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1Institut de la Recherche pour le Développement, Unité de Recherche no 008 “Pathogénie des Trypanosomatidae,” Montpellier, France
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The parasitic protozoa Trypanosoma cruzi and Leishmania sp release a variety of molecules into their mammalian hosts (ESA:
excretory-secretory products). The effects of these ESA on the host cell function may participate in the establishment of a successful
infection, in which the parasite persists for a sufficient period of time to complete its life cycle. A number of regulatory components
or processes originating from the parasite that control or regulate the metabolism and the growth of host cell have been identified.
The purpose of the present review is to analyze some of the current data related to the parasite ESA that interfere with the host cell
physiology. Special attention is given to members of conserved protein families demonstrating remarkable diversity and plasticity of
function (ie, glutathione S-transferases and related molecules; members of the trans-sialidase and mucin family; and members of the
ribosomal protein family). The identification of parasite target molecules and the elucidation of their mode of action toward the host
cell represents a step forward in efforts aimed at an immunotherapeutic or pharmacological control of parasitic infection.

INTRODUCTION

Trypanosoma cruzi, the etiological agent of Cha-
gas’ disease, is an obligate intracellular parasite causing
chronic infections in human and a large number of other
mammalian species [1]. This protozoan parasite is trans-
mitted to man and other vertebrate hosts in the fae-
ces of haematophagous bugs of the Reduviid family. The
complex life cycle of T cruzi includes different stages in
the insect vector and the vertebrate host. There are two
parasite stages in the vector: epimastigotes and meta-
cyclic trypomastigotes, whereas the vertebrate stages are
bloodstream trypomastigotes and intracellular amastig-
otes. Chagas’ disease is associated with many immuno-
logical and immunopathological reactions. In fact, dur-
ing either the chronic or the acute phase, various autoim-
mune phenomena were observed and could be the results
of nonspecific polyclonal activation or suppressive effects
that occur during T cruzi infection. The existence of anti-
gens cross-reactive between T cruzi and mammalian cells
was also reported as a possible cause of exacerbation of
pathological manifestations [1].

Considerable progress has been made during the past
few years on the role of certain parasite and host cell gly-

coconjugates, such as glycolipids and glycoproteins, in the
process of host cell invasion leading to a proposed model
of host cell invasion by T cruzi modulated by positive and
negative controls [2]. The positive control is the sialo-
glycoprotein whereas the negative control is exerted by
the neuraminidase, which promotes the desialylation, and
thus decreases the level of infection.

Leishmaniasis is a significant cause of morbidity and
mortality in several countries worldwide. The disease is
caused by a group of kinetoplastid protozoan parasites
transmitted by a blood-feeding dipteran vector of the sub-
family phlebotominae. Within the insect vector, the para-
site replicates as noninfective promastigote, which trans-
forms into an infective metacyclic one. In the mammalian
host, the infective promastigotes invade the macrophages
and differentiate into amastigotes which are the prolifer-
ate forms within the vertebrate host. The subsequent suc-
cess of a Leishmania infection is dependent on the ability
of the parasite, initially in the promastigote form and later
in the amastigote one to adhere specifically to, to enter
macrophages and to survive within an antigen-presenting
cell that has evolved to kill invading microbes.

Leishmaniasis is difficult to treat (specially in AIDS
patients). Until vaccines become available, conventional
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measures such as epidemiological surveillance including
reservoir control are among the practical options for pre-
vention and containment of the disease. Among the pos-
sibilities for development of vaccine against Leishmania,
immunization with live, albeit attenuated, organisms has
the advantage of mimicking natural infection, still the
most effective form of inducing resistance in Leishmania-
sis. A detailed investigation of the biology of the parasite
has been advocated by the International Health Organiza-
tion with the hope that it leads to the discovery of more
efficient means to combat infection [3]. Particularly, the
identification and study of the factors that promote viru-
lence of the parasite may provide new and adequate tar-
gets for chemo- or immunotherapy.

The invasion of the host macrophage and tissues de-
pends upon complex processes including ligand-receptor
interactions and the production of proteases, which de-
grade extracellular matrix components [4, 5]. Much work
has focused on the identification of promastigote and
macrophage surface molecules involved in the recogni-
tion processes. The two major surface glycoconjugates,
lipophosphoglycan (LPG) and gp63 have been shown to
play a key role in the attachment of promastigotes to
macrophages (reviewed in [6]). The macrophage comple-
ment receptors (CR3 and CR1), the mannose-fucose re-
ceptor, the receptor for advanced glycosylation end prod-
ucts, and the fibronectin receptors were found to play a
role in the parasite-cell adhesion phenomenon [7, 8, 9,
10, 11]. Like many other parasitic protozoa, Leishmania
preadapts itself to survival in the next phase of its life cy-
cle. Indeed, the differentiation of promastigotes into in-
tracellular amastigotes correlates with their ability to de-
velop means by which they could survive environmental
extremes such as toxic metabolites and acidic pH of the
host cell phagolysosomes [12, 13, 14, 15], allowing them
to establish infections in mammalian hosts. Studies on
the basic cellular function of these organisms led to the
identification of several membrane proteins and enzymes,
which are essential for the parasite survival in its hosts
[16]. However, investigations are still in progress to better
understand the molecular basis of virulence in Leishmania
parasites. Molecules essential to amastigotes could consti-
tute the basis to engineer successful attenuated life vac-
cines as they would allow initiation of the infection with
the consequent stimulation of the immune system with
native antigens but would prevent establishment of pro-
ductive infection. Different attenuated lines of Leishmania
were indeed shown to confer protection in animal mod-
els, but their use as vaccines is unacceptable because re-
version to virulence cannot be dismissed with confidence.
The recent ability to manipulate the genome of Leishma-
nia through gene targeting provides a powerful means to
engineer strains of Leishmania which are nonvirulent due
to selective mutations or replacements and, therefore, can
be safely used as immunogens. The production of a Leish-
mania major dihydrofolate reductase thymidilate synthase
(DHFR/TS) knockout strain auxotrophic for thymidine,

illustrates the potential of this approach for Leishma-
nia vaccination [17]. Although unable of in vivo replica-
tion, this strain persisted in macrophages time enough for
an immune response to develop. This response was able
to protect mice against challenge with virulent parasites.
Therefore, experimentally generated genetically modified
parasite clones exhibiting various biological phenotypes
have been used to analyze Leishmania virulence factors
[18]. In more recent elegant experiments, such approach
has been used to define parasite factors affecting the per-
sistence of the pathogen in its vertebrate host and their
role in disease progression [19].

Moreover, in recent study, we found that a previously
described gene (LmSIR2) encoding a protein bearing do-
main structure characteristic of SIR2 (silent information
regulatory 2) proteins [20] when overexpressed in Leish-
mania infantum amastigotes led to parasite life span ex-
tension [21], suggesting therefore its implication in the
physiological processes that control parasite survival and
development. Studies are in progress in our laboratory to
generate parasites with a deficiency state of SIR2-related
protein by gene targeting and to analyze their virulence
both in vitro and in vivo (Vergnes, Sereno, and Ouaissi, in
preparation).

PARASITE-RELEASED FACTORS WHICH BLOCK THE
EXPRESSION OF POTENTIALLY HOST-PROTECTIVE

INFLAMMATORY RESPONSES

T cruzi and Leishmania sp produce a number of
pathogenic features in humans and different strains of
mice and offer the opportunity for studying parameters
involved in parasitic infections and disease development.
One interesting feature, which has concerned us, is the
phenomenon of immunosuppression, a property shared
with many other parasites [22]. T cruzi- and Leishmania
sp-mediated immunosuppression has been documented
by several investigators who have used a variety of im-
mune responses to foreign antigens and mitogens, mixed
lymphocyte reactions; and skin graft survival [23]. The ef-
fect is transient, however, and infected animals eventually
produce cell-mediated and humoral responses against the
pathogen. A role has been proposed for the involvement
of immunosuppressive excreted-secreted antigens (ESA),
which serve to maintain chronic infections.

In recent years, we have examined the mechanism(s)
of action of a number of T cruzi and Leishmania sp ESA
found to act as regulatory factors (activation/inhibition)
of host immune cells (ie, T and/or B cells, macrophages,
dendritic cells) [24, 25, 26]. Among these parasite-
released factors, molecules belonging to the glutathione
S-transferases (GSTs) super family seem to play a role.
The GSTs are isoenzymes playing a variety of redox-
related roles in organisms ranging from Escherichia coli to
man [27]. They are well-characterized proteins with con-
served active site found mainly within their N-terminal
region also named glutathione binding site (G-site). The
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nonspecific hydrophobic C-terminal region (H-site),
which accommodates the electrophilic substrate, has a
much more variability than the G-site. A number of GST-
related molecules from pathogenic human parasites have
been shown to function as immunomodulatory factors
toward the cells of the immune system [28]. Indeed, in
the case of T cruzi, we have previously identified a protein
of molecular mass 52 kd whose primary sequence showed
two homologous domains sharing significant similarities
to GSTs mainly within a region at their N-terminus [29].
Interestingly, the Tc52 was found to be able to catalyze
the thiol-disulfide exchange between dihydrotrypanoth-
ione and glutathione disulfide and as such was considered
as a trypanothione-glutathione thioltransferase [30, 31].

In addition to its enzymatic activity, Tc52 is released
by the parasites and was shown to have several cytokine
and chemokine-like activities being able to synergize with
IFN-γ to stimulate NO production by macrophages and
to modulate IL-1α, IL-12, and IL-10 encoding genes.
These observations may have some implications in vivo.
Indeed, we showed that elevated levels of circulating Tc52
in the blood of T cruzi experimentally infected mice oc-
curred during the acute phase of the disease and were as-
sociated with decreased responsiveness of T cells to mi-
togen or anti-CD3 stimulation [32]. However, it is inter-
esting to remind that Chagas’ disease almost exclusively
involves intracellular amastigotes, which also expressed
Tc52 protein. Therefore, we examined the effect of intra-
cellular production of Tc52 on cell physiology. Transfec-
tion experiments with a mammalian expression pcDNA3
plasmid carrying the Tc52 gene, using macrophages and
fibroblasts, two type of cells known to harbor T cruzi
amastigotes, showed increased IL-10 mRNA levels in the
case of macrophages whereas increased transcription of
genes encoding GM-CSF and TNF-α was observed in the
case of L929 fibroblast cells (reviewed in [28]). Further-
more, in a recent study [33], using single mutant parasite
clones (Tc52+/−) we analyzed the immune response and
the disease phenotype in Tc52+/−-infected BALB/c mice,
during the acute and chronic phases of the disease. Inter-
estingly, a lack of suppression of IL-2 production and of
T-cell proliferation inhibition was observed in the case of
spleen cells from Tc52+/−-infected mice when compared
to wild-type (WT) parasite-infected ones. Moreover, in-
creased production of IL-10 was observed in the case of
spleen cells from WT-infected mice, whereas the levels
observed in the case of Tc52+/−-infected mice were com-
parable to those of normal mice spleen cells, suggesting
therefore, that Tc52 plays a role in IL-10 cytokine regu-
lation during in vivo T cruzi infection. It is noteworthy
that murine IL-10 can downregulate the host immune re-
sponse by decreasing the production of IL-2 [34] and in-
hibiting mitogen driven T-cell proliferation [35]. There-
fore, it is reasonable to suggest that the reduction of Tc52
production by gene targeting which in turn downregu-
lates the IL-10 synthesis could be among the mechanisms
participating in the immunregulatory mechanisms lead-
ing to the control of IL-2 production.

Dendritic cells (DC) play a central role in the initia-
tion of immune responses. A recent interesting and infor-
mative review has summarized the recent developments
of DC-parasite interplay [36]. In order to gain insights
into the biological activity toward these cells, we con-
ducted experiments to investigate the Tc52-DC interac-
tions [26]. We show that Tc52 induces human DC mat-
uration via Toll-like receptor 2 (TLR2). Upon incubation
with Tc52, DC acquire CD83 and CD86 expression, pro-
duce inflammatory chemokines (IL-8, MCP-1, and MIP-
1α), and present potent costimulatory properties. Surpris-
ingly, while the binding of Tc52 to DC was a saturable
process, the Tc52-mediated signaling involves its GSH-
binding site, whereas another portion of the molecule is
involved in Tc52 binding to DC, suggesting the existence
of complex molecular interactions (receptors coopera-
tion, spatial organization of recognition structures on the
parasite surface?) between the T cruzi-derived molecule,
Tc52, and DC. Others have reported that the parasite
trans-sialidase (TS) activates mouse DC at least partly via
CD43 ligation [37].

The glycoinositolphospholipids (GIPLs) from T cruzi
have also been the subject of numerous investigations.
Indeed, recent studies have shown that glycosylphos-
phatidylinositol (GPI) anchors and GIPLs from T cruzi
are potent activators of human and mouse macrophage
TLR2 [38]. Interestingly, the TLR2 activation by GPI led
to the synthesis of IL-12 and TNF-α, a profil similar to that
observed when using LPS as a triggering agent. In con-
trast, TLR2 activation by Tc52 resulted in IL-8, MCP-1,
and MIP-1α production, whereas no secretion of TNF-α
occurred. Altogether, these observations suggest that the
parasite secrete molecules, which upon interaction with
the host cell may trigger signaling pathways leading to dif-
ferent patterns of cell activation/inhibition.

In addition to its role as a virulence factor, Tc52 under
conditions of experimental infections appears immuno-
logically relatively silent during the early acute phase, fail-
ing to elicit significant levels of antibodies and lympho-
cyte proliferation. We have hypothesized that the analysis
of structure-function relationship in the Tc52 molecule
could reveal discrete domains, which might minimize its
antigenicity. Studies recently reported identified a natu-
rally occurring major peptide fragment of 28 kd molecu-
lar mass (Tc28k) localized in the carboxy-terminal por-
tion of Tc52 carrying the inhibitory capacity on T-cell ac-
tivation. Synthetic peptides spanning the amino-terminal
or carboxy-terminal domain of Tc52 protein indicated
that the activity is mapped to Tc52 residues 432–445.
Moreover, the peptide when coupled to a carrier pro-
tein, exhibited increased inhibitory activity on T lym-
phocyte activation. Furthermore, the coupled peptide
significantly down regulated IFN-γ and IL-2 secretion.
Likewise, in immunized mice, the coupled peptide 432–
445 was a very poor B- and T-cell antigen compared
to the other Tc52 derived peptides. Therefore, the im-
munomodulatory portion of T cruzi Tc52 virulent factor
seems to reside, at least in part, in a conserved sequence
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Figure 1. (a) Light microscopy examination of astrocytes infected in vitro by Trypanosoma cruzi trypomastigotes showing high-
density intracellular replicating amastigotes (arrow). (b) and (c) Effect of trypomastigotes upon immunologically detectable glial
fibrillary acidic protein (GFAP) of living rat astrocytes. Briefly, primary cultures astrocytes were made from newborn rat cerebral
cortex. After the meninges had been cleaned off, the brain tissue was forced gently through a nylon sieve. Dulbecco’s modified Eagle
medium supplemented with 10% calf serum, 2 mM glutamine, 50 µg/mL gentamycin was used for the dissociation of cerebral tissue
and development of astrocytes. Aliquots (0.2 mL) of cell suspension containing 2× 104 cells were placed in 24-well microplates; each
well contained a glass coverslip (12 mm diameter). The cells were allowed to attach to the solid phase, and then viable trypomastigotes
were added in culture medium at 105 parasites per well. After 3 hours at 37◦C, each well was emptied and washed twice to remove
free-swimming parasites. The cells were fixed in 0.1% paraformaldehyde in PBS at 4◦C during 20 minutes and washed with PBS.
They were then incubated for 1 hour at room temperature in PBS containing 1% triton ×100 and 1% bovine serum albumin (BSA).
After three washes in PBS, the cells were treated with fluorescein-conjugated rabbit anti-GFAP antibodies diluted 1 : 100 in PBS-BSA.
After three washes in PBS, the cells were counterstained with 0.02% Evans blue in PBS and, in order to reduce fading, mounted in
Citifluor AF1 (glycerol: PBS solution (9/1), Citifluor Ltd, London,UK). (b) Fluorescence micrograph of astrocytes incubated with
culture medium alone and reacted with anti-GFAP antibodies showing normal distribution of GFAP. (c) Cell distribution of GFAP
network after infection with trypomastigotes.

within its carboxyl-terminal domain which could min-
imize its antigenicity [39]. Such molecules may permit
parasites to escape immune surveillance and to grow
unimpeded by normal immune responses. Moreover, the
impairment of multiple immune effector functions by
blocking the signal transduction pathways utilized by cy-
tokines such as IL-2 and IFN-γ; the host may become
more susceptible to opportunistic infections as well.

Like other microorganisms, T cruzi and Leishmania
sp release a large number of molecules which could act
as mitogenic substances inducing polyclonal lymphocyte
responses and consequently a general lack of specificity
of antibodies and T-cell responses during the infection.
The mechanisms by which T cruzi and Leishmania sp acti-
vate “panclonal” B lymphocyte response are fundamental,
and may contribute to the immune deregulation. A num-

ber of T cruzi-released proteins behave as B-cell activa-
tors (reviewed in [29]). Soluble parasite-derived antigens
from L major and L donovani are mitogenic and trigger
the production of immunoglobulins with autoantibody
activity [40]. Thus, crude extracts of L donovani and L
mexicana amazonensis contain components, which cause
strong in vitro polyclonal activation of hamster spleen
cells [41]. Moreover, an excreted factor derived from the
culture medium of L major was found to suppress Con
A induced polyclonal activation of mouse T cells [42].
Moreover, we have identified a parasite gene encoding a
protein sharing significant homology to mammalian ribo-
somal protein S3a named LmS3a exhibiting dual activity
being stimulatory and inhibitory toward T and B cells, re-
spectively [25]. Analysis of cytokine production revealed
a significant downregulation of IFN-γ, IL-2, and IL-12
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secretion by LmS3a. Since induction of Th1 immune re-
sponse and simultaneous lack of activation of a Th2 re-
sponse are required for generation of immunity to Leish-
maniasis, LmS3a could be among candidate molecules to
be tested for optimal design of vaccines against Leishma-
nia parasites.

MODULATION OF HOST CELL DEATH/SURVIVAL BY
PARASITES AND THEIR RELEASED FACTORS

Cell death with cell division generates the proper
number and type of cells during development and main-
tains the balance between different cell populations in an
organism. Alteration of this equilibrium by invading par-
asites results in the development of immunopathological
processes and disease progression. The invading parasites
can release factors, which kill the cells of the immune sys-
tem by activating the cellular death machinery, thus in-
ducing apoptosis. For example, one of the major surface
glycoconjugate in T cruzi, the GIPL has been shown to in-
duce apoptosis of macrophages through its lipid ceramide
domain [43].

Many efforts in the last years have focused on the
study of an important family of proteins from T cruzi:
TS and mucin families. T cruzi is unable to synthesize the
de novo monosaccharide sialic acid, but can incorporate
sialic acid derived from the host. This latter function is
devoted to the TS, which catalyzes the transfer of sialic
acid from host glycoconjugates to mucin-like molecules
located on the parasite surface membrane. TS is released
by the parasite into the external milieu as a soluble factor,
being a modified sialidase able to transfer sialic acid from
sialoglycoconjugates from the host to β-galactoses in the
glycoconjugates of the parasite. TS is expressed in the in-
vasive trypomastigote stage and is defined by two regions:
a globular amino-terminus of about 640 amino acids con-
taining the catalytic activity and a variable number of a
repeated highly antigenic motif of 12 amino acids named
SAPA located at the C terminus [44]. It has been shown
that under certain circumstances TS could act as an apop-
tosis inducer in cells of the immune system in vivo [45].
Furthermore, evidences reported support that TS is a vir-
ulence factor responsible for thymic alterations via apop-
tosis of “nurse cell complex” [46].

Paradoxically, a large number of experimental evi-
dences have shown that parasites may inhibit apoptosis
of host cells. For instance, we have observed that intra-
cellular production of native Tc52 stimulated the growth
of macrophages and fibroblasts (reviewed in [28]). This
kind of intriguing biological activity is not unique to
the Tc52. In fact, a number of other studies have shown
that parasite-derived molecules could interfere with the
growth of host cells. In the case of T cruzi, strong evidence
indicates that the parasite trans-sialidase (TS) synergizes
with the cytokine ciliary neurotropic factor and leukemia
inhibitory factor to prevent apoptosis of neuronal cells
[47]. TS also triggered bcl-2 gene expression leading to

NA IA

TNF-α

Actin

Figure 2. Effect of T cruzi infection on TNF-α gene expression
in astrocytes. RT-PCR analysis was performed as described in
[24]. Briefly, one microgram of total RNA from either infected
(IA) or noninfected astrocytes (NA) was reverse-transcribed to
cDNA. The cDNA sample was used as a template for 25–35 cy-
cles of PCR using primers for rat TNF-α and actin as a control
housekeeping gene to check the homogeneity of different sam-
ples. Due to the fact that RNA from infected cells contained an
additional source of RNA originating from T cruzi, the prepara-
tions were adjusted so that the levels of actin transcripts would
be comparable in IA and NA cells.

the protection of rat pheochromocytoma PC12 cells, a
cell line that exhibits several characteristics of neurons,
against apoptosis induced by growth factor deprivation.
Furthermore, TS has been reported to act as a survival fac-
tor for Schwann cells by protecting them from apoptosis
[48]. In fact, the TS activates Schwann-cell phosphatidyli-
nositol 3-kinase (P13K)/Akt protein kinase signaling, a
cell survival pathway.

Moreover, it has been shown that macrophages upon
infection became resistant to apoptosis induced by growth
factors removal [49]. Since treatment of bone marrow-
derived macrophages with exogenous L donovani pro-
mastigote surface lipophosphoglycan inhibits apoptosis,
it has been proposed that the lipophosphoglycan might
be involved in the pathway leading to the apoptosis in-
hibition. This phenomenon seems to be correlated to
increased transcription of macrophage cytokine genes
encoding GM-CSF, TNF-α, TGF-β, and IL-6. More re-
cently, it has been reported that coincubation of poly-
morphonuclear neutrophil granulocytes (PMN) with L
major promastigotes resulted in significant inhibition of
PMN apoptosis. This phenomenon is associated with a
significant reduction of PMN caspase-3 activity. Since,
parasites were found inside mice skin PMN after subcu-
taneous challenge infection, it has been suggested that
infection with L major prolongs the survival time of
PMN in vivo [50]. Taken together, these observations
suggest the deployment by the parasites of active strate-
gies that manipulate the host response.

The modulation of host cell metabolism by T cruzi
has also been reported (reviewed in [51]). For exam-
ple, myoblasts infected with T cruzi do not differen-
tiate to myotubes and do not synthesize mRNA for
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Figure 3. Schematic diagrams showing possible pathways by which the parasite-released factors affect the immune cells.

myosin heavy chain and α-actin, despite the fact that they
produce normal levels of housekeeping mRNA. Moreover,
evidence for functional disturbances in the generation of
second messenger cAMP has been reported. Furthermore,
the infection influences the cytosolic levels of free Ca2+

and the metabolism of inositol phosphates (IP1, IP2, and
IP3) as well as the synthesis of the extracellular matrix
components.

Central nervous system (CNS) involvement in Cha-
gas’ disease has been considered to give a grave prog-
nosis, with fatal outcome in a high percentage of chil-
dren in the acute phase of the disease. The CNS can be
invaded and damaged by a variety of microbes. Stud-
ies have shown that astrocytes, microglial resident cells
of the CNS, play a key role in CNS defense against in-
fections [52]. The astroglial cytokines are among factors
which may help to limit the spread of pathogens through
their effect on the recruitment and activity of immune
cells. Astrocytes respond vigorously to infections of the
CNS; the responses being generally detectable 24 hours af-
ter infection. Reactive astrocytosis includes an increase in
the number and size of cells expressing the glial fibrillary
acidic protein (GFAP). Unexpectedly, we found a signif-
icant reduction of immunologically detectable GFAP in
astrocytes infected with T cruzi when compared to nonin-
fected cells (Figures 1b and 1c). Moreover, although reac-
tive astrocytes have been shown to express elevated levels
of TNF-α, this seems not to be the case upon infection
of astrocytes with T cruzi. Indeed, a significant downreg-
ulation of TNF-α gene transcription could be seen in the

case of T cruzi-infected astrocytes when compared to non-
infected cells (Figure 2). Astrocytes are found through-
out the CNS and are in intimate contact with the en-
dothelial cells. Therefore, they could influence the entry of
hematogenous cells into the CNS and their activity once
within the CNS. The downregulation of astrocyte func-
tion by T cruzi might impair the recruitment and activity
of immune cells. Thus, the impairment of astrocytes may
play a role in the pathogenesis of Chagas’ disease partic-
ularly in children during the acute phase of T cruzi infec-
tion.

CONCLUDING REMARKS

Parasitic protozoa of the trypanosomatids family and
their released products exert a spectrum of influences on
the immune cells of their mammalian hosts, ranging from
the induction of host-protective immunity to providing
mechanisms by which the parasites evade the host’s im-
mune surveillance (see Figure 3). However, it is notewor-
thy that molecules released from parasites in vitro, and
designed ESA, may include components, which would not
be released from viable parasites in vivo. Therefore, it is of
crucial importance to demonstrate, using molecular and
immunological approaches, the relevance of the biologi-
cal activities of ESA molecules in vivo. It is reasonable to
suggest that among the released molecules, those, which
may confer a selective advantage to the pathogen, repre-
sent potential targets for developing therapeutic strategies
to blunt the host-immune system dysfunction.
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