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Abstract
Cholestatic liver diseases are hereditary or acquired disorders with impaired
hepatic excretion and enterohepatic circulation of bile acids and other
cholephiles. The distinct pathological mechanisms, particularly for the acquired
forms of cholestasis, are not fully revealed, but advances in the understanding
of the molecular mechanisms and identification of key regulatory mechanisms
of the enterohepatic circulation of bile acids have unraveled common and
central mechanisms, which can be pharmacologically targeted. This overview
focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19,
and apical sodium-dependent bile acid transporter for the enterohepatic
circulation of bile acids and their potential as new drug targets for the treatment
of cholestatic liver disease.
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Introduction
Cholestasis is a hereditary or acquired impairment of bile forma-
tion and flow on either a hepatocellular or a cholangiocellular 
level, resulting in interruption of the enterohepatic circulation of 
bile acids. Classical hereditary defects comprise mainly muta-
tions of transporter genes involved in hepatocellular bile forma-
tion such as ATP8B1, BSEP, and multidrug resistance protein 3 
(MDR3) underlying the classical progressive familial intrahepatic  
cholestasis type I-III, respectively1, and rarely mutations of bile acid 
synthesis enzymes2 or mutations in the bile acid receptor farnesoid 
X receptor (FXR)3. In addition, mutations in the Notch signaling 
pathway frequently cause infant cholestasis in Alagille syndrome1 
and mutations/polymorphisms in MDR3, multidrug resistance-
associated protein 2 (MRP2), and FXR have been associated 
with intrahepatic cholestasis of pregnancy or drug-induced liver 
injury1. Notably, mutations of sodium taurocholate cotransporting  
polypeptide (NTCP) result in pronounced hypercholanemia without 
classical clinical features of cholestasis or impaired enterohepatic 
circulation4. At the cholangiocyte level, hereditary defects of cystic 
fibrosis transmembrane conductance regulator (CFTR) are the most 
common genetic contributors to cholestasis1 and polymorphisms 
in anion exchanger 2 (AE2) have been found as disease modifiers 

in primary biliary cholangitis (PBC)5. In addition, mutations in 
tight junction proteins along the canalicular membrane of hepato-
cytes and cholangiocytes result in hereditary forms of cholestasis6. 
Acquired forms of cholestasis originate from the hepatocellular level  
(e.g. estrogen-induced bland cholestasis, sepsis-induced cholestasis, 
and drug-induced cholestasis) or cholangiocyte or bile duct levels 
(e.g. PBC, primary sclerosing cholangitis [PSC], secondary sclero-
sing cholangitis, and intraluminal/extraluminal bile duct obstruc-
tions) or represent a mixture of hepatocellular/cholangiocellular 
origins7. The common hallmark of various forms of cholestasis is 
impaired proper circulation of bile acids along the enterohepatic 
circulation resulting in the accumulation of potential toxic bile 
acids in the systemic circulation and intracellularly. A general 
goal in treating cholestasis, therefore, is to reduce hepatic and sys-
temic bile acid accumulation and to decrease bile acid pool size 
(Figure 1).

Enterohepatic circulation of bile acids
Bile acids are formed in hepatocytes from hydroxylation of 
cholesterol by cholesterol 7-alpha hydroxylase (CYP7A1) or alter-
natively by CYP27A18. The resulting primary bile acid chenodeoxy-
cholic acid (CDCA) can be further hydroxylated to cholic acid (CA) 

Figure 1. Principle anticholestatic mechanism of fibroblast growth factor 19 (FGF19) analogues, apical sodium-dependent bile acid 
transporter (ASBT) inhibitors, and farnesoid X receptor (FXR) agonists. Cholestasis results in the accumulation of bile acids in the 
enterohepatic bile acid circulation. Novel promising anticholestatic strategies aim to eliminate bile acids and reduce bile acid pool size 
predominately by either reducing de novo bile acid production or eliminating bile acids by interrupting enterohepatic bile acid circulation. 
Intrahepatic bile acid levels decrease. Left panel: FGF19 analogues mimic the action of endogenous FGF19, which is synthesized in the 
terminal ileum. FGF19 robustly represses hepatic de novo bile acid synthesis by blocking the rate-limiting enzyme of bile acid generation, 
cholesterol 7-alpha hydroxylase (CYP7A1). This reduces bile acid pool size and the amount of bile acids by suppression of the biliary loop 
of enterohepatic circulation. Middle panel: ASBT inhibitors selectively block bile acid re-uptake in the terminal ileum by blocking the bile acid 
transporter ASBT. Bile acids spill over into the colon and are lost via feces. This reduces bile acid pool size and the amount of bile acids by 
initially (1) suppression of the portal loop of enterohepatic circulation. Right panel: FXR agonists are not tissue specific but predominately 
activate FXR in the ileum and liver. FXR agonists suppress (-) bile acid synthesis via induction of FGF19-mediated CYP7A1 suppression from 
the ileum and via FXR- short heterodimer partner 1 (SHP)-mediated CYP7A1 repression from the liver. This reduces bile acid pool size. In 
addition, FXR agonists limit cellular bile acid accumulation by blocking ileal (via ASBT) and hepatic (via sodium taurocholate cotransporting 
polypeptide [NTCP]) bile acid uptake and by enforcing (+) ileal and hepatic (both via organic solute transporter α/β [OSTα/β]) bile acid 
export, leading to bile acid spill over into feces and systemic circulation.
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by CYP8B1. Bile acids are exported across the canalicular mem-
brane of hepatocytes into the bile duct lumen via distinct bile 
acid transporters, of which BSEP (ABCB11) transports the bulk 
of bile acids, accompanied by MRP2, the latter one transporting 
conjugated bilirubin and other xenobiotics. In addition, forma-
tion of primary bile requires active transport of phospholipids (via 
MDR3), cholesterol (via ABCG5/8), glutathione (also via MRP2), 
bicarbonate (via CFTR), and passive dilution by water9,10. Along 
the bile ducts, bile is further modified by bicarbonate-enriching 
mechanisms11,12 and further bile acid uptake mechanisms within 
the liver9,11. In the terminal ileum, bile acids are efficiently shuttled 
across enterocytes back into the portal circulation by active uptake 
into enterocytes via apical sodium-dependent bile acid transporter 
(ASBT) (SLC10A2) and exported via organic solute transporter 
α/β (OSTα/β) (SLC51)9,10. Only a few bile acids escape this high-
capacity re-uptake and conservation mechanism by ASBT and spill 
over into the colon, where they are secondarily transformed by 
bacteria into deoxycholic acid (DCA) and lithocholic acid (LCA), 
taken back up by colonic diffusion, or excreted via the feces9,10. 
From the portal circulation, bile acids are selectively imported into 
hepatocytes by an active transporting mechanism, mainly consist-
ing of NTCP (SLC10A1) and to a lesser extent organic anion- 
transporting polypeptide (OATP1B1). Bile acids that escape the 
hepatocellular import are spilled over into the systemic circulation 
and may eventually be eliminated via the kidney and urine9.

Bile acid concentrations (and indirectly also composition via dif-
ferent sensitivities of bile acid sensors to various bile acid species) 
along the enterohepatic circulation are sensed at “checkpoints” in 
hepatocytes and enterocytes. Depending on the actual bile acid load 
in the enterohepatic circulation, further bile acids can be produced 
and more efficiently conserved or production can be repressed 
and bile acid excretion favored. In cholestasis, when bile acids 
accumulate, (hepato)cellular export and re-routing bile acids to 
renal excretion comprises an important adaptive system to reduce 
further potential toxic bile acid accumulation and cell damage9,13. 
The alternative export of bile acids is canalized by active bile acid 
transporter systems such as OSTα/β, MRP3, and MRP4 at basola-
teral membranes, which transport bile acids out of hepatocytes. In 
line with enforcing cellular export, import of bile acids into hepato-
cytes (via NTCP) and enterocytes (via ASBT) is being reduced9,13. 
Accumulating bile acids in hepatocytes also limit further bile acid 
production via repressing CYP7A1 at the transcriptional level. 
However, this very efficient mechanism to reduce bile acid genera-
tion in the enterohepatic circulation may be compromised in set-
tings when bile flow is significantly impaired and fewer bile acids 
are sensed in enterocytes14,15. Fibroblast growth factor 19 (FGF19) 
is an ileum-specific enteric hormone released in proportion to bile 
acid concentrations in enterocytes and the most efficient repres-
sor of CYP7A1 and hepatocellular bile acid synthesis14. Bile acids 
induce FGF19 in the terminal ileum, which is released in the por-
tal circulation and reduces bile acid synthesis in hepatocytes in a 
negative feedback fashion. In obstructive cholestasis, when bile 
flow is reduced and fewer bile acids reach the ileum, FGF19 levels 
decrease and hepatocellular bile acid production is augmented. This 
results in a paradoxical metabolic situation with further increase of 
bile acid synthesis despite hepatic accumulation of bile acids.

Bile acid receptor FXR
The main sensor of bile acids in the enterohepatic circulation is the 
bile acid receptor FXR (NR1H4), which is ligand activated in the 
order of potency by CDCA > DCA > LCA > CA16. FXR is a nuclear 
hormone receptor and transcription factor that heterodimerizes 
with the retinoid X receptor α (RXRα, NR2B1) and regulates the 
expression of genes involved in bile acid metabolism but also genes 
regulating glucose and lipid metabolism and inflammation17. FXR 
can either directly induce or reduce gene transcription or indirectly 
repress genes via the common repressor short heterodimer partner 1 
(SHP) (NR0B2), which is a direct positive target of FXR18. FXR 
is highly expressed along the gastrointestinal system, liver, kidney, 
and to minor extents the adrenal glands19. Generally, FXR activation 
reduces intracellular bile acid load in target tissues by repressing 
bile acid import transporters (i.e. NTCP and ASBT) and inducing 
bile acid export pumps (i.e. BSEP, MRP2, and OSTα/β) along with 
suppression of bile acid synthesis (i.e. CYP7A1)10,17. FXR regulates 
bile acid synthesis from the intestine via induction of FGF19 and in 
hepatocytes via SHP-induced repression of CYP7A114. For proper 
CYP7A1 repression by intestinal FGF19, sufficient hepatic SHP 
expression is required14. In addition, FXR activation favors bile acid 
detoxification via induction of cytochrome p450 3A4 (CYP3A4), 
sulfotransferase 2A1 (SULT2A1), and UDP glucuronosyltrans-
ferase 2 family, polypeptide B4 (UGT2B4)17 and stimulates biliary  
phospholipid excretion via MDR3 (ABCB4), thereby also counteract-
ing cholesterol gallstone formation20. Besides its role for bile acid 
metabolism, FXR activation also shows anti-inflammatory proper-
ties by blocking NFκB-mediated inflammatory gene expression and 
immunomodulatory effects by facilitating homing and function of 
myeloid-derived suppressor cells, which function as a critical nega-
tive feedback loop in immune-mediated liver injury21–23.

New concepts in treating cholestasis
Concepts to induce choleresis
Currently, the only approved drug for treating chronic choles-
tatic disorders is the hydrophilic bile acid ursodeoxycholic acid 
(UDCA)24. UDCA’s anti-cholestatic properties are mainly attrib-
uted to its choleretic effects by stimulating hepatocellular secretion 
of bile acids and organic anions post-translationally and by induc-
ing/stabilizing a bicarbonate-rich protection “umbrella” along the 
biliary tree12. Anti-apoptotic and anti-inflammatory actions may 
additionally support UDCA’s beneficial anticholestatic action. Its 
clinical efficacy is limited because only approximately two-thirds of 
patients with PBC respond to UDCA therapy25 and in PSC patients 
UDCA has no effect on transplant-free survival26.

NorUDCA is a side chain shortened UDCA derivative, which 
induces bicarbonate-rich hypercholeresis as a result of cholehe-
patic shunting of conjugation-resistant NorUDCA and shows addi-
tional anti-inflammatory and anti-fibrotic qualities27–30. In contrast 
to UDCA, NorUDCA improved sclerosing cholangitis in Mdr2 
knockout mice as a model system for PSC while UDCA even 
aggravates cholestatic liver injury in these animal models28,29,31. 
Recently, a phase II clinical trial with NorUDCA for PSC has been 
completed and the full data are eagerly awaited32. Both UDCA 
and NorUDCA, to a large extent, counteract cholestasis by their  
choleretic effects targeting impaired bile flow. 
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Concepts to reduce bile acid pool size
While UDCA and NorUDCA counteract cholestasis and impaired 
bile flow by primarily inducing bile-acid independent choleresis 
and modifying bile acid pool toxicity, another line of currently 
developed anticholestatic strategies targets enterohepatic circu-
lation to primarily reduce bile acid pools. FXR agonists, FGF19 
mimetics, and ASBT inhibitors with clearly defined modes of action 
are the most promising representatives and are currently being 
tested in phase II and phase III clinical trials.

FXR agonists. FXR represents the central integrator of bile acid 
homeostasis and, once activated, results in the reduction of cellu-
lar bile acid levels. Although FXR activation by endogenous bile 
acid accumulation is intended to counteract potential toxic bile 
acid levels, its endogenous activation in chronic cholestatic liver 
diseases is apparently too weak for disease self-limitation. Syn-
thetic and semi-synthetic FXR agonists, with higher affinity and 
potency to activate FXR, have therefore been successfully tested 
in animal models of cholestasis. In LCA- and ethinyl estradiol-
induced cholestatic rats, the semi-synthetic steroidal FXR ligand 
obeticholic acid (OCA, formerly also referred to as 6-ethylcheno-
deoxycholic acid [6-ECDCA]), which is currently being tested in 
several clinical phase II and III studies for PBC and PSC, was able 
to restore reduced bile flow and improve cholestasis in several pre-
clinical animal models of cholestasis33,34. Interestingly, in a mouse 
model of cholestasis resembling PSC (i.e. Mdr2 knockout mice), 
OCA did not show beneficial anticholestatic effects in this model, 
although ileal FGF15 was induced and hepatic Cyp7a1 repressed. 
Only the even more potent FXR-activating capacity of the ster-
oidal dual FXR/G-protein-coupled bile acid receptor 1 (TGR5) 
agonist INT-767 improved cholestasis along with robustly induced  
bicarbonate-rich choleresis and reduction of biliary bile acid 
output35. It is likely that species differences and differences in the 
cholestatic models (i.e. complete absence of biliary phospholipids 
in the Mdr2 model) may explain these discrepancies. Non-ster-
oidal FXR agonists (i.e. GW4064), which are also being investi-
gated in clinical settings, improved markers of cholestasis as well 
as reduced hepatic bile acid accumulation in bile duct-ligated and 
α-naphthyl isothiocyanate-treated rats too36. It is important to note 
that steroidal FXR agonists (e.g. OCA, CDCA, and INT-767) acti-
vate FXR in hepatocytes and enterocytes as well and therefore 
beneficial effects of FXR agonism may be explained by concerted 
action of both hepatic and enteric FXR stimulation. Thus, benefi-
cial effects of steroidal FXR agonism likely result from reduction 
of bile acid pool size along with stimulation of (bile acid-independ-
ent) bile flow. Non-steroidal FXR agonists, such as fexaramine, 
GW4064, PX-102, or various derivatives, are currently being 
developed and tested by different companies and may have dif-
ferent tissue selectivity and metabolic effects. Interestingly, when 
FXR was selectively overexpressed in the intestine of various 
mouse models of intrahepatic and extrahepatic cholestasis (i.e. 
bile duct ligation, α-naphthyl isothiocyanate treatment, and Mdr2 
knockout mice), bile acid pool size was substantially reduced and 
cholestasis improved in these models37. Similarly, the gut-restricted 
non-steroidal FXR agonist fexaramine robustly induces intestinal 
FGF15 without any hepatic FXR agonistic effects and significantly 
reduces serum bile acid levels, at least in a model of diet-induced  

obesity38. This suggests that potentially ileal FXR stimulation alone 
may be sufficient to counteract cholestasis. However, compara-
ble experiments, where only hepatic FXR is activated, have not 
been performed to further dissect ileal and hepatic requirements 
of anticholestatic effects. Therefore, from animal experiments, it 
is not entirely conclusive which FXR, ileal or hepatocyte or both, 
is required to target and if the effects of FXR activation are more 
dependent on stimulation/restoration of (bile acid-independent) 
bile flow or repression of bile acid synthesis and pool size or both.

In a human clinical phase II trial with PBC patients, OCA treat-
ment showed significant improvement of alkaline phosphatase (AP) 
as the main readout marker of cholestasis39. Clinically, the major 
side effect was dose-dependent pruritus, and biochemically an 
unfavorable trend in the cholesterol profile with decreased high-
density lipoprotein (HDL) cholesterol was observed39. The impact 
of OCA on cholesterol metabolism was even more pronounced in 
another clinical phase II trial in obese patients with non-alcoholic 
fatty liver disease (NAFLD) as the disease target, where not only 
HDL cholesterol decreased but also LDL cholesterol increased40. 
Generally, the atherogenic lipid profile of OCA is less a concern in 
PBC patients, while it requires further evaluation in NAFLD patients 
with increased cardiovascular risk. It is important to note that in 
the PBC study, participants comprised only patients who did not 
respond adequately to their standard of care treatment with UDCA 
and thus were expected to progress with cholestatic liver disease 
over time. OCA improved laboratory-based clinical scoring param-
eters in a significant portion of patients to levels associated with 
normalization of prognosis39. However, in total only 7% of patients 
completely normalized their AP levels, which might alternatively 
be explained by direct FXR-induced AP transcription rather than 
disease-related AP origin40,41. Also, the study’s duration was only 
3 months and biopsies for histological correlation were not taken. 
From a mechanistic point of view, OCA treatment increased FGF19 
serum levels and decreased 4-cholesten-3-one (C4) bile acid precur-
sors and endogenous BA plasma levels39, underscoring the ability of 
FXR agonists to reduce bile acid pool size. Apparently, data on bile 
flow, choleresis, and bicarbonate-rich flow were not determinable in 
human clinical trials. The beneficial effects of OCA in PBC patients 
are confirmed in larger long-term studies over 12 months, including 
a long-term extension study42,43. Currently, further trials in PBC and 
PSC are underway to study the long-term effects of OCA and more 
clearly evaluate OCA’s effects on lipid profiles.

FGF19 mimetics. FGF19 is an endocrine hormone predomi-
nantly produced in the ileum, which very efficiently suppresses 
hepatic bile acid synthesis14. In contrast to rodents, human FGF19 
is also expressed in liver tissue and gallbladder epithelium under  
cholestatic conditions and positively correlates with disease  
severity44,45. It is assumed that hepatic and biliary FGF19 supports 
endogenous bile acid suppression in cholestasis via autocrine and 
paracrine mechanisms45. Part of the beneficial effects of FXR ago-
nists in cholestasis may be attributed to FXR-dependent induction of 
FGF19, and selective activation of FXR in the intestine even suggests 
that induction of ileal FGF19 may sufficiently treat cholestasis37. 
This has led to trials explicitly testing FGF19 in cholestatic models. 
The potential tumorigenic effects of endogenous FGF19 have been 
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overcome by novel engineered FGF19 mimetics which lack the 
proliferative potency of their endogenous mother compounds46–48. 
In bile duct-ligated and α-naphthyl isothiocyanate-treated mouse 
models of cholestasis, endogenous as well as non-tumorigenic 
FGF19 mimetics significantly suppress Cyp7a1 and total bile acid 
pools, resulting in markedly reduced liver injury46. Similar effects 
were achieved in the Mdr2 knockout mouse model where FGF19 
mimetics reversed fully developed liver injury, biliary fibrosis, 
and even cholecystolithiasis49. In a phase I trial in human volun-
teers, FGF19 mimetics resulted in a 95% reduction of C4 bile 
acid precursor levels indicative of robust suppression of endog-
enous bile acid synthesis without showing apparent side effects46. 
In a very recent phase II clinical trial in PBC patients unresponsive 
to UDCA treatment, FGF19 mimetics also robustly decreased C4 
and slightly decreased total bile acid levels along with showing a 
significant reduction of AP levels. Main side effects, which over-
all were mild, included diarrhea, headache, and nausea50. Besides 
its effects on bile acid metabolism, FGF19 has major metabolic 
effects on carbohydrate and lipid metabolism51 and is therefore also 
regarded as a pharmacological approach to treat the metabolic syn-
drome and primary bile acid diarrhea52–55.

ASBT inhibitors. ASBT maintains the enterohepatic circulation of 
bile acids by efficiently taking up 95% of bile acids from the intes-
tine and preventing their fecal loss. ASBT knockout mice have a 
20- to 30-fold increased fecal bile acid loss, which cannot be 
compensated by increased bile acid synthesis. These mice, 
therefore, have robustly reduced bile acid pool sizes by 80% despite 
significantly repressed FGF19 and increased Cyp7a1 activity56,57. 
Spillover of bile acids into the colon may cause bile acid-induced 
diarrhea, an effect which can be utilized in treating constipa-
tion but may also have malignant potential for colorectal cancer 
development58,59. Since ASBT knockout mice exhibit an increased 
cholesterol turnover, blocking ASBT also has a major impact on 
lipid metabolism and metabolic disorders57. In the cholestatic 
Mdr2 knockout mouse model, ASBT inhibitors effectively decrease 
bile acid pool size, biliary bile acid concentrations, and bile flow, 
which results in significant improvement of liver injury and biliary 
fibrosis60,61. In a human phase I trial with healthy volunteers, ASBT 
inhibitors reduced total serum bile acids by almost 50% along with 
increased fecal bile acid excretion. FGF19 was decreased and C4 
bile acid precursor levels increased but could not compensate for 
fecal bile acid loss62. Conceptually, comparable effects on bile 
acid metabolism would be expected by treatment with (unspe-
cific) bile acid sequestrants such as cholestyramine or colesevelam. 
However, side effects such as bloating, constipation, and seques-
tering of lipophilic vitamins limit their application63. Interestingly, 
resin-bound bile acids appear to activate colonic TGR564, while 
unbound colonic bile acids spilled over by ASBT inhibitors did 
not induce TGR5 signaling61. Besides direct effects on bile acid 
metabolism, ASBT-induced spillover of bile acids into the colon 
may significantly affect the gut microbiome65,66 with potential 
secondary effects on cholestatic liver disease. These effects would 
be expected to be less apparent with resin-bound bile acids. Future 
clinical trials with ASBT inhibitors in patients with cholestasis are 
currently underway.

What else is in the pipeline? Several other molecular targets with 
more or less well-defined modes of action and anticholestatic prop-
erties are currently being investigated. Among the most promising 
pharmacological options are PPARα ligands, which have shown 
clinical improvements in PBC patients in small clinical trials and 
await confirmation in larger multicenter trials24. Mechanistically, 
PPARα ligands (i.e. fibrates) increase MDR3 expression and 
insertion into the canalicular membrane of hepatocytes and thereby 
stimulate biliary phospholipid secretion, rendering bile less 
aggressive67–69. This bile duct protective effect is further supported 
by reduction of bile acid synthesis (via CYP7A1 and CYP27A1), 
induction of bile acid detoxification (via CYP3A4)67, and 
anti-inflammatory properties70. Also, the glucocorticoid receptor 
is a putative target in the treatment of cholestasis, since budesonide 
in combination with UDCA stimulates activity of the Cl-/HCO

3
- 

exchanger AE2, thereby promoting bicarbonate-rich choleresis71. 
Other interesting molecular targets comprise the membrane-
located bile acid receptor TGR5, the xenobiotic receptor pregnane 
X receptor, or the vitamin D receptor. The reader is referred to 
recent reviews for a detailed overview on these pharmacological 
anticholestatic drug targets24. Some of the hereditary cholestatic 
disorders are caused by mutations resulting in mistargeting of 
misfolded bile acid transporters to their intended subcellular loca-
tion. Chemical chaperones have been shown to improve targeting 
of misfolded ATP8B1, MDR3, and BSEP transporters in vitro but 
also in vivo and may provide a pharmacological treatment option 
for specific hereditary mutations72–75.

Summary and outlook
Recent understandings of the molecular mechanisms of bile forma-
tion and the enterohepatic circulation have revealed new molecular 
targets for treating cholestasis. Conceptually, the most promising 
drugs either stimulate bile flow as their main principle of action 
or decrease bile acid pool size. Both strategies decrease chole-
static injury in animal models and also appear to translate their 
observed effects into human clinical trials. However, from what we 
have learned from the clinical trials so far, there will still remain a 
substantial percentage of patients who will not completely respond 
to novel treatment regimes. From a teleological point of view, it 
therefore would make sense to combine drugs which are chol-
eretic and target impaired bile flow with drugs that reduce bile 
acid accumulation and decrease bile acid pool size to maximize 
overall anticholestatic effects. Perhaps the prototypical compounds 
are the new FXR ligands, which appear to combine both effects, 
substantial suppression of bile acid synthesis and increasing bile 
acid-independent bile flow. Future strategies which combine the 
effects of the most powerful drugs to induce bicarbonate-rich 
choleresis, such as NorUDCA, with the most powerful drugs to 
suppress bile acid pool size, such as FGF19 mimetics or ASBT 
inhibitors, may therefore have real potential to heal cholestasis. 
Notably, several of these approaches also have profound anti- 
inflammatory and immunomodulatory actions, which may be 
instrumental in treating immune-mediated cholangiopathies. Sur-
gical treatment strategies in severely cholestatic children with 
hereditary cholestatic defects also suggest that total biliary diver-
sion might be a treatment option to avoid liver transplantation76. 
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However, surgery is complex and post-surgical complications can 
occur. Notably, some of these pharmacological approaches can be 
combined. As such, combination of ASBT inhibitors with FGF19 
agonists may be a therapeutic way to pharmacologically mimic 
total biliary diversion and thus provide another rationale to combine 
new anticholestatic drugs to eventually heal cholestasis.
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heterodimer partner 1; TGR5, G-protein-coupled bile acid 
receptor 1; UDCA, ursodeoxycholic acid.
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