci on gene
g. The reference vector is s�=(0, 0, . . . , 0), where 0 is
the minimum achievable score for PWM ci. Let V be the
covariance matrix for the PWMs (defined below), the
score of TM on gene g is dv(s(g),s*).

Euclidian distance

For comparison purposes, we have also implemented the
Euclidian distance measure. This step simply involves
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setting the covariance matrix for a TM of size n to
an identity matrix of size n and repeating the same
algorithm used for computing TMs based on Mahalanobis
distance.

Covariance computation

The Mahalanobis formulation requires us to compute,
for each PWM pair, the covariance between the
scores of the two PWMs. An analytical approach to
computing the covariance between two PWMs seems
difficult. This is because the PWMs can be of different
lengths, and can be aligned in multiple ways. We have
instead followed a sampling strategy. See Figure 1 for an
illustration.
We score a sample of sequences using both PWMs

resulting in matched pairs of scores, which is then used to
compute the covariance. Complications arise because of
unequal PWM lengths and a large sample space. Simple
sampling strategies can lead to inaccurate covariances, as
the number of high-scoring sequences is exponentially
small. Instead, we devised a stratified sampling procedure
by randomly generating sequences using the distributions
dictated by the two PWMs in the following fashion. The
generation requires a parameter r, the minimum overlap
between the two PWMs; we used r=4. Given any two
PWMs Mi and Mj (mi and mj nucleotides long, respec-
tively), we first generated 10 000 random sequences of
mi+2(mj�r) nucleotides each: the first and the last mj�r
sites are sampled i.i.d. using distribution (A,T:0.3,
C,G:0.2), corresponding to human genome composition,
and the middle mi sites are sampled using the nucleotide
distribution according to Mi. We then generated another
10 000 random sequences of length mj+2(mi�r) by
swapping Mi and Mj in our procedure. For each of the
20 000 sequences, we computed the maximum PWM
scores using Mi and Mj and then transformed them into

percentile scores: the percentile of a PWM score s usingMi

is (s�smin)/(smax�smin)� 100, where smax and smin are the
maximally and minimally achievable PWM scores using
Mi. The covariance Vij was defined as the covariance using
the 20 000 pairs of percentile scores.

The covariance as defined above should reflect the
similarity between the binding motifs of the two TFs we
compare, rather than other generic features such as GC
richness. In other words, the covariance should be high
only when the corresponding PWMs are similar, and the
covariance becomes zero if we scramble the sites in the two
PWMs to keep the sequence composition frequency but
destroy the position-specific information. To demonstrate
this property, we scrambled the PWMs by permuting the
sites within each PWM, computed the covariance matrix
using these random PWMs and then compared the result
with the covariance matrix using the actual PWMs. In
both cases, the majority of covariances are negative,
meaning the respective pairs of PWMs are substantially
different and sequences scoring high in one PWM tend to
score low in the other. However, the number of positive
covariances using actual PWMs (1.457%) is five times
higher than that using permuted PWMs (0.310%), as
expected (see Supplementary Figure S4).

The parameter r represents the minimum overlap
between two PWMs. Two different transcription factors
can bind to sites that overlap by 2 or 3 bases. To avoid this
possibility while computing the covariance we required r
to be at least 4. It is also possible that in the determination
of DNA-binding sites for a transcription factor, there may
be slight shift in motifs detected in different experiments.
Thus to allow for this possibility, r should not be too high.
Certainly for a higher value of r, fewer PWM pairs will
achieve high covariance. Any measure of PWM pair
similarity faces this choice (18) and while there is no
objective way, ours is a reasonable choice.

Figure 1. Procedure for computing the covariance of the percentile scores of two TFs (see Methods section).
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Overview of TREMOR

Biologically, a TM is a set of transcription factors that
coordinately regulate a set of genes. Formally, a TM C
of size n is a set of n PWMs. A TM vector corresponding
to a gene promoter is a vector of size n, where the ith
value in the vector is the match score of the ith PWM
against the promoter sequence. For the match score,
we use the maximum percentile score of the PWM on
the promoter sequence thus, each value in the vector
is in the [0, 1] interval. Vector V0 is [0, 0, . . . , 0] with n zeros
(see Methods). We use the Mahalanobis distance to
compute the distance MD(C) between the TM vector
and V0. This distance is an estimate of how well the
promoter matches the TM. Let T={1, . . . , 584} be the set
of 584 vertebrate PWMs in TRANSFAC. Define Di to be
the set of TMs of size i. Let P and N be the positive and
negative promoter sets.

The iterative TM computation (Figure 2) proceeds as
follows:

Initialize. D1=T. For each TM C in D1, and each
promoter in P, compute MD(C). Call this set of distances
DP. Repeat this for the promoters in N; call this set of
distances DN. Using the Mann–Whitney two-sample test,
we test the null hypothesis: median (DP) � median (DN).
This test yields a P-value for C. Retain in D1 only TMs
with P-value � 0.05.

Iterate for i=2 through K.

1) For each TM C in Di�1, create a new TM
C0 =C[{t} where t is from 1 to 584. Compute the
P-value for C0 as above.

2) Of all TMs with i TFs, retain each C0 such that P-value
(C0) is smaller than the P-values of ‘all’ subsets of C0.
In other words, we only retain an extended TM if the
extension improves the P-value. The 1000 TMs of size
i with lowest P-values constitute Di.

Finally, the combined TM list after the ith iteration
potentially includes not only all TMs of size i, but
also all the smaller TMs that could not be extended;
hence the list represents maximal TMs. In practice, not
all TMs produced after the fifth iteration are of size 5
and in some cases, none of the size 4 TMs could be
improved upon.

Recall that we do not remove any PWMs as a
pre-processing step. Consequently, we may detect two
(or more) TMs that are closely related. For instance,
we may detect both (X,Y,Z) and (X,Y,Z0) for PWMs
X,Y,Z and Z0, where Z is very similar to Z0. For brevity
of presentation and interpretation, we remove such
highly similar TMs as a post-processing step. This post-
processing step should not be confused with the
clustering of PWMs and pre-selecting cluster representa-
tives as done by oPOSSUM2 (13). We refer to the final
set of detected TMs after the post-processing step as the
‘non-redundant set’.

Removing highly similar TMs

This step is mainly for ease of reporting and interpretation
of the results and should not be confused with pre-filtering
of similar PWMs as is done by oPOSSUM2 (13). Because
we do not remove similar PWMs as a pre-processing step,
we may detect two TMs that are closely related. For
instance, we may detect both (X,Y,Z) and (X,Y,Z0)
for PWMs X,Y,Z,Z0 where Z is very similar to Z0.
For brevity of presentation and interpretation, we remove
such highly similar TMs as a post-processing step.
Consider two TMs of sizes k and n, k� n. We determine
the overall similarity between the two TMs. We first form
a complete bipartite graph of k and n vertices in the two
parts, and set the weight of each edge (i, j) to be the
covariance between the ith PWM in the first TM and the
jth PWM in the second TM. We then compute the highest
weighted matching of the k TFs into the n TFs. If the
weight of each of the k edges in the matching is higher
than a pre-determined threshold (we have used the
98th percentile of all covariance values as our threshold),
then the two TMs are considered similar. In our iterative
procedure, we retain the top 1000 TMs with smallest
P-values. We scan this list and remove a TM if it is similar
to another TM with a lower P-value.

Expression coherence

We used the ‘expression coherence’, or ‘EC’ (19,20) to
indicate the level of correlation in gene expression.
Given a set of genes G, the expression coherence is
the fraction of all pairwise correlations of G exceeding
the 95% of pairwise correlations of 1000 randomly
chosen genes. We used the normalized cell cycle expression

Figure 2. A single iteration of the method for computing TMs. Starting
with single PWMs (TM of size 1), in each iteration, the top scoring
TMs are retained and all extensions are assessed in the next iteration.
DP and DN refer to distances from vector V0 of positive and negative
vectors. A Mann–Whitney test is performed with the null hypothesis
that median (DP) � median (DN).
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data from Ref. (21) with data averaged between the
independent experiments, for the Affymetrix 6800 human
gene arrays to compute the coherence score. Human
expression data for the muscle- and liver-specific
genes were based on Affymetrix Human U133A array,
with gcRMA background correction (22). The back-
ground expectation of EC score is 5%.

RESULTS

Effect of TM size on the P-value

Our iterative extension of TMs is based on P-value
comparisons across TMs of various sizes. This would be
inappropriate if the P-value depended on the size of the
TM. We explicitly tested this dependence as follows. The
foreground and background labels for the gene promoters
were randomly shuffled for each dataset. We then
computed, for each size i from 1 to 5, P-values of 10 000
randomly generated TMs of size i. For size 1, all 584
PWMs (TMs of size 1) were used. Figure S1 shows the
P-value distributions of the random TMs for the human
cell cycle data. Two conclusions can be made from this
analysis. First, there is no significant bias in P-value
distribution (6.01% of all TMs have P-value �0.05, which
is very close to 5% as expected), and second, there is no
appreciable difference in P-value distribution between
TMs of different sizes. The former observation justifies the
use of P-values as a measure of significance and the latter
observation justifies the comparison of P-values across
different sizes in the iterative procedure. Next we apply
our approach to three biological datasets.

Application to biological datasets

We have tested our approach on three human datasets—
cell cycle genes, liver-specific genes and muscle-specific
genes. The foreground set sizes are 246 for cell cycle data,
15 for liver data and 57 for muscle data. For the control
(or negative) set, we use a randomly selected set of
1000 human gene promoters independently for each
foreground set.
Because we assess a large number (in the order of

170–180 000) of TMs of sizes 1 through 5, it is critical to
correct for multiple testing. During each iteration, we keep
track of all TMs tested and their P-values. We then
compute their respective false discovery rates (q-values)
using a previously reported approach (23). All TMs of size
greater than 1 detected by our procedure have significant
q-values (�0.05) except for TMs of size 2 in the liver
dataset. For TMs of size 1 this is not always the case. Since
there were only 584 tests of size 1 TMs and typically a
number of these tests showed significance (7.5–26%), the
q-value approach turns out to be conservative.
Nevertheless, the size-1 TMs detected by our approach
were supported by literature.
As an additional measure of stringency, for each dataset

(foreground P and control N), we create another fore-
ground (P0) and control (N0) by randomly permuting
among P and N; the foreground and control sizes remain
unchanged. We compute the TMs in (P0,N0) in parallel.
For each TM of size >1 detected in (PN), we only report

the TMs whose P-values are lower than the lowest P-value
achieved in (P0,N0). Nonetheless, virtually all TMs in
(P,N) have a P-value lower than the lowest P-value in
(P0,N0). Thus, we report TMs that qualify the following
two criteria: the TMs (i) must have a q-value �0.05
and (ii) must be more significant than all TMs in the
corresponding permuted sets (P0,N0). The exception to this
rule is size 1 TMs in which case we report all TMs with
P-value �0.05.

For each dataset, along with the results obtained by
TREMOR, we also discuss the results obtained by two
other comparable programs—oPOSSUM2 (13) and
CREME (24). The tool oPOSSUM2 is limited to TMs
of sizes 2 and 3. The main site for oPOSSUM2 was not
available so we used the developmental site (www.
cisreg.ca/oPOSSUM2_dev/opossum2.php) instead. For a
fair comparison with TREMOR, we used the following
settings for oPOSSUM2. We used sequences 1 kb
upstream and 0 bp downstream of transcription start
sites, and binding sites that are among top 30% most
conserved sites between human and mouse; we did not use
any intersite distance constraint. oPOSSUM2 uses
JASPAR PWMs, which cannot always be unambiguously
mapped to TRANSFAC PWMs. Even for CREME,
which is based on TRANSFAC PWMs, the exact
PWMs that CREME selects depend on many parameters
and a direct PWM-based comparison is difficult. We
instead discuss general characteristics of the predictions as
follows.

TMs in human cell cycle

Previous genome-wide studies have identified several cell
cycle regulated genes in human (25). Whitfield et al.
published a set of genes that show cyclic expression in
their own microarray experiments as well as in a previous
experiment reported in Ref. (21). They also reported an
additional list of genes curated from the literature. We
combined these two lists and mapped them to 246 human
Refseq genes. This list constitutes our foreground set P.
As a control, we randomly selected 1000 human Refseq
genes. For the set of 246 foreground and 1000 control
promoters of sizes 1 kb each, we applied TREMOR to
compute TMs of sizes 1 through 4 (size-4 TMs could not
be improved upon). The non-redundant sets of significant
TMs at the end of each iteration are listed in the
Supplementary Data. Recall that after the kth iteration,
we retain non-extensible TMs of smaller sizes. We refer to
a TM with n PWMs as TM-n.

Table 1 summarizes the results, especially highlighting
the known key regulators of cell cycle—E2F, CREB and
NF-Y (26). Some of the differences between TREMOR
and other programs may reflect the differences between
the two programs in the way the promoter sequences were
scored by a PWM. Unlike for single TFs, and to some
extent for TF pairs, experimental data for higher order
TMs is not available. In order to validate these higher
order TMs, we took the approach in Ref. (24) as follows.
For each TM-4, we scored each of the 7452 human gene
promoters in the cell cycle dataset, using the Mahalanobis
vector distance and selected the genes with top 100 scores.
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We then computed the ‘expression coherence’ (EC)
(see Methods section) of these genes in human cell cycle
data (21). EC is a previously described measure that
quantifies the similarity in expression profiles among the
genes in a set (19). Since there were only 23 genes in
common between these 100 genes and the 232 genes used
for TM identification, the proposed scheme can be
considered as an independent validation. Results do not
change when we remove the overlap. As control, we
randomly sampled 100 genes and computed their EC.
Figure 3 shows four distributions of coherence scores for
the top 100 scoring genes for each of the 158 significant
TM-4s computed using Mahalanobis distance. We have
also presented other distributions of coherence scores as
control. As a baseline expectation, we show the distribu-
tion of coherence scores for 100 000 random sets of 100
genes. Using a 95th percentile threshold from the baseline
distribution (nominal false positive of 5%), 100% of the
Mahalanobis distance-based coherence scores are signifi-
cant. To highlight the benefits of using Mahalanobis
distance, we have also implemented the Euclidian distance
measure. We describe this analysis further in the

Table 1. Summary of the results for human cell cycle data

TM-1 TM-2 TM-3,4

TREMOR � 41 significant TFs detected � 98 TM-2s detected. � 63 TM-3s detected.
� 15 TFs have P-values lower than the lowest

P-value in the randomly permuted set.
� 35 include E2F and 36 include

NF-Y.
� All include NF-Y and 15 include

E2F.
� NF-Y is at rank 1, E2F at rank 2 and CREB

at rank 12
� Of the remaining 12, 7 have evidence of

potential cell cycle involvement: HOXA7 (34)
(the reference shows evidence of involvement of
a close relative, Hoxa-10), Elk-1 (35), ETF (36)
(ETF regulates p53 which mediates cell cycle
arrest), AR (37), AP-2alpha (38), Ik-2 (39),
v-Myb[v-Myb motif enrichment in cell cycle
gene promoters was previously shown in Ref.
(40) and direct involvement in cell cycle was
shown for a close relative c-Myb in Ref. (41)].

� Rank-1 TM-2—(NF-Y
c- Myc:Max). These TFs form a
complex in cell cycle regulation.

� Rank-3 TM-2—(NF-Y E2F).
These TFs are are known to
interact (42).

� (NF-Y AP-2) has a P-value=
1.1E�14. CDP and AP-2
function synergistically to
regulate H3.2 during cell cycle and
NF-Y and CDP bind to neigh-
boring CAAT boxes in H3.2
promoter (43).

� 158 TM-4s detected.
� Of these, 150 include NF-Y, and

71 include both E2F and NF-Y.

OPOSSUM2 TM-2 TM-3

� 20 significant (P� 0.05) TM-2s. oPOSSUM2 detected 33 size-3 TMs (64 by TREMOR). Surprisingly the
� Only two include E2F, in combination with

NF-Y and Gfi. Both combinations are detected
by TREMOR.

three cell cycle regulators—E2F, NF-Y or CREB—were not included in
any of the TMs returned by oPOSSUM2, while a majority of TREMOR
TM-3s include these key TFs.

� (CREB E2F) not detected.
� Only two TM-2s include NF-Y.
� In general, oPOSSUM detects fewer and more

varied TMs while TREMOR TMs revolve
around primary TFs- E2F, NF-Y and CREB.

CREME � On our gene set, CREME yielded a total of two TM-3s—(AREB6, STAT4, TCF1P) and (SRY, STAT4, TCF1P, EGR).
These do not include the three well-known cell cycle TFs—E2F, CREB and NFY.

� CREME was applied to a slightly different cell cycle data in the original paper (19). CREME detected 47 TFs, compared
to TREMOR’s 41. CREME reports only seven significant non-redundant TMs. The three TM-2s are (ZF5 GR),
(ZF5 HAND1E47) and (ZF5 USF2). The first two are detected by TREMOR. USF2 is an E-box TF and there are several
TM-2s detected by TREMOR that link ZF5 with an E-box protein. The larger TMs detected by CREME were not detected
by TREMOR.

For oPOSSUM2 and CREME, the results are compared to TREMOR. Unless otherwise specified, for TREMOR we only mention the TMs whose
P-values were lower than the lowest P-value for the corresponding randomly permuted set (see text).
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Figure 3. Distributions (probability density functions) of expression
coherence (at 95th percentile threshold; see Methods section) in cell
cycle data. The plot (green) on the left based on random gene set
provides a base line. The plot (black) to the right is for the top 100
target genes identified by each of the 158 significant cell cycle TMs of
size 4. The blue plot in the middle is based on the target genes
identified by the TMs using Euclidian distance.
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simulation studies section. The figure also shows the
coherence score distribution for the top 100 scoring genes
for each of the 77 significant TM-3s computed using
Euclidian distance (the algorithm using Euclidian distance
did not achieve any improvement beyond size-3 TMs).
The figure clearly indicates that the genes detected by
significant TMs using Mahalanobis distance have a
significantly greater EC in the cell cycle data relative to
other controls.

TMs in human liver-specific gene promoters

Liver-specific gene expression is regulated by a combina-
tion of multiple TFs, most important among which are
HNF-1,3,4 and c/EBP (27). Based on these four TFs,
computational models have been proposed to predict
promoters with liver-specific expression (28). This dataset
was also used to determine enriched motifs in the
oPOSSUM paper (12). We were able to map 15 human
genes listed in Ref. (28) to Refseq genes. As a control, we
randomly selected the 1 kb upstream region of 1000 gene
promoters from human. We applied TREMOR to the
15 foreground and 1000 background 1 kb promoters and
detected TMs of sizes 1 through 5. The non-redundant set
of significant TMs after each iteration is listed in the
Supplementary Data.
Table 2 summarizes the results, especially highlighting

the known key regulators of liver expression. In order
to validate higher order TMs, we followed a similar
approach as for the cell cycle TMs. For each TM-5, we
scored all human gene promoters using the Mahalanobis
vector distance and selected the genes with highest 25%
of scores (set U) and the genes with lowest 25% of scores
(set D). We then tested whether these genes in U have

a greater expression in liver relative to the genes in D.
We used the liver tissue expression from the Novartis
dataset (22) and tested the expression difference using
Mann–Whitney test. A histogram of the resulting 266
P-values from these Mann–Whitney tests is shown in
Supplementary Figure S2. Over 32% of the TMs are
significant at the 95% confidence level, which represents
over a 6-fold enrichment. We contrasted this with the
size-1 TMs, i.e. significant TFs. For the 17 significant TFs,
we computed the P-value of differential expression of the
target genes in an identical manner. The resulting P-values
do not show an excess of low P-values (Supplementary
Figure S2).

TMs in human muscle-specific gene promoters

Gene expression specific to muscle tissue is regulated by
five primary classes of TFs—MyoD, SRF, MEF-2, TEF-1
and Sp-1 (29). We extracted a set of 44 well-established
muscle-specific genes from the MTIR website (www.cbil.
upenn.edu/MTIR/TOC.html). We then extracted the
corresponding human Refseq IDs using the NIH David
web service (david.abcc.ncifcrf.gov/conversion.jsp). Some
of the genes have multiple isoforms and hence multiple
Refseqs. We retained multiple Refseqs for a gene as long
as the transcription start was more than 1 kb apart. This
resulted in 57 unique Refseq Ids used as the foreground.
As before, we used a set of 1000 randomly chosen human
genes as control. For these foreground and control gene
promoters, we applied TREMOR to compute TMs of
sizes 1 through 5. The non-redundant set of significant
TMs, after each iteration, is listed in Supplementary Data.

Table 3 summarizes the results, especially highlighting
the known key regulators of muscle expression. There are

Table 2. Summary of the results for human liver expression data

TM-1 TM-2 TM-3,4,5

TREMOR � 17 TM-1s detected—HNF-1, HNF-3alpha,
STAT5A, GFI1B, IRF1, MEIS1A, AIRE,
NF-AT, Pbx1b, HNF-4alpha1, POU3F2,
NF-Y, MEF-2, AFP1, SRF, C/EBP, TCF-4.

� Well-known liver TFs HNF1-3,4 and C/EBP
are included among these.

� 8 of the remaining 11 TFs have evidence of
involvement in transcription in liver—
STAT5 (44), GFI1b (45), IRF (46), Pbx1
(47), NF-Y (48), AFP1 (49), SRF (50) and
Tcf-4 (51).

� 31 TM-2s detected (however, not
significant after multiple testing
correction)

� 1 involved HNF-3 and 25
involved HNF-1.

� Rank-1 TM-2 was (HNF-1
TATA). These TFs are known to
interact (52).

� TM-2s at rank 2, (HNF-1
HNF-4), and at rank 4, (HNF-1
NF-Y) are supported (53).

� 217, 224 and 266 TM-3s,
TM-4s and TM-5s

� 185, 222 and 266 involved
HNF.

OPOSSUM2 TM-2 TM-3

� 3 TM-2s detected
� These combine zinc finger TF X2H2 with

FoxA2, FoxD3 and FoxI1.
� TREMOR detects many more TMs but 81

of the 226 include FORKHEAD factors.

� 31 TM-3s detected TMs, but none
of them include FORKHEAD
TFs, while 188 of 234 TREMOR
TM-3s include FORKHEAD
factors.

CREME Even at the least stringent settings, namely, using the lowest matrix score threshold=0.8 and the largest module length=500 bp,
as well as requiring only two TFs in the TM, CREME did not yield any TMs.

For oPOSSUM2 and CREME, the results are compared to TREMOR. Unless otherwise specified, for TREMOR we only mention the TMs whose
P-values were lower than the lowest P-value for the corresponding randomly permuted set (see text).
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two slightly different PWMs for SRF in TRANSFAC.
The TM-2 at rank 8 includes the two SRF PWMs.
Thus, multiple SRF sites provide a better indication of
muscle-specific transcription than does a single SRF site.
A pre-clustering of PWMswould havemissed detecting this
tendency. Notably, because oPOSSUM only searches
for combinations from different structural classes, it did
not detect the TM (SRF SRF). It was shown before that
key cis elements regulating muscle-specific expression
are conserved between human and mouse (30). Because
oPOSSUM uses pre-computed conserved binding sites,
relative to other datasets, in the muscle dataset
oPOSSUM2 detects a large number of TMs. In fact,
oPOSSUM detected 143 class-combinations and did not
expand the class-combinations into TF-combinations,
which are likely to be larger by an order of magnitude.
In general, in other datasets oPOSSUM2 detected much
fewer (44 in cell-cycle and 80 in liver data) significant TMs.

In order to validate the higher order TMs detected by
TREMOR, we again used the approach for the liver TMs.
For each TM, we scored all human gene promoters using
the Mahalanobis vector distance and selected genes with
the highest 25% of the scores (set U) and genes with the
lowest 25% of scores (set D). We then tested whether
genes in U have a greater expression in muscle relative to
genes in D. For this we used the muscle tissue expression
from the Novartis dataset (22) and tested the expression
difference using Mann–Whitney test. A histogram of the
resulting 283 P-values from these Mann–Whitney tests
is shown in Supplementary Figure S3. Almost 20% of the

TMs are significant at the 95% confidence level. As a
comparison, the figure also shows the P-value distribution
for the target genes obtained by the 19 significant
individual TFs.

Simulation-based comparison ofMahalanobis distance
to Euclidian distance

Although, our comparative study with existing methods
using real datasets provides some indication of the
effectiveness of TREMOR, these analyses do not directly
measure the relative advantage of using Mahalanobis
distance (MD). The attractive feature of MD is that
it down-weighs TMs with similar PWMs. The best way to
directly assess the advantage of these two features is
to compare the MD measure with the simpler Euclidian
distance (ED) measure (see Methods section). We did this
comparison based on simulated data as follows. We gene-
rated 1 kb long synthetic promoters (foreground and
background) based on genome-wide nucleotide composi-
tion, and then planted randomly chosen TMs in the
foreground. For instance, to insert a TM with two PWMs
(X,Y), we generated the binding sites for X and Y accord-
ing to base probabilities indicated in their PWMs and
planted them at random, non-overlapping locations
within the 1 kb random promoter.

Planted TMs of size 2

We conducted 150 random trials each involving
25 foreground and 100 background simulated promoter

Table 3. Summary of the results for human muscle expression data

TM-1 TM-2 TM-3,4,5

TREMOR � 19 TM-1s detected.
� The top 2 TM-2s were SRF and MEF-2.
� MyoD was at rank 4.
� We did not detect SP1, probably because it is a

ubiquitous signal. TEF-1 had a P-value of 0.06 and
was thus not detected as significant.

� Seven of the remaining 14 TFs have evidence of
involvement in muscle gene regulation: SMAD (54),
SREBP (55), p53 (56), PBX (57), Hox-1.3 (58)
(this reference implicated Hox factors in general),
COMP1 (59) (Myogenin interacts with COMP1),
GATA-4.

� Additional factor RREB was also detected
previously by oPOSSUM2 in a slightly different
dataset (13).

� TEF-1 yielded a P-value of 0.06 and missed
detection

� 87 TM-2s detected
� 21 included SRF, 11 included

MEF-2 and 7 included MyoD.
� Rank-1 TM-2 is (SRF MEF-2).
� Rank-8 TM-2includes the two

SRF PWMs (see text).
� TEF-1 is part of a significant

TM-2 SRF and with SMAD.

� 218 TM-3s detected. SRF,
MEF-2 and MyoD are
included in 119, 41 and 19

� Most core muscle TFs tend to
group with non-core TFs in a
TM.

� Rank 16 TM-3 is (SRF
MEF-2 SMAD).

� Rank 28 TM-3 is (SRF
MEF-2 MyoD).

� 244 TM-4s detected. SRF,
MEF-2 and MyoD are part
of 177, 75 and 17 TM-3s.

� 283 TM-5s detected. SRF
is part of 232.

OPOSSUM2 TM-2 TM-3

� 293 TM-2s detected. SRF, MEF-2 and Myf
(same as MyoD) were part of 37, 42 and 37.
Compare with TREMOR above.

� See text for additional comparative discussion

� In our dataset, 764 TM-3s were detected TMs.
� In the original oPPOSSUM2 publication, using three different

muscle datasets, the authors have reported top 5 TM-2 in each
dataset. Greater than half of these were detected by TREMOR,
notably (YY1 SRF), (YY1 Myf), (SRF E47) and (SRF MEF-2).

CREME With the default setting, CREME did not yield any TMs. However, at the least stringent setting it detected 1 TM-2—(SRF SRF).
TREMOR also detected a size-2 TM with two SRF motifs, in addition to several others.

For oPOSSUM2 and CREME, the results are compared to TREMOR. Unless otherwise specified, for TREMOR we only mention the TMs whose
P-values were lower than the lowest P-value for the corresponding randomly permuted set (see text).
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sequences. In each trial, we randomly selected a pair of
PWMs (size-2 TM) and planted the randomly generated
sequences corresponding to these two PWMs in 20 of the
25 foreground promoters. We ensured that the planted
sequences were non-overlapping. For the remaining five
foreground promoters, we planted a random number
(between 1 and 8) of randomly selected PWMs in a non-
overlapping fashion. Recall that our algorithm assumes
the most parsimonious representation for a TM, and
hence, a TM will only be expanded in size if the increase in
size yields a decrease in corresponding P-value. In other
words, unless the combination of two TFs to produce a
TM-2 yields a decrease in P-value compared to the two
P-values of the individual TFs, the two TFs will be treated
as TM-1s by themselves. Therefore, when we did not
include these five ‘noisy’ promoters then in a majority
of cases one of two planted PWMs resulted in a very low
P-value that could not be improved upon, thereby obscur-
ing the actual planted PWM of a greater size, for both
MD and ED. For each trial we then computed TMs of size
1, 2 and 3 using both the MD and ED measures. We noted
the largest subset of the planted TM in the results for both
MD and ED measures, in order to directly compare the
ranks of the planted TM or a subset of it. In 121 (81%) of
the 150 trials, both MD and ED detected a subset of the
planted TM with equal cardinality. Of these 121, 89 were
of size 2, i.e. the planted TM. We found that the ranks
of the largest detected subset were substantially better
for MD than those for ED (Wilcoxon signed rank test
P-value=0.001). Of the remaining 29 trials where the
cardinality of the largest subset differed, in all but 3 trials
MD detected one of the two PWMs in the planted TM
at a rank better than that for the largest subset of the
planted TM detected by ED (Wilcoxon signed rank test
P-value=0.031). A closer inspection of these 29 trials
reveals that these planted TMs consisted of a pair of
PWMs with high correlation relative to the pairs of
PWMs in the other 121 trials (Mann–Whitney test
P-value=0.024). Given two similar PWMs, if one of
the PWMs by itself discriminates between the positive
and the control promoters better than the combination of
the two TFs, then it is desirable to detect the individual
TF (TM-1) as opposed to the TM-2. Indeed, for TMs with
two similar PWMs, while ED may detect the planted TM,
MD in fact detects one of the PWMs (the one with higher
enrichment in the foreground set) as a significant TM of
size 1. The rank analysis addresses both the relative
sensitivity and the specificity of the methods. This analysis
demonstrates the superiority of Mahalanobis distance
over Euclidian in detecting TMs.

DISCUSSION

We have presented a novel method, TREMOR, for TM
detection, and demonstrated its effectiveness using three
human datasets. A large portion of TM-1s detected by
TREMOR are supported by literature. For TFs of larger
sizes where experimental data are lacking, besides
presenting evidence for several individual cases, we have
assessed the accuracy of TMs based on their ability to

detect additional genes with similar expression patterns as
the genes that were used to detect the TMs. In particular,
in the cell cycle dataset, the genes detected by our
algorithm using a genome-wide search reveal significant
expression coherence in cell cycle.

Because of the obvious problems of redundancy and
biases caused by groups of PWMs with similar DNA
binding, previous approaches such as oPOSSUM2 replace
groups of similar TFs with single representative PWMs.
We have argued that doing so may result in loss of
information because subtly different PWMs can have
significantly different target gene sets, and this difference
can be biologically relevant. Problems of redundancy
caused by similar PWMs, however, need to be resolved in
order to minimize any statistical bias caused by possible
similarity among PWMs. We address these issues by using
the Mahalanobis distance, which inherently incorporates
the interdependence between the vector coordinates, i.e.
PWMs. This allows us to avoid the arbitrariness of
choosing representative PWMs. One evidence supporting
the effectiveness of Mahalanobis distance is that very
rarely do we see TMs with similar PWMs; yet unlike
previous approaches, this scenario is permitted, and does
happen: for instance, in the analysis of the liver dataset,
we detected interactions between closely related PWMs for
HNF-1,3 4. In muscle we detected a TM containing an
SRF pair. CREME also detects this TM, and oPOSSUM2
does not. Thus, multiple SRF sites provide a better
indication of muscle-specific transcription than does a
single SRF site. An approach that pre-clusters PWMs will
miss detecting this tendency.

Another practical challenge in detecting large TMs is
the computational cost. Assessing all k-combinations
for �600 known vertebrate PWMs in TRANSFAC is
computationally prohibitive. oPOSSUM deals with this
problem by only considering combinations of representa-
tives. CREME avoids the combinatorial explosion by only
considering the TF combinations that occur within a
specified distance in a promoter. We have presented an
iterative approach to build the TMs as a practical compro-
mise. By only retaining 1000 TMs with lowest P-values in
each iteration, the method can detect, in practice, arbitra-
rily large TMs. Although this heuristic is not exhaustive,
we expect it to capture the TMs that are composed of
smaller significant TMs. On a computer with two Opteron
275 dual-core CPUs and 8GB of RAM, TREMOR
finishes the analysis of the cell cycle dataset (largest of the
three) within an hour. Thus, it is not the computational
time but the biological interpretation of the results that
presents an immediate challenge.

We have only considered the 1 kb promoter regions as
in previous studies. Using a larger upstream region dilutes
the TM enrichment and thus makes it harder to detect
significantly enriched TMs. Note that we do not require
the binding sites for the PWMs in a TM to be within
certain distance from each other on a promoter. In other
words, the binding sites can occur anywhere in the 1 kb
region. Imposing a distance constraint between PWM sites
can make the method more sensitive. However, the
biological relevance of specific distance constraint is not
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always clear and also, imposing distance constraints adds
significantly to the computational costs.

Most previous tools for TM detection rely on a pre-
computed set of binding sites based on evolutionary
conservation, or phylogenetic footprinting. Remarkably,
TREMOR yields good results without using phylogenetic
footprinting. Importance of evolutionary conservation in
detecting functional elements is very well supported (30).
However, evolutionary conservation is neither necessary
(31) nor sufficient (32) for DNA elements to be functional.
This implies that although oPOSSUM detects several
significant TMs in muscle data where the conservation of
essential cis elements is well established, it could miss
important TMs in other datasets. In cases where the bio-
logical process under investigation is not well conserved
across compared species, an over-reliance on conserva-
tion-based sites will miss the real signals. Application of
TREMOR is preferable in those cases.

The recent ENCODE effort (33), based on chromatin
immunoprecipitation and tiling array data for five trans-
cription factors, shows that there is sharp peak of binding
site density around the start site so that a large majority of
the proximal sites are within 1 kb. However, the authors
also show that this distribution is symmetric around the
start site. Thus ideally we should include both upstream
and downstream sequences. However, there are very few
examples of experimentally validated binding sites in the
downstream regions relative to the upstream regions.
The performance of any TM detection method will
deteriorate as we include larger sequences, simply because
of decreased signal-to-noise ratio as we go farther from
the gene start. Admittedly, our method is perhaps more
vulnerable compared to other methods that pre-compute
the binding sites based on evolutionary conservation.
In principle, we can restrict our analysis to conserved
regions and include a larger flanking region, however,
at the risk of missing species-specific TMs. Our choice,
although limited, still represents a reasonable
compromise.

Because TREMOR uses the maximum score for each
promoter, there is a possibility that similar PWMs within
a detected TM achieve their maximum score on over-
lapping sites. We have assessed for the detected TM-2s
composed of highly similar PWMs (covariance above 90th
percentile), whether or not the max-scoring matches
overlap. For liver data, there were seven size-2 TMs
with high covariance. For each of the 15 gene promoters
in the liver data, we identified whether or not the
maximum-scoring hits for the two PWMs overlap.
We computed for each TM the number of promoters
for which the max-scoring matches overlap. The
median, mean and SD of this number (of the total
of 15) are 2.00, 2.00 and 2.24, respectively. Likewise, for
smooth muscle tissue, there are 57 gene promoters
and eight size-2 TMs identified with high covariance.
The corresponding median, mean and SD of the
number of promoters for which the max-scoring
matches overlap are 12.5, 13.5 and 6.78. Thus, we
conclude that we detect these TM not because of the
overlapping matches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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