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Study objective: The goal of this study is to create a predictive, interpretable model of early hospital respiratory failure among
emergency department (ED) patients admitted with coronavirus disease 2019 (COVID-19).

Methods: This was an observational, retrospective, cohort study from a 9-ED health system of admitted adult patients with severe
acute respiratory syndrome coronavirus 2 (COVID-19) and an oxygen requirement less than or equal to 6 L/min. We sought to
predict respiratory failure within 24 hours of admission as defined by oxygen requirement of greater than 10 L/min by low-flow
device, high-flow device, noninvasive or invasive ventilation, or death. Predictive models were compared with the Elixhauser
Comorbidity Index, quick Sequential [Sepsis-related] Organ Failure Assessment, and the CURB-65 pneumonia severity score.

Results: During the study period, from March 1 to April 27, 2020, 1,792 patients were admitted with COVID-19, 620 (35%) of
whom had respiratory failure in the ED. Of the remaining 1,172 admitted patients, 144 (12.3%) met the composite endpoint
within the first 24 hours of hospitalization. On the independent test cohort, both a novel bedside scoring system, the quick COVID-
19 Severity Index (area under receiver operating characteristic curve mean 0.81 [95% confidence interval {CI} 0.73 to 0.89]), and
a machine-learning model, the COVID-19 Severity Index (mean 0.76 [95% CI 0.65 to 0.86]), outperformed the Elixhauser mortality
index (mean 0.61 [95% CI 0.51 to 0.70]), CURB-65 (0.50 [95% CI 0.40 to 0.60]), and quick Sequential [Sepsis-related] Organ
Failure Assessment (0.59 [95% CI 0.50 to 0.68]). A low quick COVID-19 Severity Index score was associated with a less than 5%
risk of respiratory decompensation in the validation cohort.

Conclusion: A significant proportion of admitted COVID-19 patients progress to respiratory failure within 24 hours of admission.
These events are accurately predicted with bedside respiratory examination findings within a simple scoring system. [Ann Emerg
Med. 2020;76:442-453.]
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INTRODUCTION
Background

Severe acute respiratory syndrome coronavirus 2
(coronavirus disease 2019 [COVID-19]) is a global
pandemic with millions of cases and hundreds of thousands
of deaths.1,2 Despite initial reports of patient characteristics
and risk factors for critical illness, there is little evidence-
based guidance available to aid provider decisionmaking in
safely dispositioning patients with COVID-19.3,4

Inappropriate inpatient dispositions lead to increased
provider contacts in the form of rapid response teams and
the use of multiple care areas when hospital capacities are
limited.5,6 More significantly, in other domains of
emergency care, undertriage of patients is associated with
Emergency Medicine
worse morbidity and mortality than if patients are directly
admitted to higher levels of care.7,8 Given the high
morbidity and mortality associated with COVID-19 and
uncertainty around the disease process and prognosis, there
is great urgency in developing and validating effective
clinical risk-stratification tools for COVID-19 patients.

Importance
Expert-recommended admissions guidelines do not risk

stratify among patients with severe COVID-19.9

International definitions of severe COVID-19 are evolving,
but typically include respiratory rate less than or equal to
30 breaths/min, SpO2 greater than or equal to 93%,
PaO2:FiO2 less than or equal to 300 mm Hg, and infiltrates
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mailto:richard.taylor@yale.edu
https://www.surveymonkey.com/r/DNV9SWP
https://doi.org/10.1016/j.annemergmed.2020.07.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annemergmed.2020.07.022&domain=pdf


Haimovich et al Quick COVID-19 Severity Index
Editor’s Capsule Summary

What is already known on this topic
Patients with coronavirus disease 2019 (COVID-19)
can experience respiratory deterioration after hospital
admission.

What question this study addressed
Data were extracted retrospectively for 1,172
COVID-19 patients admitted to the hospital from 9
emergency departments to identify factors that may
predict deterioration requiring oxygen greater than
10 L/min, noninvasive ventilation, or intubation; or
that leads to death within 24 hours of hospital
admission.

What this study adds to our knowledge
A model (quick COVID-19 Severity Index) with 3
variables (respiratory rate, pulse oximetry, and oxygen
flow rate) outperformed other models, including the
quick Sequential [Sepsis-related] Organ Failure
Assessment and CURB-65, on an independent
validation cohort.

How this might change clinical practice
The quick COVID-19 Severity Index model may be
useful to assist level-of-care decisions for admitted
COVID-19 patients. It is not known how well it
performs relative to physician gestalt.
of greater than or equal to 50% of lungs.9,10 Critical
COVID-19 exists on a spectrum with severe illness and
involves organ failure, often leading to prolonged
mechanical ventilation.9 In a large cohort of COVID-19
patients, severe and critical illness represented almost 20%
of the studied population.10 In most institutions,
dispositions for patients with critical respiratory failure (eg,
those receiving ventilation or with nonrebreather masks)
are largely apparent and determined by system protocols
and capacity. Rapid progression from severe to critical
illness, however, is a common problem and presents a
prognostic challenge for ED providers determining
admissions.

For this reason, we focus on patients for whom critical
respiratory illness is not universally apparent in the ED;
namely, those requiring nasal cannula with oxygen less than
or equal to 6 L/min. In our health system, 6 L/min is
typically the maximum flow rate delivered by nasal
cannula. Greater than 90% of patients receiving oxygen at
less than 6 L/min are admitted to the floors, but of those,
Volume 76, no. 4 : October 2020
greater than 10% were observed to have increased oxygen
requirements within 24 hours. Conversely, among these
patients admitted to higher levels of care, approximately
70% did not progress above nasal cannula oxygen at 6 L/
min. These data suggest potential to improve our ability to
risk stratify ED patients before admission.
Goals of This Investigation
The objective of this study was to derive a risk-

stratification tool to predict 24-hour respiratory
decompensation in admitted patients with COVID-19.
Here, we expand on previous efforts describing the course
of critical COVID-19 illness in 3 ways. First, we focused
on ED prognostication by studying patient outcomes
within 24 hours of admission, using data available during
the first 4 hours of presentation.11 Although critical illness
often occurs later in hospitalization, the relevance of these
later events to ED providers is less clear. We emphasize
oxygen requirements and mortality rather than ICU
placement because we have observed the latter to have
highly variable criteria, depending on total patient census.12

Second, to aid health care providers in assessing illness
severity in COVID-19 patients, we presented predictive
models of early respiratory failure during hospitalization
and compare them with 3 benchmarks accessible with data
in the electronic health record: the Elixhauser Comorbidity
Index,13 the quick Sequential [Sepsis-related] Organ
Failure Assessment (qSOFA),14,15 and the CURB-65
pneumonia severity score.16 Although many clinical risk
models exist, these benefit from wide clinical acceptability
and relative model parsimony because they require minimal
input data for calculation. The Elixhauser Comorbidity
Index was derived to enable prediction of hospital death
with administrative data.13 The qSOFA score was included
in SEPSIS-3 guidelines and can be scored at the bedside
because it includes respiratory rate, mental status, and
systolic blood pressure.14 The CURB-65 pneumonia
severity score has been well validated for hospital
disposition, but its utility in both critical illness and
COVID-19 is unclear.16,17 Third, we made the quick
COVID-19 Severity Index, a prognostic tool, available to
the public through a Web interface.
MATERIALS AND METHODS
Study Design and Setting

This was a retrospective observational cohort study to
develop a prognostic model of early respiratory
decompensation in patients admitted from the emergency
department (ED) with COVID-19. The health care system
is composed of a mix of suburban community (n¼6),
Annals of Emergency Medicine 443
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urban community (n¼2), and urban academic (n¼1) EDs.
Data from 8 EDs were used in the derivation and cross
validation of the predictive model, whereas data from the
last urban community site was withheld for independent
validation. We adhered to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis checklist (Appendix E1, available online at
http://www.annemergmed.com).18 This study was
approved by our local institutional review board.
Data Collection and Processing
Patient demographics, summarized medical histories,

vital signs, outpatient medications, chest radiograph
reports, and laboratory results available during the ED
encounter were extracted from our local Observational
Medical Outcomes Partnership data repository and
analyzed within our computational health platform.19 Data
were collected into a research cohort with custom scripts in
PySpark (version 2.4.5) that were reviewed by an
independent analyst.

Nonphysiologic values likely related to data entry errors
for vital signs were converted to missing values based on
expert-guided rules (Appendix E1, available online at
http://www.annemergmed.com [Table S1]). Laboratory
values at minimum or maximum thresholds and encoded
with “<“ or “>“ were converted to the numeric threshold
value, and other nonnumeric values were dropped. Medical
histories were generated by using diagnoses before the date
of admission to exclude potential future information in
modeling. Outpatient medications were mapped to the
First DataBank Enhanced Therapeutic Classification
System.20 Radiograph reports were manually reviewed by 2
physicians and categorized as “no opacity,” “unilateral
opacity,” or “bilateral opacities.” One hundred radiograph
reports were reviewed by both physicians to determine
interrater agreement with weighted k. Oxygen devices were
similarly extracted from the Observational Medical
Outcomes Partnership (Appendix E1, available online at
http://www.annemergmed.com [Table S2]).

We defined critical respiratory illness in the setting of
COVID-19 as any COVID-19 patient meeting one of the
following criteria: oxygenation flow rate greater than or
equal to 10 L/min, high-flow oxygenation, noninvasive
ventilation, invasive ventilation, or death (Appendix E1,
available online at http://www.annemergmed.com
[Table S2]). We did not include ICU admission in our
composite outcome because at the start of the COVID-19
pandemic, ICU admissions were protocolized to include
even minimal oxygen requirements. A subset of outcomes
was manually reviewed by physician members of the
444 Annals of Emergency Medicine
institutional computational health care team as part of a
systemwide process to standardize outcomes for COVID-
19–related research.

Data included visits from March 1, 2020, through April
27, 2020, because our institution’s first COVID-19 tests
were ordered after March 1, 2020. This study included
admitted COVID-19–positive patients as determined by
test results ordered between 14 days before and up to 24
hours after hospital presentation. We included delayed
testing because institutional guidelines initially restricted
testing within the hospital to inpatient wards. Testing for
COVID-19 was performed at local or reference laboratories
by nucleic acid detection methods using oropharyngeal or
nasopharyngeal swabs, or a combination oropharyngeal/
nasopharyngeal swab. We excluded patients younger than
18 years and those who required oxygen at more than 6 L/
min or otherwise met our critical illness criteria at any point
within 4 hours of presentation. The latter was intended to
exclude patients for whom critical illness was nearly
immediately apparent to the medical provider and for
whom a prediction would not be helpful. Patients who
explicitly opted out of research were excluded from analysis
(n<5). Data were extracted greater than 24 hours after the
last included patient visit so that all outcomes could be
extracted from the electronic health record.

We generated comparator models using the Elixhauser
Comorbidity Index, qSOFA, and CURB-65 (Appendix E1,
available online at http://www.annemergmed.com).
International Statistical Classification of Diseases and Related
Health Problems, 10th Revision codes from patient medical
histories were mapped to Elixhauser comorbidities and
indices with H-CUP Software and Tools (hcuppy package;
version 0.0.7).21,22 qSOFA was calculated as the sum of the
following findings, each of which was worth 1 point:
Glasgow Coma Scale score less than 15, respiratory rate
greater than or equal to 22 breaths/min, and systolic blood
pressure less than or equal to 100 mm Hg. CURB-65 was
calculated as the sum of the following findings, each of
which was worth 1 point: Glasgow Coma Scale score less
than 15, blood urea nitrogen level greater than 19 mg/dL,
respiratory rate greater than or equal to 30 breaths/min,
systolic blood pressure less than 90 mm Hg or diastolic
blood pressure less than or equal to 60 mm Hg, and aged
65 years. Baseline models were evaluated on the training
and internal validation cohort, using logistic regression on
the calculated scores.

Samples from 8 hospitals were used in model generation
and internal validation with the remaining large, urban
community hospital serving as an independent site for
validation. All models were fit on patient demographic and
clinical data collected during the first 4 hours of patient
Volume 76, no. 4 : October 2020
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presentation, and predictions are made with the most
recently available data at the 4-hour point unless otherwise
noted. We used an ensemble technique to identify and rank
potentially important predictive variables based on their
occurrence across multiple selection methods: univariate
regression, random forest, logistic regression with LASSO,
c2 testing, gradient-boosting information gain, and
gradient-boosting Shapley additive explanation (SHAP)
interaction values (Appendix E1, available online at http://
www.annemergmed.com).23-25 We counted the co-
occurrences of the top 30, 40, and 50 variables of each of
the methods before selecting features for a minimal scoring
model (quick COVID-19 Severity Index) and machine-
learning model (COVID-19 Severity Index) using gradient
boosting. For the quick COVID-19 Severity Index, we
used a point system guided by logistic regression (Appendix
E1, available online at http://www.annemergmed.com).
The gradient-boosting COVID-19 Severity Index model
was fit with the XGBoost package and hyperparameters
were set with Bayesian optimization with a tree-structured
Parzen estimator (Appendix E1, available online at http://
www.annemergmed.com).26,27 All analyses were performed
in Python (version 3.8.2).

We report summary statistics of model performance in
predicting the composite outcome between 4 and 24 hours
of hospital arrival. We used bootstrapped logistic regression
with 10-fold cross validation to generate performance
benchmarks for the Elixhauser, qSOFA, CURB-65, and
quick COVID-19 Severity Index models and bootstrapped
gradient boosting with 10-fold cross validation for the
COVID-19 Severity Index model. Where necessary, data
were imputed with training set median values of bootstraps.
We report area under the receiver operating characteristic
(ROC), accuracy, sensitivity and specificity at Youden’s
index, area under the precision-recall curve,28 Brier score,
F1 score, and average precision (Appendix E1, available
online at http://www.annemergmed.com). Similarly, to
evaluate model performance on the independent validation
cohort, means and confidence intervals were calculated
from bootstrap iterations of the test set, using sampling
with replacement. We report 95% confidence intervals
derived from the percentiles of the bootstrapped
distribution or Welch’s 2-sample t test for statistical
comparisons of model performance.29
RESULTS
Characteristics of Study Subjects

Between March 1, 2020, and April 27, 2020, there were
a total of 1,792 admissions for COVID-19 patients
meeting our age criteria. Of these, 620 patients (35%) were
Volume 76, no. 4 : October 2020
excluded by meeting critical respiratory illness endpoints
within 4 hours of presentation. Of the included patients,
144 (12.3%) had respiratory decompensation within the
first 24 hours of hospitalization: 101 (8.6%) requiring
oxygen flow at greater than 10 L/min, 112 (9.6%) with
high-flow device support (Appendix E1, available online at
http://www.annemergmed.com [Table S2]), 4 (0.3%)
receiving noninvasive ventilation, 10 (0.8%) with invasive
ventilation, and 1 (0.01%) who died. Fifty-nine patients
(5%) were admitted to the ICU within the 4- to 24-hour
period. Population characteristics including demographics
and comorbidities for the study are shown in Table 1.
Study patient flow is shown in Figure 1 and patient
characteristics for the development and validation
populations are shown in Appendix E1 (available online at
http://www.annemergmed.com [Tables S3 to S4]).

Our full data set included 713 patient variables available
during the first 4 hours of the patient encounters
(Appendix E1, available online at http://www.
annemergmed.com [Table S5]). These included
demographics, vital signs, laboratory values, comorbidities,
chief complaints, outpatient medications, tobacco use
histories, and radiographs. Radiologist-evaluated
radiographs were classified into 3 categories, with strong
interrater agreement (k¼0.81). Associations between
radiographic findings and outcomes are shown in Appendix
E1 (available online at http://www.annemergmed.com
[Table S6]). We preferentially selected variables available at
bedside for derivation of the quick COVID-19 Severity
Index. Our ensemble approach identified 3 bedside
variables as consistently important across the variable
selection models: nasal cannula requirement, minimum
recorded pulse oximetry, and respiratory rate (Appendix
E1, available online at http://www.annemergmed.com
[Figure S1]). These 3 features appeared in at least 5 of the 6
variable selection methods.

We divided each of these 3 clinical variables into value
ranges according to clinical experience and used logistic
regression to derive weights for the quick COVID-19
Severity Index scoring system (Table 2). Normal
physiology was used as the baseline category, and the
logistic regression odds ratios were offset to assign normal
clinical parameters zero points in the quick COVID-19
Severity Index (Appendix E1, available online at http://
www.annemergmed.com). The quick COVID-19 Severity
Index score ranges from 0 to 12.

We identified an additional 12 features from the
predictive factor analysis for use in a machine-learning
model (COVID-19 Severity Index) with gradient boosting
(Table 2 and Appendix E1, available online at http://www.
annemergmed.com [Figure S1]). These variables were
Annals of Emergency Medicine 445
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Table 1. Characteristics of COVID-19–positive admitted patients stratified by primary outcome.

Variable Category

24-Hour Critical Respiratory Illness

Missing Negative, n[1,028 Positive, n[144

Age, mean (SD), y 0 67.6 (16.9) 64.8 (16.7)

Age, y 18–44 105 (10.2) 19 (13.2)

45–64 340 (33.1) 60 (41.7)

>65 583 (56.7) 65 (45.1)

Sex Women 506 (49.2) 61 (42.4)

Men 522 (50.8) 83 (57.6)

Race Black 260 (25.3) 40 (27.8)

White 517 (50.3) 63 (43.8)

Other 251 (24.4) 41 (28.5)

Ethnicity Hispanic or Latino 233 (22.7) 44 (30.6)

Non-Hispanic 776 (75.5) 97 (67.4)

Unknown 19 (1.8) 3 (2.1)

Smoking status Smoker 39 (3.8) 8 (5.6)

Former smoker 340 (33.1) 45 (31.2)

Never smoker 503 (48.9) 66 (45.8)

Unknown 185 (18.0) 33 (22.9)

Insurance type Commercial 118 (11.5) 21 (14.6)

Medicaid 136 (13.2) 23 (16.0)

Medicare 590 (57.4) 68 (47.2)

Other 92 (8.9) 19 (13.2)

Self-pay 92 (8.9) 13 (9.0)

Comorbidities None 322 (31.3) 47 (32.6)

Fluid and electrolyte disorders 378 (36.8) 47 (32.6)

Other neurologic disorders 320 (31.1) 36 (25.0)

Deficiency anemias 315 (30.6) 48 (33.3)

Hypertension 311 (30.3) 47 (32.6)

Chronic pulmonary disease 282 (27.4) 32 (22.2)

Hypertension with complications 264 (25.7) 36 (25.0)

Diabetes with chronic complications 263 (25.6) 37 (25.7)

Obesity 261 (25.4) 40 (27.8)

Depression 260 (25.3) 31 (21.5)

Valvular disease 235 (22.9) 21 (14.6)

Peripheral vascular disease 220 (21.4) 31 (21.5)

Renal disease 205 (19.9) 30 (20.8)

Congestive heart failure 203 (19.7) 20 (13.9)

Hypothyroidism 186 (18.1) 22 (15.3)

Weight loss 158 (15.4) 18 (12.5)

Psychoses 126 (12.3) 16 (11.1)

Coagulation deficiency 98 (9.5) 10 (6.9)

Liver disease 97 (9.4) 15 (10.4)

Solid tumor without metastasis 96 (9.3) 10 (6.9)

Diabetes without chronic complications 93 (9.0) 19 (13.2)

Rheumatoid arthritis/collagen vascular 74 (7.2) 11 (7.6)

Paralysis 71 (6.9) 9 (6.2)

Anemia from blood loss 68 (6.6) 7 (4.9)

Metastatic disease 66 (6.4) 9 (6.2)

Quick COVID-19 Severity Index Haimovich et al
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Table 1. Continued.

Variable Category

24-Hour Critical Respiratory Illness

Missing Negative, n[1,028 Positive, n[144

Pulmonary circulation disorders 64 (6.2) 6 (4.2)

Alcohol abuse 63 (6.1) 7 (4.9)

Drug abuse 51 (5.0) 12 (8.3)

Model variables, mean (SD) Oxygen flow rate, L/min* 9 1.8 (1.4) 3.5 (1.5)

Respiratory rate, breaths/min* 17 20.3 (4.2) 22.3 (5.2)

Minimum oxygen saturation (% oxygen) 17 92.9 (3.2) 89.9 (5.0)

Aspartate aminotransferase 323 53.8 (51.7) 85.6 (227.1)

Chloride 45 100.1 (5.5) 98.8 (5.1)

Procalcitonin 593 0.5 (2.3) 0.8 (2.4)

Minimum systolic blood pressure 17 117.0 (17.8) 113.7 (20.5)

WBC count 40 7.0 (3.7) 7.6 (4.3)

Blood urea nitrogen 35 22.8 (18.6) 28.3 (22.6)

Creatinine 35 1.4 (1.5) 1.7 (2.0)

Glucose 34 142.8 (73.1) 156.1 (82.4)

C-reactive protein 777 92.2 (70.0) 153.9 (88.4)

Ferritin 781 812.4 (889.6) 1,540.1 (3,342.2)

Unknown demographics are included under “other” or “unknown” where relevant.
*Indicates the most recent documented value at 4 hours.

Haimovich et al Quick COVID-19 Severity Index
selected by balancing the goals of model parsimony,
minimizing highly correlated features (ie, various
summaries of vital signs), and predictive performance. We
used SHAP methods to understand the importance of
various clinical variables in the COVID-19 Severity Index
Figure 1. Model development strategy. Exclusions were for
critical illness within 4 hours of ED presentation.

Volume 76, no. 4 : October 2020
(Figure 2).25,30-32 SHAP values are an extension of the
game-theoretic Shapley values that seek to describe variable
effects on model output, defined as the contribution of a
specific variable to the prediction itself.30 The key
advantage of the related SHAP values is that they add
Table 2. Quick COVID-19 Severity Index and COVID-19 Severity
Index model variables.

qCSI variable Points Additional CSI variables

Respiratory rate, breaths/min Aspartate transaminase

£22 0 Alanine transaminase

23–28 1 Ferritin

>28 2 Procalcitonin

Pulse oximetry, %* Chloride

>92 0 C-reactive protein

89–92 2 Glucose

Oxygen flow rate, L/min

£88 5 Urea nitrogen

WBC count

£2 0 Age

3–4 4

5–6 5

qCSI, Quick COVID-19 Severity Index; CSI, COVID-19 Severity Index.
*Pulse oximetry represents the lowest value recorded during the first 4 hours of the
patient encounter.

Annals of Emergency Medicine 447
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interpretability to complex models such as gradient
boosting, which otherwise provide opaque outputs.
SHAP values are dimensionless and represent the
log odds of the marginal contribution a variable makes
on a single prediction. In the case of our gradient-
boosting COVID-19 Severity Index model, we used an
isotonic regression step for model calibration, so the
SHAP values reflect a relative weighting of
contributions.33

The rank order of average absolute SHAP values across
all variables in a model suggests the most important
variables in assigning modeled risk. For the COVID-19
Severity Index, these were flow rate by nasal cannula,
followed by lowest documented pulse oximetry level and
aspartate aminotransferase level (Figure 2A). As did
researchers in previous studies, we observed utility of
inflammatory markers, ferritin, procalcitonin, and C-
reactive protein. We then explored how ranges of
individual feature values affected model output (Figure 2B).
For example, low oxygen flow rates (blue) are protective, as
indicated by negative SHAP values, as are high pulse
oximetry values (red). To better investigate clinical variable
effects on predicted patient risk, we generated individual
variable SHAP value plots (Figure 3). Age displayed a
nearly binary risk distribution, with an inflection point
between aged 60 and 70 years (Figure 3A). Younger
patients displayed a higher risk of 24-hour critical illness
than did older patients. We also observed that elevated
levels of aspartate aminotransferase, alanine
aminotransferase, and ferritin were associated with elevated
model risk, but the SHAP values reached their asymptotes
well before the maximum value for each of these features
(Figure 3B to D). Aspartate aminotransferase and alanine
aminotransferase SHAP values reached their maximum
within normal or slightly elevated ranges for these
laboratory tests. The inflection point in risk attributable to
ferritin levels, however, was close to 1,000 ng/mL, above
institutional normal range for this test (30 to 400 ng/mL).

Across the cohort, 72% of patients did not have a
Glasgow Coma Scale score documented. On cross
validation, the quick COVID-19 Severity Index had an
area under the ROC of 0.89 (0.84, 0.95), COVID-19
Severity Index score 0.92 (0.86, 0.97), qSOFA score 0.76
(0.69 to 0.85), Elixhauser score 0.70 (0.62 to 0.80), and
CURB-65 score 0.66 (0.58 to 0.77) (Appendix E1,
available online at http://www.annemergmed.com
[Table S7]) (P<.05). On the independent validation
cohort, the area under the ROCs of the quick COVID-19
Severity Index and COVID-19 Severity Index were 0.81
(0.73, 0.89) and 0.76 (0.65 to 0.86), respectively.3 We
tested the calibration of the quick COVID-19 Severity
Volume 76, no. 4 : October 2020
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Figure 2. SHAP variable importance and bee swarm plots. A, Mean absolute SHAP values suggest a rank order for variable
importance in the COVID-19 Severity Index. B, In the bee swarm plot, each point corresponds to an individual person in the study.
The points’ position on the x axis shows the effect that feature has on the model’s prediction for a given patient. Color corresponds
to relative variable value.
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Index and COVID-19 Severity Index scores by assigning all
patients in the independent validation cohort each of the
scores and comparing them with known outcomes
(Figure 4 and Appendix E1, available online at http://www.
Figure 3. SHAP value plots for age (A), alanine aminotransferase (B
show the effects of variable values (x axis) on the model predictio

Volume 76, no. 4 : October 2020
annemergmed.com [Figures S2 to 3]).34 These calibration
curves suggest that outcome rates increased with quick
COVID-19 Severity Index and COVID-19 Severity Index
scores. A quick COVID-19 Severity Index score of less
), aspartate aminotransferase (C), and ferritin (D). Scatter plots
ns as captured by SHAP values (y axis).
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Figure 4. Calibration of quick COVID-19 Severity Index and COVID-19 Severity Index on the independent validation data set. A,
Each patient in the validation cohort was assigned a score by quick COVID-19 Severity Index, and the percentage who had a critical
respiratory illness outcome were plotted with a line plot. Patients were then grouped into risk bins by quick COVID-19 Severity Index
intervals (0 to 3, 4 to 6, 7 to 9, and 10 to 12); the percentage of patients in each group with the outcome is indicated in the bar plot.
B, Each patient in the validation cohort was assigned a COVID-19 Severity Index score, a percentage risk from 0% to 100% using
gradient boosting and isotonic regression. The percentage of patients with COVID-19 Severity Index scores of 0% to 33%, 33% to
66%, and 66% to 100% who experienced critical respiratory illness at 24 hours is shown.

Quick COVID-19 Severity Index Haimovich et al
than or equal to 3 has a sensitivity of 0.79 (0.65 to 0.93),
specificity 0.78 (0.72 to 0.83), PPV 0.36 (0.25 to 0.47),
NPV 0.96 (0.93 to 0.99), LRþ 3.55 (3.51 to 3.59), and
LR- 0.27 (0.26 to 0.28).

The quick COVID-19 Severity Index is available at
https://covidseverityindex.org. The quick COVID-19
Severity Index calculator includes selection boxes for each
of the 3 variables, which are summed to generate a score
and prediction as estimated with the independent
validation cohort.
LIMITATIONS
The data in this study were observational and provided

from a single health system, and so they may not be
generalizable according to local testing and admissions
practices. Our data were extracted from an electronic health
record, which is associated with known limitations,
including propagation of old or incomplete data. There are
important markers of oxygenation that were out of the
scope of our study, including alveolar-arterial gradients.
Because of data availability, no signs or symptoms or
provider notes were included as candidate predictor
variables.

Retrospective observational studies lack control of
variables, so prospective studies will be required to assess
validity of the presented models and the specificity of the
features we identify as important to COVID-19
progression. Because of the retrospective nature of this
study and the use of electronic health records, data
imputation and assumptions about missingness were
required, which introduced biases into our results. We
450 Annals of Emergency Medicine
assumed a Glasgow Coma Scale score of 15 unless
documented otherwise, which may underestimate severity
in qSOFA and CURB-65. Likewise, comorbidities were
populated from previous in-system diagnoses; patients
without system visits are likely to have lower Elixhauser
indices than those whose care was integrated within the
health system. In the quick COVID-19 Severity Index
calculations, nasal cannula flow rate was imputed if nasal
cannula was documented without a flow rate. In the
COVID-19 Severity Index, no specific imputations were
required because gradient boosting natively handles missing
values. Chest radiograph interpretation was conducted
manually with radiology reports, but without reviewing the
radiography, which introduces subjectivity as reflected in
the interrater agreement metric.

There are limitations in model performance, with
confidence intervals reflective of moderate study size. We
additionally did not compare the models with unstructured
provider judgment, and thus one cannot make conclusions
about whether this tool has utility beyond clinical gestalt.
Most significant, however, is that management of COVID-
19 is evolving, so future clinical decisions may not match
those standards used in the reported clinical settings.
DISCUSSION
Consistent with clinical observations, we noted a

significant rate of progression to critical respiratory illness
within the first 24 hours of hospitalization in COVID-19
patients. We used 6 parallel approaches to identify a subset
of variables for the final quick COVID-19 Severity Index
and COVID-19 Severity Index models. The quick
Volume 76, no. 4 : October 2020
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COVID-19 Severity Index ultimately requires only 3
variables, all of which are accessible at the bedside.

We propose that a quick COVID-19 Severity Index
score of 3 or less be considered low likelihood for 24-hour
respiratory critical illness, with a mean outcome rate of 4%
in the independent validation cohort (Figure 4) and a LR-
of 0.27 (0.26 to 0.28). This score is achievable under the
following patient conditions: respiratory rate less than or
equal to 28 breaths/min, minimum pulse oximetry reading
of greater than or equal to 89%, and oxygen flow rate of
less than or equal to 2 L. In the validation cohort, a quick
COVID-19 Severity Index cutoff greater than 3 had a
sensitivity of 0.79 (0.65 to 0.93) in predicting progression
of respiratory failure. However, few patients in the
validation cohort had a quick COVID-19 Severity Index
score of 3 (SpO2 of 89% to 92% and respiratory rates of 23
to 28 breaths/min with oxygen requirement �2 L/min)
(Appendix E1, available online at http://www.
annemergmed.com [Figure S2]). In the validation cohort,
patients with a quick COVID-19 Severity Index score of 4
to 6 had a 30% rate of decompensation, whereas the group
with a score of 7 to 9 had a 44% rate and the group with a
score of 10 to 12 had a 57% rate. A quick COVID-19
Severity Index score of greater than 9 had a specificity of
0.99 in predicting respiratory failure, with a LR of 8.36
(7.98 to 8.76). Taken together, the quick COVID-19
Severity Index provides an objective tool for planning
hospital dispositions. Patients with low quick COVID-19
Severity Index scores are unlikely to have respiratory
decompensation, whereas those with high scores may
benefit from higher levels of care.

COVID-19 Severity Index performance on the
validation cohort was not superior to that of the quick
COVID-19 Severity Index. We hypothesize that this may
be related to cohort differences or COVID-19 Severity
Index overfitting on the development cohort. The
COVID-19 Severity Index offers opportunities to examine
further potential COVID-19 prognostic factors. We used
gradient-boosting models rather than logistic regression
because gradient boosting allowed us to better capture
nonlinear relationships, such as those observed in the liver
chemistries, and natively handles missing values without
imputation. Lower age had higher SHAP values, suggesting
potential bias in the admitted patient cohort; young
admitted patients may be more acutely ill than older ones.
In alignment with current hypotheses about COVID-19
severity, multiple variable selection techniques identified
inflammatory markers, including C-reactive protein and
ferritin, as potentially important predictors. More striking,
however, was the importance of aspartate aminotransferase
and alanine aminotransferase in COVID-19 Severity Index
Volume 76, no. 4 : October 2020
predictions as calculated with SHAP values.35,36 The
transition point at which the SHAP value analysis
identified model risk associated with liver chemistries was at
the high end of normal, consistent with previous
observations that noted normal to mild liver dysfunction
among COVID-19 patients. We hypothesize that the
asymptotic quality of the investigated variables with respect
to COVID-19 Severity Index risk contributions reflects our
moderate study size. We expect that scaling COVID-19
Severity Index training to larger cohorts will further
elucidate the effects of more extreme laboratory values.
Although our data set included host risk factors, including
smoking history, obesity, and body mass index, these did
not appear to play a prominent role in predicting acute
deterioration. Here, we recognize 2 important
considerations: first, that predictive factors may not be
mechanistic or causative factors in disease, and second, that
these factors may be related to disease severity without
providing predictive value for 24-hour decompensation.

We included radiographs for 1,170 visits in this cohort.
Radiographs are of significant clinical interest because
previous studies have shown high rates of ground-glass
opacity and consolidation.37 Chest computed tomography
may have superior utility for COVID-19 investigation, but
the procedure is not being widely performed at our
institutions as part of risk stratification or prognostic
evaluation.38,39 Radiograph reports were classified
according to containing bilateral, unilateral, or no opacities
or consolidations. We found high interrater agreement in
this coding, but radiographs were not consistently
identified by our variable selection models. A majority of
patients were coded as having bilateral consolidations,
limiting the specificity of the findings. Further studies using
natural language processing of radiology reports or direct
analysis of radiographs with tools such as convolutional
neural networks will provide more evidence regarding
utility of these studies in COVID-19 prognostication.40

Furthermore, we do not consider other applications of
radiographs including the identification of other pulmonary
findings like diagnosis of bacterial pneumonia.

The Elixhauser Comorbidity Index, qSOFA, and
CURB-65 baseline models provided the opportunity to test
well-known risk-stratification and prognostication tools
with a COVID-19 cohort. These tools were selected, in
part, for their familiarity within the medical community,
and because each has been proposed as having potential
utility within the COVID-19 epidemic. These metrics have
relatively limited predictive performance, and there were
limitations in electronic health records; none were designed
to address the clinical question addressed here. We
observed both a high rate of missing mental status
Annals of Emergency Medicine 451
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documentation and a significant proportion of the
population without documented medical histories.
In particular, we hypothesize that the CURB-65
pneumonia severity score may still have utility in
determining patient disposition with respect to discharge or
hospitalization.

Future studies will be required to expand on this work in
a number of ways. First, external validation is needed, as is
comparison with physician judgment. Second, future
studies may evaluate prospective robustness and utility of
this scoring metric. Third, we expect related models to be
extended to patient admission decisions as well as
continuous hospital monitoring.41-43 Fourth, we anticipate
potential applications in stratifying patients for therapeutic
interventions. Early proof-of-concept studies for the viral
ribonucleic acid polymerase inhibitor remdesivir included
patients with severe COVID-19 as defined by pulse
oximetry level of less than or equal to 94% on ambient air
or with any oxygen requirement.44,45 Given ongoing drug
scarcity, improved pragmatic, prognostic tools such as the
quick COVID-19 Severity Index may offer a route to
expanded inclusion criteria for ongoing trials or for early
identification of patients who might benefit from
therapeutics.

Taken together, these data show that the quick
COVID-19 Severity Index provides easily accessed risk
stratification relevant to ED providers.
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