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Abstract

Background: Grape ripening represents the third phase of the double sigmoidal curve of berry
development and is characterized by deep changes in the organoleptic characteristics. In this
process, the skin plays a central role in the synthesis of many compounds of interest (e.g.
anthocyanins and aroma volatiles) and represents a fundamental protective barrier against damage
by physical injuries and pathogen attacks. In order to improve the knowledge on the role of this
tissue during ripening, changes in the protein expression in the skin of the red cultivar Barbera at
five different stages from véraison to full maturation were studied by performing a comparative 2-
DE analysis.

Results: The proteomic analysis revealed that 80 spots were differentially expressed throughout
berry ripening. Applying a two-way hierarchical clustering analysis to these variations, a clear
difference between the first two samplings (up to 14 days after véraison) and the following three
(from 28 to 49 days after véraison) emerged, thus suggesting that the most relevant changes in
protein expression occurred in the first weeks of ripening. By means of LC-ESI-MS/MS analysis, 69
proteins were characterized. Many of these variations were related to proteins involved in
responses to stress (38%), glycolysis and gluconeogenesis (13%), C-compounds and carbohydrate
metabolism (13%) and amino acid metabolism (10%).

Conclusion: These results give new insights to the skin proteome evolution during ripening, thus
underlining some interesting traits of this tissue. In this view, we observed the ripening-related
induction of many enzymes involved in primary metabolism, including those of the last five steps of
the glycolytic pathway, which had been described as down-regulated in previous studies performed
on whole fruit. Moreover, these data emphasize the relevance of this tissue as a physical barrier
exerting an important part in berry protection. In fact, the level of many proteins involved in
(a)biotic stress responses remarkably changed through the five stages taken into consideration,
thus suggesting that their expression may be developmentally regulated.
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Background

Grape berry is a typical true fruit originating from the
ovary and is formed by skin, flesh, seeds and a complete
vascular system. They all have specific properties that are
directly linked to their particular physiological roles dur-
ing berry development and seed dispersal.

The growth of this non-climacteric fruit is summarized by
the well known double-sigmoidal curve and is divided
into an initial and rapid growth, a subsequent lag phase
and a second period of growth corresponding to berry rip-
ening [1,2]. During the first phase, embryo formation
takes place in the seeds and the berry enlarges through fre-
quent cell divisions, accompanied by the accumulation of
many solutes, such as malic acid, tartaric acid and tannins
[3,4]. The lag phase is characterized by the lack of any
changes in berry weight and volume and its end coincides
with the onset of ripening. This stage, which is referred to
the French word véraison, is detectable in red cultivars
where the change in skin colour takes place due to the
start of anthocyanins synthesis. It is important to observe
that at this time phloem unloading shifts to an apoplas-
mic pathway that is accompanied by a parallel change of
the role of xylem in the water budgets [5-7]. Furthermore,
ripening is characterized by profound changes in berry
composition. The concentrations of some metabolites,
among which malic acid is the most important, decrease
while the levels of other molecules, such as glucose, fruc-
tose, volatile aroma compounds and anthocyanins (in red
cultivars), greatly increase [4,8-10]. Moreover, berries start
to soften at véraison and this event is mainly linked to sig-
nificant changes in the cell wall composition [11-14].

In all growth phases, the very active metabolism of the
skin deeply influences the final characteristics of the grape
berry. This tissue, which is formed by a single layer of clear
epidermal cells and a few hypodermal layers beneath the
epidermis, is in fact the site of the synthesis of anthocy-
anins and aroma compounds [4,8,10,15] and also repre-
sents a fundamental protective barrier against damage by
physical injuries and pathogen attacks [16]. The composi-
tion of this tissue depends on both the particular genetic
background of the cultivar and the environmental condi-
tions. These factors play a central role in influencing col-
our, aroma and other organoleptic properties of wine
[4,17-21].

The impact of gene and protein expression patterns in
determining the specificity of the skin in comparison to
the other berry tissues is a crucial aspect that must be con-
sidered. In this view, two recent studies of the mRNA
expression profiles in isolated skins have been published
using oligonucleotide or c¢cDNA microarrays [17,22].
Waters and co-workers provided a first description on the
main events characterizing the shift in gene expression in
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this tissue around véraison [22]. On the other hand, Grim-
plet and co-workers compared the mRNA expression pro-
files of the three major tissues of the berry (skin, pulp and
seeds) at maturity. The results of this analysis highlighted
that the skin transcriptome presented the most distant fin-
gerprint from the global set, since the categories related to
housekeeping processes (i.e. protein fate, cell cycle and
DNA processing) were under-represented while those
related to secondary, amino acid and lipid metabolism
were highly expressed, if compared to pulp and seeds [17].

The widening of genomic information obtained in the last
few years has also paved the way to the study of protein
expression. Recently, some proteomic studies have been
performed on grape berry. A 2-DE analysis of the meso-
carp profile conducted by Sarry and co-workers [23]
allowed the identification of 67 proteins using MALDI-
MS, thus providing clues to the sugar and organic acid
metabolism in ripe berry pulp. More recently, the first
analysis of the skin proteome has been performed by
comparing, two by two, three different ripening stages in
Cabernet Sauvignon berries [24]. This paper mainly
reports differences in the expression of pathogenesis-
related proteins and of some enzymes involved in
anthocyanin biosynthesis. Giribaldi and co-workers [25],
on the other hand, focused their attention on the pro-
teome of whole berries of cv. Nebbiolo during a longer
period of time, ranging from one month after flowering to
complete ripening. These studies provided a first profile of
grape proteomes, also describing some dynamic changes
taking place in growing berries, although further efforts
are still necessary in order to unravel the physiological
events that characterize the grape berry ripening and the
specific roles of the different tissues at the protein level.

A crucial step in a 2-DE analysis is the procedure adopted
for protein extraction. As with many other fruits, grape is
a recalcitrant plant material because of the high concen-
tration of interfering compounds such as phenolics, terpe-
nes, organic acids, ions, carbohydrates and proteolytic
and oxidative enzymes [26-31]. This aspect is particularly
onerous for investigations of the skin, where some of
these compounds are present at very high concentrations.
For this tissue, the phenol extraction method followed by
ammonium acetate in methanol precipitation appears to
be the most appropriate protocol up to now [24,32].

In order to obtain further information on protein expres-
sion changes in the skin during berry ripening, a compar-
ative 2-DE analysis was performed on a time-course
experimental design made up of five different stages from
véraison to full ripening of Barbera, a widely cultivated red
variety typical of northern Italy. In order to associate the
proteome changes to the events characterizing the ripen-
ing process, some biochemical parameters were also
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measured. In this study, it was reported that 80 spots sig-
nificantly changed their relative volumes among the dif-
ferent stages. Sixty-nine of them were identified by LC-
ESI-MS/MS and the corresponding proteins were classi-
fied on the basis of their putative functions. Some of these
proteins were associated with glycolysis and other carbo-
hydrate pathways of the primary metabolism and were
found to increase in the skin tissue during ripening.

Results and discussion

2-DE and image analysis

2-DE analysis was performed on five consecutive stages of
ripening that, as described in the Methods section, were
also defined through the determination of some physio-
logical parameters.

Proteins were extracted from the berry skin samples of cul-
tivar Barbera previously washed in acetone through a pro-
tocol which made use of phenol followed by precipitation
in ammonium acetate in methanol, which was previously
indicated to be appropriate for this recalcitrant tissue [24].
2-DE gels are shown in Fig. 1. The average number of
detected spots was about 850 for each stage and did not
vary significantly among the five different conditions. To
ascertain the quantitative changes in the proteomic maps,
their relative spot volumes (%Vol) were evaluated by soft-
ware-assisted analysis. The ANOVA test (p < 0.01), cou-
pled with a threshold of two-fold change in level, revealed
80 spots as being differentially expressed throughout
berry ripening.

Hierarchical clustering analysis

The differentially expressed spots were subjected to two-
way hierarchical clustering analysis using the PermutMa-
trix software (Figure 2). Looking at the clustering of col-
umns, which mirrors the distances among the different
stages of berry ripening, it is evident that the bunch order
reflects the sequential succession of samples, while there
is a clear difference between the first two samplings and
the following three. These results suggested that the most
important changes in protein expression took place
between the second and the third stage. Nevertheless, this
behaviour appeared different from the data emerging
from oligo/microarrays studies in which the most dra-
matic changes in the transcriptome were found immedi-
ately after véraison and appeared well correlated with the
start of the ripening process [22,33]. The fact that most of
the observed changes in this proteomic analysis did not
refer to véraison, but to a period between 14 and 28 days
after véraison (DAV), may reflect peculiar features of cv.
Barbera that is characterized by a longer period of ripen-
ing, compared to the cultivar Shiraz which was used in the
works cited above. Anyway, it is important to underline
that comparisons among studies using different geno-
types need to be evaluated with extreme caution. In addi-
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tion, when dealing with in-field grown plants, the
relevance of environmental factors should not be
excluded since they affect the gene and/or protein expres-
sion [18].

As for the row clustering, two main trends were observed:
one related to proteins whose levels increase during mat-
uration, the other describing those declining as the berry
ripens. Most of the spots belonged to the first class
(62.5%), agreeing with the observation that the number
of genes whose expression is switched on during ripening
is far greater than the amount of genes switched off [22].
The clustering analysis also indicated that the trends of
expression relative to the last two ripening stages were
closely grouped, suggesting that no evident expression
changes took place in that period.

Protein identification and functional distribution

Among the 80 differentially expressed spots analyzed by
LC-ESI-MS/MS, 69 were identified, listed in Table 1 and
shown in Figure 3 which is referred to a gel of the fifth
stage. The functional distribution of the identified pro-
teins was performed according to MIPS FunCat annota-
tion and is shown in Figure 4.

Most of the observed variations are related to response to
biotic or abiotic stresses (38%), glycolysis and gluconeo-
genesis (13%), C-compound and carbohydrate metabo-
lism (13%) and amino acid metabolism (10%). The
proportion of proteins involved in stress responses was
quite high if compared to the functional distributions pre-
viously observed in the proteome of whole berries and
isolated mesocarp, in which these proteins ranged from
8% to 19% of the identified spots [[25] and [23], respec-
tively]. These results paralleled a recent large-scale mRNA
expression analysis on the three main berry tissues [17] as
well as the skin proteome analysis of cultivar Cabernet
Sauvignon where most of the proteins over-expressed at
maturity were involved in pathogen response [24]. This
massive expression of proteins involved in stress
responses may be essential to the protective function of
the skin as a physical barrier between the environment
and the inner tissues.

Although it is known that the biosynthesis of anthocy-
anins and the transcription of related genes are induced at
véraison [9], no proteins related to this pathway were
found. This failure could be ascribed to the experimental
conditions used in this work. In fact, in a very preliminary
analysis conducted on different genotypes using a nar-
rower pH range (4-7) we found some really low expressed
spots that were referable to enzymes involved in anthocy-
anin synthesis (data not shown). Nevertheless, Robinson
and Davies reported that enzymes involved in this path-
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2-DE maps of five stages through the ripening of Barbera. 2-DE maps of five different ripening stages from véraison until
full ripeness of cultivar Barbera berry skins. The véraison stage (0 DAV) was considered as the moment when 50% of the ber-
ries started to change colour. Proteins (200 Lig) were separated by IEF at pH 3—10, followed by 12.5% SDS PAGE and visualized
by cCBB-staining.
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Figure 2

Clustering analysis of the spots that resulted to change their relative volumes during ripening. Two-way hierar-
chical clustering analysis of the 80 spots that showed at least a two-fold change in the relative spot volumes (ANOVA, p < 0.01)
in the five different ripening stages of grape berry skins of cultivar Barbera. The véraison stage (0 DAV) was considered as the
moment when 50% of the berries started to change colour. The clustering analysis was performed with PermutMatrix graphical
interface after Z-score normalization of the averages of relative spot values (n = 6). Pearson's distance and Ward's algorithm

were used for the analysis. Each coloured cell represents the average of the relative spot value, according to the colour scale at
the bottom of the figure.
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Table I: List of spots identified by LC-ESI-MS/MS and bioinformatic analysis. Proteins were classified according to MIPS FunCat.
Additional data about mass spectrometry are reported in the additional file I.

Spot ID  Accession number Protein description Name abbreviation M@ M,b ple  plb  aa.cov.c(%)
Glycolysis and gluconeogenesis
365 Q9ZSQ4 Cytoplasmic phosphoglucomutase PGIuM 68.17 63.12 6.16 549 9.6
397 Q42908 2,3-bisphosphoglycerate-independent PGlyM-1 6334 61.18 583 539 57
phosphoglycerate mutase
561 P42896 Enolase ENO-I 5248 4791 589 5.56 355
596 P42896 Enolase ENO-2 52.04 4791 6.14 556 315
829 CANB81988 Phosphoglycerate kinase(?) PGK-1 40.66 4242 6.15 629 279
863 CANB8I1988 Phosphoglycerate kinase(d) PGK-2 39.06 4242 621 6.29 37.1
902 ABC75834 Glyceraldehyde-3-phosphate dehydrogenase G3PDH-I 3748 3676 748 6.72 25.1
937 P26518 Glyceraldehyde-3-phosphate dehydrogenase G3PDH-2 3677 3698 794 7.09 22.0
1767 Q42908 2,3-bisphosphoglycerate-independent PGlyM-2 62.15 61.18 578 5.39 16.3
phosphoglycerate mutase
C-compound and carbohydrate metabolism
191 AAC26045 Aconitase-iron regulated protein | ACO 102.81 9809 596 595 14.2
325 CAN60522 Transketolase(d) TK-1 7477 7377 597 6.36 15.3
327 CAN60522 Transketolase(d) TK-2 7434 7377 6.03 6.36 10.1
378 P51615 NADP-dependent malic enzyme NADP-ME 66.00 6523 6.10 6.09 20.6
412 AAB47171 Vacuolar invertase | GINI-I 59.07 7155 427 4.60 79
413 CAN69570 Putative oxalyl-CoA decarboxylase(d) OxD 60.17 61.06 598 5.94 23.8
431 AAB47171 Vacuolar invertase | GINI-2 5920 71.55 433 4.60 8.1
851 P52904 Pyruvate dehydrogenase EI component subunit PDHEI 39.59 3879 5.17 5.88 7.2
B3, mitochondrial precursor
1109 CAN78176 Xyloglucan endotransglycosylase(9) XET 31.65 33.18 6.19 598 12.5
Photosynthesis
1088 CANG61828 Manganese-stablising protein/photosystem Il MnSpPSII 3191 3323 539 587 12.2
polypeptide(?
Nucleobase metabolism
844 AAU[4832 Adenosine kinase isoform IS ADK 40.04 3744 5.60 5.07 19.7
Amino acid metabolism
172 CAN63089 Glycine cleavage system P-protein(d) GCPp 109.41 11281 6.37 6.99 4.9
270 CAN73135 Cobalamin-independent methionine synthase(d) MetSy-| 8347 8l.64 597 6.19 1.9
273 CAN73135 Cobalamin-independent methionine synthase(d) MetSy-2 8238 8l.64 598 6.19 14.4
572 NP_193129 Serine hydroxymethyltransferase 4 SHM4 5288 51.72 727 6.80 12.3
612 AAO92257 y-aminobutyrate transaminase subunit ATpL3 5098 5724 665 6.72 20.6
precursor isozyme 3
654 AAG09278 Ornithine aminotransferase OAT 4856 5132 6.21 644 9.4
815 P37833 Aspartate aminotransferase cytoplasmic AsAT 4143 4451 731 775 17.7
Transcription
1189 BAF46352 o chain of nascent polypeptide associated PAC 2878 2192 406 4.32 337
complex
1511 ABEO1085 BTF3 BTF3 1726 1734 5.52 6.32 1.9
Protein synthesis
1606 AAL13082 Putative glycine-rich RNA-binding protein GlyRp 13.56 1733 533 784 30.3
Protein destination
442 Q43116 Protein disulfide-isomerase precursor PDIpr 5822 5556 492 495 29.7
490 CAN68309 Heat shock chaperonin-binding motif(d) HSC 56.04 41.04 494 494 17.1
1449 CAN60868 Molecular chaperone(d) MChap-| 19.64 1823 6.59 6.78 6.9
1513 CANG65631 Molecular chaperone(? MChap-2 1726 18.15 573 6.17 8.8
1533 P27880 18.2 kDa class | heat shock protein Hsp18.2 16.56 18.17 6.85 58I 12.0
Cellular communication/signal transduction
1016 CANB81470 Annexin(d) Annex 3486 35.19 692 7.13 29.4
Secondary metabolism
986 CAN60921 Kynurenine formamidase(?) KF 3546 2987 554 5.5 9.6
1008 CAI56335 Isoflavone reductase-like protein 6 IFRL6 3523 3393 6.09 6.02 30.8
1028 CAI56334 Isoflavone reductase-like protein 5 IFRL5 3438 3389 621 576 255
Stress
362 NP_001031620 Binding — stress inducible protein(d) BSP 68.17 6371 6.05 6.00 14.9
521 AAL83720 Catalase CAT 5444 5698 7.10 671 13.0
810 AAB41022 Polyphenol oxidase PPO-I 4126 6739 6.88 6.39 84
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Table I: List of spots identified by LC-ESI-MS/MS and bioinformatic analysis. Proteins were classified according to MIPS FunCat.
Additional data about mass spectrometry are reported in the additional file I. (Continued)

819 AAB41022 Polyphenol oxidase PPO-2 4050 6739 6.64 6.39 15.0
826 AAB41022 Polyphenol oxidase PPO-3 41.09 6739 6.8l 639 6.1

843 AAB41022 Polyphenol oxidase PPO-4 39.96 6739 643 6.39 17.5
876 AAB41022 Polyphenol oxidase PPO-5 3898 6739 599 6.39 9.6
906 CAN78553 Late embryogenesis abundant protein(d) LEA 3771 3494 443 467 22.4
1071 CAB60154 1,3 B glucanase Glucp-1 3226 1337 599 6.l 39.3
1075 CAB91554 1,3 B glucanase Glucp-2 3265 3746 644 945 15.6
1148 AAQI10093 Class IV chitinase Chit4-1 30.19 2753 457 538 9.1

1177 AAB65776 Class IV endochitinase EnChit4 2850 2724 493 538 21.1
1226 AAQI0093 Class IV chitinase Chit4-2 2766 2753 6.87 5.38 14.4
1240 AAQI10093 Class IV chitinase Chit4-3 2699 2753 735 538 14.4
1316 AAB61590 VVTLI TLP 2462 2397 4.69 5.09 9.0
1318 ABCB86744 Abscisic stress ripening protein ASR-I 2430 16.69 581 5.68 30.2
1358 ABCB86744 Abscisic stress ripening protein ASR-2 2394 1669 577 5.68 30.2
1385 ABB02395 Temperature-induced lipocalin TInLi 2287 2154 642 6.63 13.0
1408 AAQO03092 Glutathione peroxidase GPOX 21.53 1853 652 6.13 238
1417 ABCB86744 Abscisic stress ripening protein ASR-3 2122 1669 573 5.68 26.2
1444 CACIl6165 Pathogenesis-related protein 10 PRI10-1 19.76  17.13 6.11 596 22.8
1481 AAB41022 Polyphenol oxidase PPO-6 1850 67.39 491 639 5.9

1482 AAB41022 Polyphenol oxidase PPO-7 1841 6739 499 6.39 10.7
1508 CANB83049 Pathogenesis-related protein Bet v | family(<) PRBetvl 1720 17.10 5.15 5.12 17.2
1524 ABD78554 Pathogenesis-related protein 10.1 PR10-2 16.75 1745 6.61 6.07 30.2
1768 AAB41022 Polyphenol oxidase PPO-8 1845 6739 479 639 6.4

Unclassified

476 CANG6781 | Dihydrolipoamide dehydrogenase(?) Uncla-1 56.94 4957 6.13 7.18 9.6

118l CAN64479 14-3-3 protein(? Uncla-2 2829 2878 4.67 478 16.1
1441 ABKé64186 CBS domain-containing protein Uncla-3 19.84 2225 6.95 9.24 252

Unknown
1083 NP_001061484 Protein of unknown function DUF52 family(d) Unk 3253 3355 6.22 6.11 16.4

a: Experimental molecular weight (kDa) or isoelectric point
b: Theoretical molecular weight (kDa) or isoelectric point.
<: amino acid coverage (%)

d: The protein was reported as a hypothetical protein. In the features, the similarity and function of the identified genes has been annotated by the

authors according to Gene Ontology http://www.geneontology.org.

way are present at low levels making their assay difficult
[13].

Pathogenesis-related proteins

Pathogenesis-related (PR) proteins belonging to class IV
chitinases (Chit4), B-1,3-glucanases (Glucf) and thauma-
tin-like protein (TLP) were found (Table 1 and Figure 3).
PR proteins matched to a group of spots, generally low
expressed at véraison, whose abundance abruptly rose up
to the point of representing about the 20% of the total
spot volume in the protein profile of ripe berries (Figure
5). Both chitinase and -1,3-glucanase are known to have
antifungal activity and presumably hydrolyse the cell
walls of fungal hyphae [38,39]. In agreement with the pre-
vious proteomic studies on grape ripening [24,25], two
spots were identified corresponding to B-1,3-glucanase
(spots 1071 and 1075) which accumulated after véraison.
However, data regarding the behaviour of this enzyme
during berry ripening are contradictory. More than one
study [38,40] pointed out that, beside the surge of chiti-
nase activity during ripening, no -1,3-glucanase activity
was detected in grape at any stages of berry development

while it was reported that the gene is expressed [37]. In
spite of this, Deytieux and co-workers [24] associated the
assay of the enzyme activity to the proteomic profile and
found that, even if weakly correlated, both the expression
and the activity of 3-1,3-glucanase increased during ripen-
ing.

In addition to their involvement in osmotic stress, a role
in defence against fungi in grape berries has also been sug-
gested for thaumatin-like proteins [38]. It is interesting to
observe that several studies provide evidence of the fact
that chitinases and thaumatin-like proteins accumulate
during berry ripening even in the absence of pathogen
infections [24,38-40]. According to these results, we
observed a sharp increase of these proteins moving from
véraison to full maturation, suggesting that their expres-
sion may be developmentally regulated (Figure 5).

Oxidative stress-related proteins

It has been proposed that the oxidative stress may play a
developmental role in the ripening process [41-43]. As far
as it concerns grape, this hypothesis is still a matter of
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Figure 3

Protein profiles of identified proteins. Identified proteins are indicated in a 2-DE gel representative of the fifth ripening
stage with spot name abbreviation corresponding to those in Table I, Figure 6 and 7. Spots showing an increased or a
decreased expression during ripening are indicated in red and in green, respectively.

debate. The data regarding the expression and the activi-
ties of proteins involved in ROS detoxification still remain
unclear [25,33,37,44]. Recently, Pilati and co-workers
[18] found that an oxidative burst occurs at véraison and
that this event may modulate the expression of a gene set.
Nevertheless, among the differentially expressed proteins
during ripening, we identified some enzymes that are
known to be involved in the oxidative stress response (e.g.
PPO, polyphenol oxidase; GPOX, glutathione peroxidase;
CAT, catalase; TInLi, temperature-induced lipocalin, Fig-
ures 3 and 5).

Polyphenol oxidases catalyze the formation of o-qui-
nones, molecules involved in browning reactions as a
consequence of pathogen infection, wounding and organ

senescence, through the O,-dependent oxidation of
monophenols and o-diphenols [45]. In addition to the
described defensive role, these ubiquitous enzymes may
contribute to the biosynthetic pathways leading to proan-
thocyanidin [46] and aurone [47]. In our work we identi-
fied 8 spots corresponding to PPO, whose expression was
high at véraison and dropped during ripening (Table 1,
Figures 3 and 5). This trend is in agreement with previous
reports on this class of enzymes which are generally highly
expressed and active in young developing tissues [48-51].
Dry and Robinson [52] described that the protein is syn-
thesized as a 67 kDa precursor which is imported into the
chloroplast and processed to remove a 10.6 kDa chloro-
plast transit peptide from the N-terminus and a 16.2 kDa
peptide of unknown function from the C-terminus, thus
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Functional categories distribution of the identified proteins. Functional distribution of the identified proteins (Table 1)

according to the annotation in the MIPS FunCat.

resulting in a catalytic unit of 40.5 kDa. On the basis of
the matched peptides and the deduced masses, five of the
characterized proteins (spots 810, 819, 826, 843 and 876)
may represent the catalytic unit. Interestingly, it is possi-
ble that spots 1481, 1482 and 1768, identified as PPO and
having deduced masses of around 18 kDa, may corre-
spond to the C-terminus of the enzyme. This was sup-
ported by the similarity of the molecular weight and by
the evidence that the detected tryptic peptides are com-
prised in the part of the sequence between the hypothe-
sized cleavage site and the C-terminus. This may indicate
that the small terminal portion of PPO is maintained in
skin cells after the cleavage from the catalytic unit. The
role of this fragment is not known but it was recently indi-
cated that its tertiary structure is likely to be similar to that
of hemocyanin, an oxygen-binding protein isolated in the
blood of molluscs whose main function resides in O,-
storage and transport [53].

A spot corresponding to catalase (CAT, spot 521) pre-
sented a four-fold increase in abundance during ripening.

An opposite behaviour was described for this enzyme in
some recent reports on whole berries [25,40]. Although
the influence of some factors can not be excluded, such as
the genetic background and the environmental and sea-
sonal conditions, these results could be explained by con-
sidering them as specific traits of the skin. For instance, it
was recently discovered that the concentrations of ascor-
bate and glutathione in apple epidermis were 3- to 7-fold
higher than in the underlying mesocarp [54]. In this view,
we also observed a clear increase in the expression of a
glutathione peroxidase (GPOX, spot 1408, Figure 5).

Proteins involved in C-metabolism

Among the characterized proteins, many are involved in
primary activities, such as glycolysis, gluconeogenesis, C-
compounds and carbohydrate metabolism (Table 1 and
Figure 3). A general picture of some traits of carbon
metabolism showing the trend of these proteins is
depicted in Figure 7.
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Figure 5

Changes in the expression of proteins involved in stress response. Changes in the relative spot volumes of the pro-
teins (Table |) involved in stress responses during five different ripening stages from véraison until full ripening of cultivar Bar-
bera grape berry skins. The véraison stage (0 DAV) was considered as the moment when 50% of the berries started to change
colour. Proteins were grouped according to their functions. Values are the mean * SE of six 2-DE gels derived from two inde-

pendent biological samples analyzed in triplicate.

The understanding of grape assimilate partitioning, i.e.
the process which determines the way carbohydrates are
transported to the berry and how they are allocated, sig-
nificantly improved in recent years. Sucrose is the pre-
ferred sugar for long-distance transfer in this species and
is produced through photosynthesis in the mesophyll of
mature leaves and conveyed to the berry from the phloem
[55]. Until véraison most of the sugar imported into the
berry is metabolized and so there is little storage. After
véraison, there is an upturn in sugar levels, among which
glucose and fructose, that are the most representative car-
bohydrates, are accumulated in roughly equal amounts in
the vacuoles of the mesocarp cells [4]. A number of
reports indicates that, during ripening, the localization of
sucrose hydrolysis shifts from the vacuole to the apoplast

[7,22,56]. This transition is associated to a decrease in the
expression and activity of vacuolar invertases and a con-
comitant upturn of apoplastic acid invertases [7]. In agree-
ment with these reports, we identified two spots (spots
412 and 431) corresponding to a vacuolar invertase,
GIN1, showing a strong reduction in their expression after
véraison (Figure 6).

The measured drop in titratable acidity is mainly ascribed
to the catabolism of malate accumulated in the vacuole
during stages I and II of berry development [57]. It has
been suggested that this acid is degraded in grape via at
least three pathways, mainly by the cytosolic NADP-malic
enzyme (NADP-ME), which catalyzes the oxidative decar-
boxylation of malate into pyruvate and CO, [58], and, to
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Figure 6

Changes in the expression of proteins involved in C- and N-metabolism or with other functions. Changes in the
relative spot volumes of the identified proteins belonging to the indicated functional categories (Table 1), during five different
ripening stages of cv. Barbera grape berry skins from véraison until full ripening. The véraison stage (0 DAV) was considered as
the moment when 50% of the berries started to change colour. Proteins were grouped according to their functions. Values are
the mean * SE of six 2-DE gels derived from two independent biological samples analyzed in triplicate.
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Schematic overview of the enzymes involved in sugar and organic acid metabolisms and their connection with
some intermediary activities that changed in expression in grape berry skins during five different ripe stages
from véraison until full ripening. The expression was evaluated by measuring relative spot volumes in the 2-DE analysis.
Green or red arrows indicate whether the abundance of the identified proteins decreased or increased during ripening,
respectively. IRV, cell wall invertase, GINI, vacuolar invertase; Susy, sucrose synthase; UGP, UDP-glucose-pyrophosphory-
lase; PGIuM, phosphogluco-mutase; PGI, phosphogluco-isomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triosephos-
phate-isomerase; G3PDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate-kinase; PGlyM,
phosphoglycerate-mutase; ENO, enolase; PK, pyruvate kinase; PDC, pyruvate decarboxylase; NADP-ME, NADP-dependent
malic enzyme; ADH, alcohol dehydrogenase; PDH, Pyruvate dehydrogenase.
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a lesser extent, by PEP carboxykinase and the cytosolic
malate dehydrogenase (¢cMDH) [59]. In our work we
identified a spot corresponding to NADP-ME whose
amount gradually increased during ripening (Figure 6).
The role of this enzyme during berry development is still
a matter of debate: in their tissue-specific transcriptional
profile of ripe skins, Grimplet and co-workers [17]
recently pointed out that the mRNA levels of several
enzymes involved in malate metabolism are higher in the
skins than in pulp and seeds.

In the past, several papers concerning the whole berry [25]
and isolated pulp or seeds [59] reported that glycolysis is
down-regulated after véraison. Differently, in some tran-
scriptomic analysis conducted on the whole berry it was
found that some enzymes belonging to this pathway were
induced during ripening [33,40]. We have been the first,
to our knowledge, who found that several glycolytic
enzymes strongly increased in the skin during ripening
(Figure 6). Most of them, e.g. phosphoglycerate mutase
(PGlyM, spots 397 and 1767), enolase (ENO, spots 561
and 596), glyceraldeyde-3-phosphate dehydrogenase
(G3PDH, spot 902 and 937) and phosphoglycerate kinase
(PGK, spot 863), related to the energy-conserving reac-
tions of glycolysis. These data underline the importance of
distinguishing among the different berry tissues in order
to understand the ripening process. In other words, the
tissues could express different trends for glycolysis during
ripening. In this view, we also found the concomitant
high expression of NADP-ME as well as of the non-oxida-
tive activities of the pentose phosphate pathway, such as
the highly induced transketolase (TK, spots 325 and 327).
These enzymes may be required in the skin for satisfying
the large demand for carbon skeletons of the biosynthetic
pathways operating in this tissue during ripening (e.g.
anthocyanin synthesis).

Pyruvate may be channelled into the Krebs cycle and is
converted to Acetyl-CoA by the pyruvate dehydrogenase.
According to an increase in fluxes towards TCA cycle, it
has been found that the subunit E1 of this enzyme
(PDHE1, spot 851) is more abundantly expressed towards
maturity. Aconitase (ACO) is an enzyme of the TCA and
glyoxylate cycles catalyzing the reversible conversion of
citrate to isocitrate. The importance of this enzyme was
emphasized by Carrari and co-workers [60] who studied
the Aco-1 tomato mutant which is characterized by a
reduced expression of aconitase. Biochemical analysis of
the leaves of this genotype suggested that Aco-1 exhibited
a restricted flux through the Krebs cycle and reduced levels
of Krebs cycle intermediates, with an elevated rate of pho-
tosynthesis and sucrose synthesis. The fact that Aco-1
leaves were also characterized by a different amino acid
profile, indicates that this activity may have a role in con-
trolling the C/N ratio and amino acid biosynthesis. We

http://www.biomedcentral.com/1471-2164/9/378

observed a spot corresponding to ACO (spot 191) whose
expression sharply increased during ripening (Figure 6) as
previously reported for cv. Cabernet Sauvignon skins [24]
and, at the transcriptomic level, for citrus fruit flesh [61].

Oxalyl-CoA decarboxylase (OxD, spot 413) is another
protein whose levels increased during ripening. This
enzyme catalyses the irreversible decarboxylation of Oxa-
lyl-CoA, derived from glyoxylic acid, to produce formyl-
CoA. This activity has already been associated to grape
skin during ripening [24], but further analyses are
required in order to clarify its role in this process, as far as
that of one- and two-carbon compounds.

Proteins involved in N-metabolism

It has been observed that the amino acid content of the
berry rises significantly during maturation and that the
relative amount of different amino acids changes, with
proline and arginine generally being predominant [62].
Stines and co-workers [63] suggested that proline accu-
mulation may be achieved via the ornithine pathway
under the control of ornithine aminotransferase (OAT),
which constitutes a bridge between proline and arginine
metabolism. In support of this view, we identified a very
low abundance spot (< 0.1 %Vol) corresponding to OAT
(spot 654) which sharply increased in expression during
ripening (Figure 6).

As previously described by Giribaldi and co-workers [25],
in our study we found the protein cobalamin-independ-
ent methionine synthase (MetSy, spots 270 and 273),
which catalyzes the final step of methionine biosynthesis.
The exact role of this enzyme, whose expression peaked in
the middle of ripening, still remains unclear.

Interestingly, we identified a spot corresponding to a sub-
unit precursor of the enzyme y-aminobutyrate transami-
nase (ATpL3, spot 612) which is involved in the shunt of
the aminoacid y-aminobutyrate (GABA). To our knowl-
edge there is no evidence of the involvement of this
enzyme in the maturation of the grape berry, but it is
known that it is involved in the ripening of other non-cli-
macteric fruits, such as citrus [61,64]. According to the
hypothesis proposed for citrus fruit, the GABA shunt may
be active, among other things, in the regulation of cyto-
plasmic pH, due to the H*-consuming decarboxylation of
glutamate, during the period of late development and rip-
ening following citrate release from the vacuole [61].

Other proteins

The most abundant protein found in the present work
belongs to the family of ABA stress responsive elements
(ASR, ca. 13% of the total volume at the first stage and ca.
6% thereafter). According to previous results, the spots
1318, 1358 and 1417 (Figure 3), which are referable to
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ASR, showed a downward trend during ripening (Figure
5). ASR are known to be involved in abiotic stress and fruit
ripening, even though their exact role is still elusive
[65,66]. The effective function has been questioned
because of their very high expression level, the fact that
the observed molecular masses were higher than the pre-
dicted theoretical values by a range of about 5-10 kDa
and because they were found mainly in the cell wall
enriched fraction [23,67].

Heat shock proteins (HSP) are usually involved in stabi-
lizing protein folding in response to different kinds of
stimuli. We identified three spots corresponding to chap-
erones of a predicted mass of around 18 kDa (MChap and
Hsp18.2, spots 1449, 1513 and 1533, Figure 3) and a heat
shock chaperonin binding motif protein (HSC, spot 490)
whose levels decreased after véraison (Figure 6). This evi-
dence reinforces the conclusions of da Silva and co-work-
ers [47] who supposed that the peak of several HSPs
expression at véraison, followed by their sudden drop,
could be linked to the intense redirection of metabolism
that is necessary to stabilize old and newly synthesized
proteins.

Finally, some proteins characterized in this study were
involved in transcription (spots 1189 and 1511), protein
synthesis (spot 1606), signal transduction (spot 1016)
and secondary metabolism (spots 986, 1008 and 1028).
Further work is necessary to define the effective role of
these proteins in the skin during ripening.

Conclusion

This work gives new insights to the skin proteome evolu-
tion during ripening, focusing on some interesting traits
of this tissue. In this view, we observed the ripening-
related induction of the enzymes of the last five steps of
glycolysis, although they had been described as down-reg-
ulated in previous studies performed on whole fruit.
These variations were accompanied by the rise of the lev-
els of other important proteins of primary metabolism,
such as malic enzyme, aconitase, pyruvate dehydrogenase
and transketolase.

These results paved the way for investigations on the role
of this tissue that has to respond to specific metabolic
requests being the site of important biosynthetic pathway
(e.g. anthocyanin). Moreover, the data emphasize the rel-
evance of the skin as a physical barrier playing an impor-
tant role in berry protection. In fact, the levels of many
proteins known to take part in (a)biotic stress responses
vary during the five analyzed stages. Many of them (i.e.
chitinase, thaumatin-like, abscissic stress ripening pro-
tein, polyphenol oxidase) are the most expressed proteins
found in this work and are characterized by the most
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abrupt variations in accordance to their possible develop-
mental regulation.

Methods

Plant material and experimental design

Experimental material was harvested during the 2005
growing season from Vitis vinifera L. cv. Barbera grape-
vines, grown at the Experimental Station of the Ente
Regionale per i Servizi all'Agricoltura e alle Foreste
(E.R.S.AF.) of Regione Lombardia (Pavia, Italy).

Samples were collected at five different ripening stages
from véraison, until full ripening (corresponding to 58, 72,
86, 100, 107 days after blooming). We considered the
véraison stage as the moment when 50% of the berries
started to change colour.

Two hundred berries were collected at each sampling date.
Berries were equally sampled on a single cluster per plant
across 20 plants. Immediately after harvest, the skins were
collected by squishing the berries in order to remove seeds
and the bulk of the mesocarp, then pressing and smearing
the inner part of the skin on two layers of cheesecloth to
completely take away the residual pulp. Skins samples
were split into two technical replicates. The samples were
frozen in liquid nitrogen and stored at -80°C until use.
Each technical replicates was subjected to independent
protein extraction. Three gels were run for each extraction.
At all stages, samples of whole fresh berries, obtained as
described above, were immediately used to measure total
soluble solids, pH and titratable acidity.

Determination of physiological parameters

In order to assess the progress of grape berry ripening and
to associate the physiological phases to the observed
changes in protein expression, total solids, pH, titratable
acidity and anthocyanins were evaluated on five stages of
ripening, starting from véraison to full maturation.

Total soluble solids (°BRIX), pH and titratable acidity
were measured in grape juice, obtained by pressing fresh
berries with a small hand-crank press, using a hand held
refractometer (ATAGO CO., Ltd), a pH meter (Hanna HI
221) and an automatic titrator (Crison Compact Titrator)
titrating in the presence of NaOH. Anthocyanins were
extracted from the skins as previously described by Fuma-
galli and co-workers [68]. The anthocyanins concentra-
tion was evaluated by measuring the absorbance of the
extract at a wavelength of 535 nm and referring the values
to a malvidin-3-glucoside calibration curve.

Considering the whole period, a sharp increase in the
anthocyanin content of the skin, soluble solids and pH in
berry juice was measured, while a reduction in titratable
acidity occurred at the same time (Figure 8). In detail, we
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Biochemical changes occurring during the ripening of Barbera berries. Changes in the physiological parameters were
measured during five different ripening stages of cultivar Barbera grape berries from véraison until full ripening. The véraison
stage (58 days after blooming) was considered as the moment when 50% of the berries started to change colour. A, total solu-
ble solids; B, titratable acidity; C, berry juice pH; D, total anthocyanin contents. The data are the means * SE of three experi-

ments run in triplicate (n = 9).

observed a 10-fold surge in the anthocyanin level and a 2-
fold upturn of soluble solids, accompanied by a pH shift
of 0.4 and a 3-fold decrease in titratable acidity. The rate
of sugars and anthocyanins accumulation as well as the
changes in pH and titratable acidity were almost constant
until the fourth stage, while no significant variations for
these parameters were observed between the fourth and
the fifth sampling stages.

Protein extraction and quantification

Frozen samples (5 g) were finely powdered in liquid nitro-
gen using a pestle and mortar, homogenized with cold (-
20°C) acetone, washed twice on Whatman 41 filter paper
(Whatman International Ltd) with cold acetone and
finally dried under vacuum. The acetone powder was then
resuspended in 20 mL of extraction buffer [0.7 M sucrose,

0.5 M Tris-HCI pH 8, 10 mM disodium EDTA salt, 4 mM
ascorbic acid, 1 mM PMSF, 1 uM leupeptin, 0.1 mg mL-!
Pefabloc (Fluka), 0.4% (v/v) B-mercaptoethanol] on ice,
incubated in a 4°C cold room under shaking for 30 min
and then centrifuged at 13000 g for 30 min. The resultant
supernatant was extracted as previously described by
Hurkman and Tanaka [32] by the addition of an equal
volume of ice-cold Tris-buffered phenol (pH 8). The sam-
ple was shaken for 30 min at 4°C, incubated for 2 h at
4°C and finally centrifuged at 5000 g for 20 min at 4°C to
separate the phases. The upper phenol phase was col-
lected, while the aqueous phase at the bottom was back-
extracted with an equal volume of phenol. Proteins were
precipitated by the addition of five volumes of ice-cold 0.1
M ammonium acetate in methanol to the phenol phase,
then vortexed briefly and finally incubated at -20°C over-
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night. Precipitated proteins were recovered by centrifug-
ing at 13000 g for 30 min, then washed again with cold
methanolic ammonium acetate and three times with cold
80% (v/v) acetone. The final pellet was dried under vac-
uum and dissolved in IEF buffer [7 M urea, 2 M thiourea,
3% (w/v) CHAPS, 1% (v/v) NP-40, 50 mg mL! DTT and
2% (v/v) IPG Buffer pH 3-10 (GE Healthcare)] by vortex-
ing and incubating for 1 h at room temperature. The sam-
ple was centrifuged at 10000 g for 10 min and the
supernatant stored at -80° C until further use. The protein
concentration was determined by 2-D Quant Kit (GE
Healthcare).

2-DE

The protein sample (200 pg) was loaded on pH 3-10, 24
cm IPG strips passively rehydrated overnight in 7 M urea,
2 M thiourea, 3% (w/v) CHAPS, 1% (v/v) NP-40, 10 mg
mL1 DTT and 0.5% (v/v) IPG Buffer pH 3-10. IEF was
performed at 20°C with current limit of 50 pA/strip for
about 90 kVh in an Ettan IPGphor (GE Healthcare) using
the following settings: 5 min gradient 200V, 1 h at 200V,
5 min gradient 500 V, 1 h at 500 V, 5 min gradient 1000
V, 6 h at 1000 V, 3 h gradient 8000 V and 9 h at 8000 V.
After IEF, strips were equilibrated by gentle shaking for 15
min in an equilibration buffer [100 mM Tris-HCI pH 6.8,
7 M urea, 2 M thiourea, 30% (w/v) glycerol, 2% (w/v)
SDS] added with 0.5% (w/v) DTT for disulfide bridges
reduction and for an additional 15 min in the same equi-
libration buffer to which was added 0.002% (w/v)
bromophenol blue and 4.5% w/v iodoacetamide for
cysteine alkylation. Second-dimensional SDS-PAGE [69]
was run in 12.5% acrylamide gels using the ETTAN DALT
six apparatus (GE Healthcare). Running was first con-
ducted at 5 W/gel for 30 min followed by 15 W/gel until
the bromophenol blue line ran off.

Protein visualization and image and data analysis
Proteins were stained using the colloidal Coomassie Bril-
liant Blue G-250 (cCBB) procedure, as previously
described by Neuhoff and co-workers [70]. The gels were
scanned in an Epson Expression 1680 Pro Scanner and
analyzed with ImageMaster 2-D Platinum Software (GE
Healthcare). Automatic matching was complemented by
manual matching. Molecular weights of the spots were
deduced on the basis of the migration of SigmaMarkers™
wide range (MW 6.500 - 205.000), while pI was deter-
mined according to the strip manufacturer's instructions
(GE Healthcare).

Relative spot volumes of the six replicate gels of the five
ripening stages were compared and were analyzed accord-
ing to the ANOVA test to verify whether the changes were
statistically significant (p < 0.01). Only spots showing at
least a two-fold change in their relative volumes were con-
sidered for successive analysis. Significant differences were
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analyzed through the two-way hierarchical clustering
methodology using the software PermutMatrix [71,72].
For this purpose, the data produced by the analysis of 2-
DE gels were converted into a binary matrix replacing the
missing values by zero. The row by row normalization of
data was performed using the classical zero-mean and
unit-standard deviation technique. Pearson's distance and
Ward's algorithm were used for the analysis.

In-gel digestion, mass spectrometry and protein
characterization

Spots were excised from cCBB-stained 2-DE gels and in-
gel digested as previously described by Magni and co-
workers [73]. The extracted tryptic fragments were resus-
pended in 0.1% (v/v) formic acid and analysed by LC-ESI-
MS/MS. For all the experiments a Finnigan LCQ Deca XP
MAX IT mass spectrometer equipped with a Finnigan Sur-
veyor (MS Pump Plus) HPLC system (Thermo Electron
Corporation) was used. Chromatography separations
were conducted on a BioBasic C18 column (180 pm I.D.
x 150 mm length and 5 um particle size), using a linear
gradient from 5% to 80% solvent B [solvent A: 0.05% (v/
v) formic acid; solvent B: ACN containing 0.05% (v/v) for-
mic acid] with a flow of 2.5 pl./min. The capillary temper-
ature and the spray voltage were set at 220°C and at 3.0
kV, respectively. For MS/MS scans the normalized colli-
sion energy was set at 35%. Acquisitions were performed
in data-dependent MS/MS scanning mode and enabling a
dynamic exclusion window of 3 min.

Protein identifications were conducted by using TurboSE-
QUEST® incorporated in BioworksBrowser 3.2 (Thermo
Electron Corporation) by correlation of uninterpreted
spectra to the entries of NCBI NR non-redundant (i), Vitis
protein subset (ii) and Vitis EST subset (iii) databases
extracted from the NCBI NR non-redundant database (ii)
and ESTdb others (iii), downloaded from the National
Center for Biotechnology Information (NCBI). The soft-
ware was set to allow two missed cleavages per peptide
and to take into account fixed modification of cysteine
carboxyamidomethylation and variable modification of
methionine oxidation. The parent ion and fragment ion
mass tolerance were set to + 2 Da and 1 Da, respectively.
In order to identify proteins, only peptides with Xcorr >
1.5 (+1 charge state), > 2.0 (+2 charge state), > 2.5 (> 3
charge state), peptide probability< 1 x 10-3, ACn > 0.1 and
Sf > 0.70 were considered. Regarding protein identifica-
tion by sequence similarity search, identified peptides
were aligned against the NCBI NR non-redundant data-
base using the FASTS algorithm [74]http://fasta.bioch.vir
ginia.edu/fasta_www?2/

fasta www.cgi?rm=select&pgm=fs. Theoretical molecular
weight and pI of characterized proteins were calculated by

processing sequence entries at http://www.expasy.org/
tools/pi_tool.html. Protein functions were assigned to
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MIPS FunCat http://mips.gsf.de/projects/funcat according
to their role described in the literature.
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