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Bacterial secreted effectors and caspase-3 interactions
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Summary

Apoptosis is a critical process that intrinsically
links organism survival to its ability to induce con-
trolled death. Thus, functional apoptosis allows
organisms to remove perceived threats to their
survival by targeting those cells that it determines
pose a direct risk. Central to this process are
apoptotic caspases, enzymes that form a signal-
ling cascade, converting danger signals via initia-
tor caspases into activation of the executioner
caspase, caspase-3. This enzyme begins disas-
sembly of the cell by activating DNA degrading
enzymes and degrading the cellular architecture.
Interaction of pathogenic bacteria with caspases,
and in particular, caspase-3, can therefore impact
both host cell and bacterial survival. With roles
outside cell death such as cell differentiation,
control of signalling pathways and immuno-
modulation also being described for caspase-3,
bacterial interactions with caspase-3 may be of far
more significance in infection than previously rec-
ognized. In this review, we highlight the ways in
which bacterial pathogens have evolved to subvert
caspase-3 both through effector proteins that
directly interact with the enzyme or by modulating
pathways that influence its activation and activity.

Apoptosis – non-inflammatory cell death

Apoptosis was first discovered over forty years ago and
has since been studied in intricate detail, generating a
complex web of interactions that define this process (Kerr
et al., 1972). Once initiated, the process of apoptosis pro-
ceeds rapidly with cell shrinkage, nuclear condensation,

DNA fragmentation and the formation of apoptotic bodies,
which eventually dissociate from the cell and become
engulfed and destroyed by circulating phagocytes.
Apoptosis has been linked to several disease states with
increases in apoptosis leading to degenerative disease
[i.e. Alzheimer’s, Parkinson’s, amyotrophic lateral sclero-
sis (Pasinelli and Brown, 2006; da Costa and Checler,
2010; Tischner et al., 2010; Crews et al., 2011; Song
et al., 2011)] while decreases in, or mis-regulation of,
apoptosis can lead to auto-immune disease [i.e. rheuma-
toid arthritis, systemic lupus erythematosus (Eguchi,
2001; Favaloro et al., 2012)] or tumour development
(Favaloro et al., 2012). Apoptosis can be initiated from
within or outside the host cell by stimuli including, micro-
bial infection, oxidative stress, acquisition of tumorigenic
potential, DNA damage or protein mis-folding, or simply
when the cell has reached the end of its life cycle.

Once the process of apoptosis is induced, it engages a
cascade of caspase enzyme activation, which is facili-
tated by upstream ‘initiator caspases’ that eventually
results in controlled self-destruction of the cell caused by
DNA fragmentation and cleavage of essential proteins by
‘executioner caspases’, namely caspases-3, -6 and -7
(Nuñez et al., 1998). Executioner caspase activation
occurs in cells as both intrinsic and extrinsic signals
deemed detrimental to the cell are acted on, and one of
two distinct signalling cascades becomes activated.
Executioner caspases then trigger DNases, and cleave
essential cellular proteins, effectively destroying the
cell from within and choreographing the cellular events
in apoptosis leading to the cell being removed or
phagocytosed by circulating immune cells. Despite
apoptosis being a well-defined process owing to its
essential role in cellular survival, the function it plays
during infection is still unclear. Contrary to the long
accepted dogma of apoptosis serving a protective role for
the host, recent investigation into bacterial infections
reveals apoptosis and apoptotic caspases may actually
promote infection by some bacterial pathogens (Molmeret
et al., 2004; Srikanth et al., 2010).

Caspases – enzymatic mediators of apoptosis

Caspases, or cysteine aspartate proteases, are enzymes
present in eukaryotic cells that play key roles in cellular
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differentiation, proliferation, inflammatory responses, and
ultimately cell death (Connolly et al., 2014). The enzymes
are divided into pro- and non-inflammatory forms based
on their ability to initiate distinctive types of cell death,
with those involved in pathways such as pyroptosis
(caspase-1, -4, -5, -11, -12) classed as pro-inflammatory
and those involved in apoptosis (caspase-2, -3, -6 -7, -8,
-9, -10) classed as being non-inflammatory (Nuñez et al.,
1998; Lamkanfi and Dixit, 2014). While the number and
type of programmed cell death (PCD) pathways is con-
stantly evolving (as we gain a better appreciation of the
complex genetic and cellular regulation of PCD), in the
context of bacterial infection, the activation of distinct
inflammatory or non-inflammatory PCD can have a
significant effect on the induction and severity of an
immune response to bacterial pathogens. Crossover and
feedback/activation between inflammatory and non-
inflammatory pathways occurs during infection, while
neighbouring cells may also undergo distinct types of cell
death in close proximity and some pathogens are known
to induce differing types of cell death depending on the
host cell type infected (Fink and Cookson, 2005;
Rosenzweig and Chopra, 2013). Moreover, apoptotic
cells have also been shown to influence their environment
inducing signalling changes and cell death in neighbour-
ing bystander cells, and inducing the extracellular release
of potent caspases that can undermine epithelial integrity
(Chin et al., 2006; Flynn and Buret, 2008; Grant et al.,
2008).

Caspase-3 – the executioner caspase

Apoptotic caspases are present in inactive pro-forms, and
each is cleaved to induce its activation. Following activa-
tion of either the intrinsic or extrinsic pathways of the
apoptotic cascade, initiator caspases cleave and activate
the executioner caspases-3, -6 or -7. Pro-caspase-3
becomes an active enzyme when two cleaved monomers
come together to form an active dimer (Nuñez et al.,
1998); this has potent activity, including an ability to
autocatalytically activate that contributes to the observed
cascade effect of increasing caspase-3 activity as
apoptosis progresses. Active caspase-3 recognizes a
specific short peptide cleavage motif (DXXD) and cleaves
cellular proteins where this motif is present and accessi-
ble (Fischer et al., 2003; Ju et al., 2007). The alternative
executioner caspase, caspase-7, also recognizes an
identical motif and has extensive functional redundancy
with caspase-3 although caspase-3 is regarded as a more
significant player in apoptosis and cell death because of
its substrate promiscuity. (Walsh et al., 2008; Lamkanfi
and Kanneganti, 2010). Nevertheless, caspase-7 can
also play an important role in the outcome of bacterial
infection by providing an adaptive mechanism whereby

the host membrane is protected from damage from pore
forming toxins (Cassidy et al., 2012).

The potential of caspase-3 to cause apoptosis once
activated means that its activity must be tightly controlled.
This control is achieved through constant turnover of the
enzyme, which ensures that a threshold level of enzyme
activation is not reached without an apoptotic stimulus
(Tan et al., 2006; Jiang et al., 2009; Choi et al., 2009; Lai
et al., 2011). Additionally, eukaryotic cells have been
documented to have low levels of caspase-3 activity in
non-apoptotic states implying that sub-apoptotic levels of
this enzyme are expressed independent of apoptosis
(Boland et al., 2013; Connolly et al., 2014). Of note for
microbial infection, this caspase-3 activity plays roles in
fundamental processes aside from apoptosis, most sig-
nificantly in host cell proliferation and differentiation, but
also in immunomodulation, signal transduction and cell
migration. Therefore, perturbation of caspase-3 by bacte-
rial pathogens may have consequences beyond simply
deciding the fate of infected cells.

Apoptosis and bacterial infection

Apoptosis has been established as a critical point in viral
infection, acting as either a facilitator or inhibitor of viral
replication (Best, 2008; Richard and Tulasne, 2012).
Similarly, apoptosis was thought to be a deliberate host
response to a bacterial infection that ultimately results
in the removal of compromised cells. More recently,
however, studies have challenged this dogma, such that
apoptosis has been described as a fundamental
pathway in bacterial–host interactions, but its role in
inhibiting or facilitating infection is yet to be clearly
defined. While apoptosis can remove infected and com-
promised cells to benefit the host, induction of apoptosis
may carry this out in a non-inflammatory fashion while
also disrupting, for example, epithelial barriers to infec-
tion or removing circulating immune cells (Grant et al.,
2008; Nogueira et al., 2009; Peters et al., 2013). This
apparent paradox puts into question who benefits the
most from apoptosis during infection – the bacteria or
the host? While this question will remain a subject of
debate, emerging evidence suggests that in some cases
direct targeting of caspases is being employed by bac-
terial pathogens through effector proteins (Table 1).
Indeed, such subversion occurs at nearly all points of
the apoptotic cascade with different bacterial pathogens
having evolved distinct modes to induce or inhibit spe-
cific apoptotic pathways in an attempt to manipulate the
lifespan of infected cells and/or influence their behaviour
in a manner that supports infection. Therefore, the criti-
cal role caspases play in determining cellular fate makes
these serine proteases a high-risk target for bacterial
pathogens, but when successfully manipulated,
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disruption of caspase function and caspase-3 in particu-
lar, can significantly undermine the host response to
infection and can promote dissemination and further
bacterial infection.

Bacterial effector proteins and caspase-3 activation

Bacterial secretion systems and the proteins that trav-
erse them are essential components of the virulence
arsenal of many pathogens. Many effectors are secreted
through the type three secretion system, a sophisticated
organelle specific to gram-negative pathogens and com-
posed of a motor and needle complex through which
secreted effectors are injected into host cells (Dean,
2011; Raymond et al., 2013). The secreted effectors
promote disease by co-opting host cell signal trans-
duction pathways that facilitate cell attachment and
entry, suppress the host immune/defense response, and
modulate host cell biology. Consequently, these effectors
play a prominent role in bacterial pathogenesis and host
association. It is well appreciated that effectors consti-
tute a large and diverse group of virulence proteins that
mimic eukaryotic proteins in structure and function. In
fact, up to 100 different type three secreted effector
(T3SEs) proteins may be delivered into individual host
cells by a single bacterium (Dean and Kenny, 2009).
Moreover, T3SEs are often multifunctional proteins with
many overlapping properties that orchestrate specific
host cell responses, which ultimately subvert fundamen-
tal pathways linked to cell survival, inflammation and
microbe destruction (Dean, 2011). Therefore, apoptosis
and caspase-3 targeting by bacterial effectors is not sur-
prising since coordinating the ability of a cell to survive
or die in controlled circumstances offers obvious benefits
to an invading microbe.

It appears that caspase-3 activation during bacterial
infection is a common by-product of bacterial invasion,
perhaps precipitated by the ensuing stress on the host cell
associated with intracellular replication. An example are
large molecular weight bacterial toxins that can target the
cell cycle or cell integrity with the resulting off-target effect
being cellular stress with subsequent cell death incited
through apoptotic caspases (Heine et al., 2008; Ionin
et al., 2008; Lee et al., 2008; Cheung et al., 2009). The
relationship between bacterial effectors and the activation
of caspase-3 is an area of increasing interest since in
addition to non-specific or indirect activation of caspase-3,
effectors are also able to promote caspase-3 activation
through subtle changes within cellular pathways or even
through direct interaction with the enzyme (Table 1). The
outcome for the pathogen responsible is often an increase
in infectivity rather than a clearing of the infection as
expected by the conventional understanding of the pro-
tective role of apoptosis.

Salmonella effectors – divide and conquer

Salmonella Typhimurium interactions with caspase-3 are
beginning to be understood, as effectors responsible have
been identified and the role that the enzyme plays in
infection has been studied in detail (Takaya et al., 2005;
Valle and Guiney, 2005; Browne et al., 2008; Srikanth
et al., 2010). S. Typhimurium uses an array of effectors to
exploit host cell function in both epithelial and immune
cells (McGhie et al., 2009). As mentioned prior, a promi-
nent feature shared by many effectors is their modular
architecture, which is often comprised of well-defined
regions that confer a subversive function. These distinct
modules within an effector often mediate very different,
unrelated functions, strongly suggesting that they evolved
independently of each other and subsequently combined
to form a chimeric protein (Kaniga et al., 1996; Dean,
2011; Fookes et al., 2011). This forms the basis of ‘termi-
nal reassortment’, a hypothesis proposed to explain the
diversity of bacterial effectors (Stavrinides et al., 2006).
The terminal reassortment tenet is strengthened by the
finding that 32% of all type three effector families con-
tain chimeric effectors and evidence that terminal
reassortment is important for the evolution of these viru-
lence proteins (Stavrinides et al., 2006; Agbor and
McCormick, 2011; Fookes et al., 2011).

In keeping with this premise, we discovered that many
T3SEs from S. Typhimurium harbour a functional
caspase-3 cleavage site uniquely positioned at the junc-
tion separating their distinct functional domains, thereby
producing two independently functional proteins (Srikanth
et al., 2010). Salmonella invasion protein A (SipA), is a
bifunctional molecule with an actin-binding function of
SipA is localized to a C-terminal fragment (Lilic et al.,
2003) while the N-terminal fragment triggers signal
transduction cascades that promote polymorphonuclear
leukocyte migration (Lee et al., 2000; Wall et al., 2007).
SipA also harbours a functionally active caspase-3 motif
that is precisely located at the junction separating the two
functional domains of this protein (Srikanth et al., 2010).
The outcome offers a compelling explanation as to how
diverse effectors with a modular architecture are able to
perform multiple unrelated functions in a manner pivotal to
the pathogenicity of the organism. Remarkably, SipA,
itself, is necessary and sufficient for early caspase-3 acti-
vation, but in a process independent from the apoptotic
cascade (Srikanth et al., 2010). SipA therefore drives its
own cleavage upon cell entry, a novel mechanism for
activating a T3SE. Other caspase-3 cleavage sites iden-
tified in S. Typhimurium are also restricted to effector pro-
teins, with no sites in type three structural proteins or
chaperones, indicating this may be a general strategy
employed by S. Typhimurium for processing of its
secreted effectors.
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Caspase-3 mediated proteolytic cleavage of viral effec-
tors or capsid proteins has also been implicated in
disease progression and virus spread (Zhirnov et al.,
1999; Wurzer et al., 2003; Best, 2008; Syrtzev, 2009;
Richard and Tulasne, 2012). Identified caspase-3 cleav-
age sites, considered to play a role in processing of viral
proteins, are highly relevant in pathogenesis of influenza
virus and their disruption attenuates viral virulence
(Wurzer et al., 2003; Zhirnov and Klenk, 2009). Similarly,
in the case of S Typhimurium infection, a single amino
acid substitution in the caspase-3 motif of SipA to a
sequence not recognized by caspase-3 profoundly
attenuates the virulence of this pathogen both in vitro and
in vivo (Srikanth et al., 2010). It is tempting to speculate
that mutation of caspase-3 motifs in central virulence
factors of both viral and bacterial pathogens may lead to
novel vaccine approaches.

While SipA induces caspase-3 activation in intestinal
epithelial cells, the SPI-2 T3SE SpvB induces caspase-3
activation in macrophages through its ADP-ribosylation of
actin during infection (Table 1; Valle and Guiney, 2005;
Browne et al., 2008). Although the exact mechanism of
caspase-3 activation remains unclear, again, it was inde-
pendent of the initiator caspases-8 and -9 (Valle and
Guiney, 2005). SpvB also has two functional domains but
a caspase-3 site has to date not been identified but other
host or bacterial proteases may be responsible. There-
fore, these two T3SEs induce caspase-3 activation in
different cell types through very different means, with
SipA inducing caspase-3 at the earliest time point in infec-
tion (i.e. epithelial cell entry) and SpvB later in infection
upon SPI-2 expression in macrophages (Valle and
Guiney, 2005; Browne et al., 2008; Srikanth et al.,
2010). It appears that during S. Typhimurium infection,
caspase-3 is under continuous targeting by effectors.

Caspase-3 and Legionella intracellular survival

Legionella pneumophila is thought to use effectors to
directly activate caspase-3 and bypass the classical
intrinsic and extrinsic pathways of apoptosis activation.
One of five Dot/Icm secreted effector(s) is thought
to be responsible (VipD/Lpg2831, Lpg0716, Lpg0898,
Lpg1625, LegS2/Lpg2176; Zhu et al., 2013). The conse-
quences of caspase-3 activation during L. pneumophila
infection also sheds light on one of the more diverse
roles for caspase-3 in promoting infection as its activa-
tion causes degradation of rabaptin-5, a phagosome/
endosome marker that marks phagosomes for lysosome
fusion and bacterial killing (Zhu et al., 2013). Degrada-
tion of rabaptin-5 is an essential step in mediating
L. pneumophila intracellular replication and ensuring a
successful infection. There is also speculation that mul-
tifunctional L. pneumophila proteins may also undergo

some kind of processing post-delivery into host cells in a
manner similar to S. Typhimurium effectors, though as
yet no evidence has been presented to indicate
caspase-3 may be involved (Zhu et al., 2013). While
direct activation of caspase-3 by bacterial effectors such
as those from L. pneumophila and S. Typhimurium is
intriguing in the context of infection, a greater under-
standing of how these effectors mediate this activation,
without inducing widespread apoptosis, would be of
great significance in fighting these infections. The
observed temporal delays in apoptosis post-caspase-3
activation leads to the hypothesis that bacterial patho-
gens may employ complementary strategies for both
initial caspase-3 activation and later enzyme inhibition,
most likely through modification or degradation of the
enzyme by other effectors to prevent rapid apoptosis.

Extracellular release of Caspase-3 during
Escherichia coli infection

The T3SEs Cif and EspF from E. coli activate caspase-3
indirectly through disruption of cellular pathways with both
the cell cycle and the mitochondria being targeted
(Samba-Louaka et al., 2009; Zhao et al., 2013). This
results not only in caspase-3 activation but also its release
extracellularly into the intestinal lumen during infection.
Extracellular caspase-3 release has previously been
described in the intestine and in the case of E. coli infec-
tion, it degrades tight junction proteins that are suscepti-
ble to cleavage through their caspase-3 motifs, resulting
in reduced intestinal epithelial integrity (Hentze et al.,
2001; Bojarski et al., 2004; Chin et al., 2006). These pro-
teins are integral to the integrity and barrier function of the
intestinal epithelium and such caspase-3 cleavage makes
the intestinal barrier vulnerable to potential bacterial
paracellular translocation. The mechanism of caspase-3
mobilization and release from the cell is unknown.
However, ubiquitination, which is carried out so effectively
by pathogens such as E. coli, Pseudomonas aeruginosa
and S. Typhimurium through their ubiquitin ligase mimics
(i.e. NleL, AvrPtoB, SopA, SspH2), can mobilize intracel-
lular caspase-3 (Janjusevic et al., 2006; Zhang et al.,
2006; Quezada et al., 2009; Lin et al., 2011a). A similar
phenomenon occurs in S. Typhimurium-infected epithelial
cells with activated caspase-3 moving from the cytosol to
the cell membrane, but again, the trigger or pathway
responsible for this migration is presently unknown
(Srikanth et al., 2010).

Yersinia spp. effectors and caspase-3

Yersinia spp. encodes a number of Yop proteins that
manipulate pathways and caspases upstream of
caspase-3 that dramatically alter its activation (Table 1).
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Indeed, infection by Yersinia spp. amounts to a coordi-
nated attack on PCD pathways with modulation of host
cell death determining the outcome of infection through
alteration of the innate inflammatory response
(Bergsbaken and Cookson, 2009). Activation of
caspase-3 is dependent on the interplay between Yop
proteins in the case of Y. pestis, with YopK influencing the
induction of caspase-3 activation by the deubiquitinase
YopJ (Peters et al., 2013). While YopJ induces apoptosis
through inhibiting the production of anti-apoptotic pro-
teins, YopK further manipulates apoptosis by altering the
role upstream caspases play in activating caspase-3.
Perhaps most interestingly, while YopK controls YopJ
translocation, its deletion had differing effects on YopJ
induction of apoptosis depending on the cell type infected.
Excess YopJ was expected to induce increased
caspase-3 activation in infected cells but this occurs at
varying levels in different macrophage cell lines leading to
speculation that activation of caspase-3 by these Yop
proteins may be related to the activation state of infected
immune cells (Peters et al., 2013).

The outcome is that host cells infected by Yersinia spp.
are driven towards non-inflammatory apoptosis through
caspase-3 activation, reducing the influx of immune cells
and increasing the likelihood of bacterial survival and
dissemination. Again, like for many other pathogens dis-
cussed in this review, caspase-3 activation is most likely
dependent on the cell type infected, and in the case of
immune cells, their activation state (Bergsbaken and
Cookson, 2009; Peters et al., 2013). Whether this
increased complexity of interplay between caspase-3 and
effectors in different cell types is due to differing host cell
responses to infection or an adaptation by bacterial patho-
gens to their environment is still to be elucidated
(Rosenzweig and Chopra, 2013).

Vibrio metalloprotease Vibrio extracellular protease
(vEP) cleaves caspase-3

Vibrio vulnificus has perhaps one of the most intriguing
mechanisms of caspase-3 activation, achieved through its
secreted metalloprotease vEP. This small secreted
enzyme not only directly activates caspase-3 but does so
in a unique way, cleaving the enzyme at a site distinct
from the normal cleavage motif targeted by initiator
caspases to activate the enzyme (Kim et al., 2007). This
novel mechanism of vEP cleavage of caspase-3 causes
the enzymes activity to initially and profoundly increase
before more cleavage of caspase-3 by vEP renders the
enzyme inactive at later time points in infection. Such vEP
activity is non-specific, and although vEP is seen
intracellularly during infection, it has yet to be shown to be
responsible for induction of apoptosis. However, such
transient activation implies that caspase-3 activity would

only present at early stages in infection, and is similar to
that seen in other bacterial infections where an initial
increase in caspase-3 activity is followed by a delay in
triggering apoptosis thought to be as a result of the inter-
vention of other anti-apoptotic effectors (Srikanth et al.,
2010). This is yet another example in which diverse bac-
terial pathogens are using contrasting means to achieve
similar goals, with V. vulnificus employing a single
enzyme to control caspase-3 activity whereas other bac-
terial pathogens may use a number of effectors to achieve
the same goal (Kim et al., 2007).

Aeromonas effectors and caspase-3

Aeromonas salmonicida and A. hydrophila employ a
number of effectors that activate caspase-3 (Table 1).
Three effectors have been implicated; AexT/AexU, Act2
and Hcp. AexT from A. salmonicida is a bifunctional effec-
tor protein, homologous to ExoT/S from Pseudomonas,
which is capable of caspase-3 activation through induc-
tion of caspase-9 activity (Rosenzweig and Chopra,
2013). When its homologue from A. hydrophila, AexU, is
mutated, mutants are far more virulent resulting in
increased cytokine production and mouse mortality during
infection. AexU therefore is speculated to play an impor-
tant role in inducing apoptosis as a means of controlling
the host inflammatory response and prolonging
A. hydrophila infection. The effector Act2 also induces
caspase-3 activation and apoptosis but the mechanisms
are incompletely understood while the effector Hcp, once
translocated into the host cell, induces rapid caspase-3
activation (Rosenzweig and Chopra, 2013). Macrophages
treated with Hcp also lose the ability to carry out
phagocytosis indicating this may be a means of protection
and escape from infected immune cells. Multiple func-
tional copies of Hcp are present on Aeromonas genomes
and these can be expressed simultaneously allowing
rapid induction of apoptosis, emphasizing the important
role that manipulation of host life span plays during infec-
tion by this Aeromonas.

Francisella, Pseudomonas and caspase-3 activation

Other effectors known to target caspase-3 indirectly
include ExoS from P. aeruginosa and type six secretion
system (T6SS) delivered effectors from Francisella
tularensis (Lai and Sjöstedt, 2003; Alaoui-El-Azher et al.,
2006; Jansson et al., 2006; Santic et al., 2010; Zivna
et al., 2010). P. aeruginosa ExoS, a bifunctional
homologue of AexT/AexU from Aeromonas, inhibits
phosphorylation of cellular proteins such as FOXO3a,
inducing caspase-3 activation and the apoptotic cascade
(Jansson et al., 2006). Interestingly, in the case of
P. aeruginosa, caspase-3 activation by ExoS was noted
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earlier than that of the upstream initiator caspase,
caspase-8, suggesting that ExoS may directly activate
caspase-3, in addition to indirectly activating the enzyme
through caspase-8 (Kaufman et al., 2000). F. tularensis
induction of caspase-3 is dependent on a functional
T6SS, leading to cytochrome-C release and nuclear-
factor kappaβ (NF-κβ) translocation (Santic et al., 2010).
This effect depends on IglC and IglI, putative Francisella
effectors that also play a structural role in the T6SS. For
both P. aeruginosa and F. tularensis, caspase-3 activation
and apoptosis appears to result in the death of host cells
with subsequent bacterial dissemination. This is yet
another example in which the role of apoptosis rather than
combating infection contributes to infection by aiding bac-
terial spread.

Mechanisms of caspase-3 activation

Activation of caspase-3 by bacterial pathogens is increas-
ingly being recognized as a bacterial infection strategy but
yet little is known of the mechanisms by which bacteria
interact with caspase-3 directly. Upstream initiator
caspases such as caspase-8 and -9 are routinely acti-
vated during infection resulting from the perturbation of
numerous cellular pathways, often simultaneously,
leading to indirect induction of caspase-3 activity and the
cell being overwhelmed by the pathogen. While this acti-
vation can be tracked over time giving an indication of the
pathways involved and how caspases are activated,
direct or alternative activation of caspase-3 as described
during bacterial infection is more difficult to understand
mechanistically (Kaufman et al., 2000; Kim et al., 2007;
Srikanth et al., 2010; Zhu et al., 2013). Intrinsic and extrin-
sic apoptotic pathways are thought to be the means by
which the majority of apoptosis occurs but activation of
caspase-3 independently of these pathways suggests an
alternative pathway(s) for caspase-3 activation is induced
during bacterial infection. As such, a pathway has yet to
be identified; it cannot be discounted that direct effector
enzyme interaction may also be responsible for
caspase-3 activation. Direct effector binding of caspases,
as shown with E. coli NleF (caspases-4, -8 and -9), Shi-
gella flexneri OspC3 (cleaved caspase-4) and YopM of
Y. pestis (caspase-1), may also occur with caspase-3,
although to date, this remains largely speculation (LaRock
and Cookson, 2012; Blasche et al., 2013; Kobayashi
et al., 2013). The presence within effectors of short amino
acid motifs that are known to stimulate caspase-3 activa-
tion, such as the RGD motif, may also contribute to acti-
vation, and indeed, an evolutionary conservation of a
prokaryotic caspase-3 activity has also been described,
which could play a role (Buckley et al., 1999; Bidle et al.,
2010). However if, as the evidence suggests, some bac-
terial pathogens do indeed utilize unique means of target-

ing such a critical host enzyme, the findings would have
wide reaching repercussions outside bacterial infection
(Kim et al., 2007; Srikanth et al., 2010).

In the future, detection of subtle modifications or
manipulations of caspase-3 may be crucial to furthering
our understanding of host–pathogen interactions given
that many bacterial pathogens may use strategies of
enzyme manipulation rather than inducing its transcrip-
tional (up or down) regulation. Indeed, in the case of
S. Typhimurium infection, there is no increase in
caspase-3 mRNA levels upon infection, indicating that
rather than increased production of caspase-3 in infected
cells, the enzyme that is present in the cell at low levels
pre-infection is activated and mobilized upon bacterial
invasion (Srikanth et al., 2010). The presence of both
active and pro-, or inactive, forms of caspase enzymes
within host cells add an extra layer of complexity espe-
cially as fine-tuned modifications of caspases by small
molecules can prevent their activation or inhibit their
activity.

Inhibition of caspase-3 by bacterial pathogens

Intracellular survival of bacterial pathogens determines
the success or failure of an infection and bacterial patho-
gens have evolved to protect their intracellular niche to
increase their chances of success. While activation of
apoptosis-related proteins, as described above, appears
an unusual strategy and detrimental to intracellular sur-
vival, many bacterial pathogens actively engage in com-
plementary strategies to inhibit apoptosis (Faherty
and Maurelli, 2008). F. tularensis, L. pneumophila,
P. aeruginosa and S. Typhimurium all employ effectors to
manipulate caspase-3 activation, but in this case, in order
to inhibit its activity (Knodler et al., 2005; Abu-Zant et al.,
2007; Ashare et al., 2007; Santic et al., 2010). Each,
however, affects caspase-3 indirectly, primarily through
activation of pathways or proteins that prevent caspase-3
activity such as NF-κβ, inhibitor of apoptosis protein (IAP)
or Akt. Inhibition by both L. pneumophila and F. tularensis
is dependent on their Dot/Icm and T6SS (Abu-Zant et al.,
2007; Santic et al., 2010). Although the effectors respon-
sible for manipulating caspase-3 activity are not defini-
tively known, IglC is suggested as being responsible in
the case of F. tularensis, The outcome is similar for both
pathogens with NF-κβ translocated to the nucleus where
it increases expression of anti-apoptotic proteins. The net
result for these pathogens is increased replication time in
their intracellular niche and protection from circulating
immune cells.

P. aeruginosa and S. Typhimurium both target/
phosphorylate and stabilize Akt reducing caspase-3 acti-
vation while P. aeruginosa also stabilizes X-linked IAP,
preventing activation of apoptotic caspases (Knodler
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et al., 2005; Ashare et al., 2007). The strategy of stabiliz-
ing anti-apoptotic proteins is a common approach for
inhibiting caspase-3 utilized by bacterial pathogens.
S. flexneri uses a combination of these approaches,
including up-regulating the IAP family (Faherty et al.,
2010). In addition, S. flexneri inhibits caspase-3 through a
membrane expression of invasion plasmid antigen E
(MxiE)-dependent mechanism that may involve direct
binding of caspase-3 or caspase-9 (Clark and Maurelli,
2007). The effector responsible is not yet known but
Spa15 is known to have an anti-apoptotic effect (Faherty
and Maurelli, 2009). Enteropathogenic E. coli (EPEC)
NleH, a homologue of the Shigella effector OspG, also
inhibits caspase-3 activation through interaction with Bax
inhibitor 1 (Hemrajani et al., 2010). In the case of Shigella
and E. coli infections, this inhibition of caspase-3 activa-
tion and subsequent apoptosis may slow exfoliation of the
intestinal epithelium and promote infection by these
pathogens.

Mechanisms of inhibition

Recent studies have shown that effector binding of
caspases other than caspase-3 can have an inhibitory
effect on enzyme activity (Blasche et al., 2013). While
direct binding can inhibit caspase enzyme activity, subtle
caspase-3 modifications can also have a significant effect
on enzyme activity, intracellular location and its lifespan
(Choi et al., 2009; Jiang et al., 2009; Dunne et al., 2013).
Bacteria not only possess the effectors to inhibit caspases
in this way but pathways such as ubiquitination and
S-nitrosylation are up-regulated in infected host cells
(Janjusevic et al., 2006; Zhang et al., 2006; Quezada
et al., 2009; Lin et al., 2011b; Dunne et al., 2013).
Ubiquitination of caspase-3 reduces activity of caspase-3
by altering the active site while also targeting the enzyme
for proteasomal degradation. This mechanism of pro-
teasomal recycling is employed by host cells to maintain
caspase-3 at basal non-apoptotic levels at times when no
danger is perceived (Tan et al., 2006). The presence of
large numbers of ubiquitin ligase mimics in the bacterial
effector repertoire means ubiqutination may be a means
for bacterial pathogens to secure their intracellular niche
for prolonged periods, and also could explain the mobili-
zation of caspase-3 to the extremities of the cell seen
during infection with S. Typhimurium and E. coli (Flynn
and Buret, 2008; Srikanth et al., 2010).

An alternative means of caspase-3 inhibition recently
identified in long-term E. coli infection of immune cells,
although not yet attributed to a specific effector or
pathway, was S-nitrosylation (Dunne et al., 2013). This
modification occurs in all host cell types but was seen
to be up-regulated in infected dendritic cells and
macrophages leading to both increased proteasomal deg-

radation of caspase-3 and insertion of S-nitrosyl groups in
the enzyme active site, reducing or eliminating its enzy-
matic activity. The result was prolonged survival for
infected cells. S-nitrosylation of caspase-3 was not
observed in infected epithelial cells again highlighting the
difference in response of differing cell types as regards
caspase-3 activation (Dunne et al., 2013). S-nitrosylation
is also employed by bacteria to control protein stability
and homologous proteins to those in host cells are used to
mediate the transfer of S-nitrosyl groups to targeted pro-
teins (Mitchell and Marletta, 2005; Gusarov and Nudler,
2012; Seth et al., 2012). Direct S-nitrosylation of host
proteins to date has not been demonstrated but perturba-
tion of host cell pathways by bacteria may be responsible
for alterations in host cell S-nitrosylation pathways.

Future directions to understand
caspase-3 manipulation

The essential role of caspase-3 in apoptosis has caused
it to become the focus of much attention over the last 40
years. Similarly, its targeting by bacterial and viral patho-
gens has increased the attention on the role caspase-3
plays in enabling pathogens to survive intracellularly or
induce death of targeted cells. The discovery that
caspase-3 has functions independent of apoptosis such
as immune signalling, cell differentiation and cell migra-
tion support the notion that the bacterial effector–
caspase-3 interactions discussed herein are having
effects far beyond those simply related to apoptosis.
Effectors that target caspase-3 will likely, over the lifespan
of the infected cell, affect the role that cell plays through
altering its immune signalling, localization and ability to
continue its cell cycle. These disturbed cells can also have
dramatic and detrimental effects on neighbouring cells,
inducing their death and potentially leading to breaches in
integrity of host barriers or the host immune response.
Future efforts to understand how bacteria use their effec-
tors to manipulate caspase-3 should not only shed light on
the outcome of infection but also how caspase-3 controls
essential pathways outside apoptosis.
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