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Use of anthracyclines such as doxorubicin (DOX), for the treatment of cancer, is known

to induce cardiotoxicity, begetting numerous evaluations of this adverse effect. This

review emphasizes the mechanism of how consideration of DOX-induced cardiotoxicity

is important for the development of cardioprotective agents. As DOX is involved

in mitochondrial dysfunction, enzymes involved in epigenetic modifications that use

mitochondrial metabolite as substrate are most likely to be affected. Therefore, this

review article focuses on the fact that epigenetic modifications, namely, DNAmethylation,

histone modifications, and noncoding RNA expression, contribute to DOX-associated

cardiotoxicity. Early interventions needed for patients undergoing chemotherapy, to treat

or prevent heart failure, would, overall, improve the survival, and quality of life of cancer

patients. These epigenetic modifications can either be used as molecular markers for

cancer prognosis or represent molecular targets to attenuate DOX-induced cardiotoxicity

in cancer patients.
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INTRODUCTION

Cardiotoxicity, in simpler terms, is defined as “toxicity which damages the heart,” often during
or after chemotherapeutic treatment (1). Treatment options for cancer have been improving
significantly in recent years, and the rates of survival in several human cancers have increased
significantly with reduced recurrences (2). However, the applicability of these drugs is limited by
the risk of cardiotoxicity (1). Doxorubicin (DOX)–induced cardiomyopathy can occur within a few
days of its administration or delayed until decades after chemotherapy, thus affecting morbidity,
mortality, and quality of life of cancer patients (3–6). However, the mechanism of DOX-induced
cardiotoxicity is not fully understood.

Epigenetic modifications, including DNA methylation, histone modifications, and noncoding
RNA (ncRNA) expression, play an important role in regulating gene expression and are considered
as a hallmark of several human diseases, such as cardiovascular disease [review in Kimball and
Vondriska (7)]. In this review, we discuss the mechanism of how aberrant epigenetic modifications
contribute to DOX-induced cardiotoxicity and possible alternative therapeutic options that could
forestall or prevent chemotherapy-induced cardiotoxicity (8).
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CHEMOTHERAPEUTIC-ASSOCIATED
CARDIOTOXICITY

In the 1960s, DOX (Adriamycin R©), first isolated from
Streptomyces actinobacteria, was found as one of the first
anthracyclines (9), to be used for several cancer treatments,
including breast carcinomas, sarcomas, leukemias, non-
Hodgkin and Hodgkin lymphoma, and many other cancers
(10, 11). At the molecular level, DOX acts to stabilize
topoisomerase DNA isomers and therefore blocks DNA
replication and transcription (12, 13). It has been reported
in several studies over the last 15 years that despite the
successful development of small molecules and targeted
therapies, anthracycline-based chemotherapy still plays not
only prominent anticancer but also overall detrimental roles
in many types of cancer treatment (14). Concerning the latter,
DOX causes a cumulative, irreversible, and dose-dependent
cardiomyopathy that ultimately leads to congestive heart failure
(15). Previous studies have demonstrated that cardiotoxicity
is a repercussion of dose-dependent administration of DOX,
with those exceeding 500 mg/m2 greatly increasing the risk
of congestive heart failure tremendously (16). Understanding
the mechanism involved in DOX is important in developing
novel preventive measures, and treatment strategies, against
DOX-induced cardiotoxicity.

Cardiotoxicity is one of the major adverse effects of
chemotherapy, and a leading cause of increased mortality
and morbidity, in cancer patients (6, 17). Cardiotoxicity can
occur in the early or late stages of the course of the disease
and may vary from subclinical myocardial dysfunction to
irreversible heart failure or death (18). Documented reports
are limited to the mechanism of the appearance of cardiac
dysfunction during chemotherapy and the susceptibility
of patients to develop cardiotoxicity (1, 19). However,
a proposed clinical study demonstrated that among all
cancer patients, the overall occurrence of DOX-induced
cardiotoxicity was ∼9%, and most cases occurred immediately
during the first year after the completion of chemotherapy
and have even been noticed after a follow-up of 4 years
(20). Complications emerging from chemotherapy-induced
cardiotoxicity are potentially life-threatening, further limiting
the clinical use of various chemotherapeutic agents (particularly
anthracyclines) (8), thus strongly supporting the need for
improved cardioprotective agents.

MECHANISMS OF DOX-INDUCED
CARDIOTOXICITY

One widely accepted mechanism for DOX-induced
cardiotoxicity is the generation of reactive oxygen species
(ROS) after DOX treatment in cardiac mitochondria; this
occurrence marks as the primary initiating event in the cascade
of intracellular modifications (21). In mitochondria, DOX is
reduced by NADH dehydrogenase and undergoes redox cycling,
generating ROS (22). Elevated levels of ROS result in cellular
damage, also known as oxidative stress, which is initiated when

the delicate balance between the ROS-generating system and
antioxidant measures is disrupted (8). Cardiomyocytes are highly
susceptible to oxidative stress, as treatment with DOX reduced
the levels of antioxidant enzymes such as glutathione peroxidase,
catalase, and superoxide dismutase (23). Cancer patients
receiving DOX treatment also undergo immediate systemic
oxidative stress, which is due to a decrease in glutathione and
total antioxidant capacity of plasma (24).

Production of ROS also affects the DNA, RNA, proteins,
and lipids and can also act as secondary signaling molecules in
various pathways that are involved in homeostasis, including
cell proliferation and cell death (25, 26). Thus, maintenance
of a proper level of ROS in the intracellular and extracellular
environment is of vital importance. Hence, it could be
inferred that oxidative stress could be a leading cause of
cellular hypertrophy in the heart (27), due to gene expression
alterations (28), cell death activation (29), extracellular matrix
transformation (30), ventricular remodeling (29), and calcium
transient perturbation (31), all of which could result in the
pathophysiological changes that lead to cardiomyopathy and
heart failure.

On the other hand, DOX can also disrupt cellular
and mitochondrial metabolism, a phenomenon not fully
explored. For example, DOX can reduce mitochondrial
NADH accumulation and impair oxidative phosphorylation
in heart tissues, events associated with reduced glucose
uptake (32). Doxorubicin can also induce the opening of
mitochondrial permeability transition pore, resulting in the
loss of mitochondrial membrane potential, thus explaining
DOX-mediated apoptosis in cardiomyocytes. Moreover, DOX
can reduce both the protein level and AMPK phosphorylation,
thus contributing to stress and metabolic dysfunction (33, 34).
More recently, one study found that the noncanonical function
of the tumor suppressor p53 is involved in DOX-mediated
cardiotoxicity (35). Doxorubicin treatment of TP53-depleted
mice resulted in left ventricular systolic dysfunction, in
association with decreased oxidative metabolism, and reduced
mitochondrial volume and DNA transcription. Taken together,
induction of oxidative stress and disruption of metabolism in
mitochondria are crucial to the development of cardiotoxicity
by DOX.

ROLE OF EPIGENETIC ALTERATIONS IN
DOX-INDUCED CARDIOTOXICITY

Mitochondrial metabolites constitute a large number of cofactors
for several enzymes involved in human biochemical pathways,
including epigenetic modifications (36). For example, S-
adenosylmethionine (SAM) is the universal substrate for
DNA and histone methylation. It is therefore believed that
mitochondrial disruption may likely affect cardiomyocyte
genomic chromatin (7). Indeed, DNA methylation and histone
modifications, as well as non-coding RNA expression, have
recently been found to play a role inDOX-induced cardiotoxicity.
Furthermore, in vivo experiments also demonstrated that
rat deficient in methyl donors developed cardiomyopathy
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with disrupted mitochondrial alignment in the myocardium
(37). This effect was due to the reduced activity of PGC-
1α, the master regulator for mitochondrial biogenesis (38).
Interestingly, such reduced PGC-1α activity was found to be
due to increased acetylation and a decreased methylation of
PGC-1α, through downregulation of the histone modifiers,
SIRT1 deacetylase, and PRMT1 methyltransferase, thus further
supporting the interplay between metabolism and epigenetic
modifications (37). The role of DOX in the alteration of
gene expression via epigenetic modifications is illustrated
in Figure 1.

EPIGENETIC MODIFICATION: DNA
METHYLATION

DNA methylation is often referred to as the “fifth” DNA based,

because of its ubiquitousness in occurring at the 5
′
position

of cytosine in CpG dinucleotide (39). 5-Methylcytosine is
established, maintained, and removed by several enzymes,
including DNA methyltransferases (DNMTs) and Tet (the
ten-eleven translocation hydroxylases) family protein. DNA
methylation at the promoter region of a gene is associated with
transcriptional repression by recruitment of transcriptional
repressors and histone modifiers (such as histone deacetylases
and histone methyltransferase), resulting in a repressive
chromatin. The interplay between DNAmethylation and histone

modifications has been reviewed elsewhere (40, 41) and will not
be discussed here.

DNA methyltransferases and Tet require SAM or α-
ketoglutarate (α-KG) for the formation of 5-methylcytosine
or 5-hydroxymethylcytosine (5hMC), in the process of DNA
methylation and demethylation, respectively (42). In particular,
the metabolic pathway from mitochondria generates SAM and
α-KG; mitochondrial dysfunction associated with chronic DOX
therapy may affect epigenetic machinery.

Indeed, in one of the studies, mouse cardiomyoblast H9c2
cells were used to analyze the effect of DOX (21). Together with
a decrease in glycolytic activity and basal respiration in DOX-
treated cells, dysregulation of mitochondrial DNA transcripts
was observed. Importantly downregulation of DNMT1 (a
maintenance methyltransferase), accompanied by a decrease
in global DNA methylation, was also observed. This effect is
in agreement with a previous animal study that global DNA
hypomethylation, accompanied by a dysregulated expression
of mitochondrial gene products encoded from both nuclear
and mitochondrial genome, was observed in the hearts of rats
treated with DOX (15). It is also interesting to point out that
Ferreira et al. (21) found that pre-exposure of DOX can confer
resistance to subsequent exposure of DOX inH9c2 cells, probably
due to mitochondrial adaptation. As DNA methylation of the
mitochondrial genome is maintained by DNMT1, the only
DNMT member that can be translocated into the mitochondria
(43, 44), downregulation of DNMT1 by oxidative stress may

FIGURE 1 | The role of DOX in alteration of gene expressions via epigenetic modifications in cardiomyocytes.
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eventually affect the methylation of mitochondrial genome.
Taken together, these studies thus suggest that DOX may affect
global DNA methylation via dysregulation of mitochondrial
function and related metabolites.

Notably, a recent animal study demonstrated that the
involvement of mitochondrial genome was not observed, as
genes showing significant differential methylation in DOX-
treated rats were all encoded from the nucleus. However, a
global DNA hypomethylation in the DOX-treated group was
still observed (45). This discrepancy may be due to the methods
used in these studies. Study from Nordgren et al. (45) utilized
a sequencing-based approach Reduced representation bisulfite
sequencing (RRBS) that can only interrogate DNA methylation
at the CpG rich region, whereas studies from Ferreira et al.
used a candidate gene approach to analyze the change of the
mitochondrial genome (21). In this regard, further unbiased
experiments are required to analyze the role of DOX in the
change of the methylome in mitochondria and nucleus.

HISTONE MODIFICATION

Besides DNA methylation, histone modifications are also
involved in DOX-induced cardiotoxicity (Table 1). These
modifications can give rise to synergistic or antagonistic
interactions with chromatin-associated protein, resulting in
dynamic switching between transcriptionally active (accessible
euchromatin) and silent (condensed heterochromatin) states
(50). For example, histone deacetylase, HDAC6, was found to
be upregulated in DOX-treated primary rat cardiomyocytes,
in vitro, and mice model, in vivo, resulting in deacetylation of
α-tubulin (48). The upregulation of other HDACs (Table 1) has
also been observed in the heart tissue of mice treated with DOX
(46). In this regard, Song et al. (48) demonstrated that genetic
or pharmacological inhibition of HDAC6 in mice showed a
cardioprotective effect against DOX by restoring autophagic flux.

Furthermore, a recent study using H9c2 cardiac myoblast cells
also demonstrated that expression of several histone modifiers
was dysregulated in association with downregulation of global
acetylation of histone H3 (Table 1). In this study, Hanf et al.
(47) demonstrated that expression levels of histone deacetylases
(SIRT1 and HDAC2) were affected upon DOX treatment. In
particular, different isoforms of SIRT1 displayed a contradictory
expression level. However, pterostilbene, a natural analog of
resveratrol and antioxidant, has been found to alleviate DOX-
induced cardiotoxicity both in vitro and in vivo (51). This
effect is due to enhanced deacetylation activity of SIRT1,
suggesting its cardioprotective effect against DOX. In the case
of HDAC2, treatment with low-dose DOX resulted in decreased
expression of HDAC2, but no significant changes in high-
dose treatment, as compared to control. Consistently, HDAC2
downregulation was observed in the heart tissue of mice treated
with DOX (46). As most of the HDACs were found to be
upregulated in DOX-treated cardiomyocytes, it is reasonable
to observe the cardioprotective effect of HDAC inhibitors on
DOX (52). Intriguingly, studies found that trichostatin A, a pan-
HDAC inhibitor, can enhance DOX-mediated hypertrophy and

TABLE 1 | Changes of histone modifications and modifiers in DOX treated

cardiomyocytes.

Modifiers or Modifications Changes References

HISTONE DEACETYLASES

HDAC21,2 Downregulated (46, 47)

HDAC41 Upregulated (46)

HDAC51 Upregulated (46)

HDAC61,3 Upregulated (46, 48)

HDAC71 Upregulated (46)

HDAC101 Upregulated (46)

HDAC111 Upregulated (46)

SIRT12 Contradictory (47)

HISTONE LYSINE DEMETHYLASES

KDM3A2 Upregulated (47)

LSD12 Downregulated5 (47)

HISTONE LYSINE METHYLTRANSFERASE

SET72 Upregulated6 (47)

SMYD12 Upregulated6 (47)

HISTONE MODIFICATIONS

H3Ac2 Downregulated (47)

Histone4 Loss7 (49)

H3K4me34 Downregulated8 (49)

Experimental model: 1Mice (C57BL/6); 2H9c2 rat cardiomyocyte; 3HDAC−/− mice and

primary rat cardiomyocyte; 4mice (unspecified); 5 long term (48 h treatment); 6high dose

and long term (48 h treatment); 7histone eviction; 8downregulation of H34me3 and a shift

of peak toward the transcription start site.

apoptosis in H9c2 rat cardiomyoblasts (53, 54). In one of the
studies, Ma et al. (54) found that DOX-induced cardiotoxicity
is mediated through Rac1, a GTP-binding protein, and subunit
of NADPH oxidase, resulting in the suppression of HDAC
activity and upregulation of p53. Importantly, this process is
ROS-independent. In this regard, treatment of HDAC inhibitor
further enhances the effect of DOX-mediated cardiotoxicity. The
involvement of specific HDAC isoforms in this process, however,
remains to be determined.

Moreover, the histone lysine demethylase, KDM3A, was
significantly upregulated upon DOX treatment of H9C2 cells;
however, long-term DOX treatment also significantly decreased
the lysine-specific histone demethylase 1 (i.e., LSD1). In parallel,
significant upregulation of the histone lysine methyltransferases,
SET7 and SMYD1, was only observed in long-term and high-
dose DOX treatment. Notably, a heart-specific transcriptional
alteration was only observed in mice treated with DOX, but
not etoposide, a nonanthracycline (49). This event was due
to the inhibition of topoisomerase 2β (55), as “eviction” of
specific histones from chromatin, resulting in a shift of histone
modification (H3K4me3), and chromatin structure, around the
promoter region of a gene.

NONCODING RNA EXPRESSION

Another recognized epigenetic modification is the regulation
of ncRNAs, including long noncoding RNAs (lncRNAs) and
microRNAs (miRNAs). Noncoding RNAs are involved in
numerous human biological processes, as well as human
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diseases (56). Up to 30% of gene expression in humans
is regulated by ∼1,000 known miRNAs, ranging from 18
to 25 nucleotides. MicroRNAs may originate from either
independent genes or introns of protein coding genes and are
transcribed by RNA polymerase II. Subsequently, these “primary
miRNAs” are processed intomature miRNAs and then assembled
into argonaute family proteins containing ribonucleoprotein
complexes called miRNA-induced silencing complexes. These

complexes then bind to their mRNA target sequences in 3
′
UTR

(untranslated region) of mRNA transcripts, resulting in either
translational blockage or mRNA degradation.

Aberrant expression of several miRNAs has been shown
involved in DOX-mediated cardiotoxicity (Table 2). For
example, upregulation of miR-15 was observed in DOX-induced
apoptotic H9c2 cardiomyocytes (57). This effect was probably
due to suppression of Bmpr1a, a target of miR-15 and BMP
receptor, previously found to be involved in cardiac contractility
(68). Activation of BMP signaling by Bmpr1a agonist is therefore
able to rescue DOX-mediated cardiotoxicity in H9c2 cells (57).
Similarly, upregulation of miR-23a (58), miR-34a (61, 62),
miR-140 (63), miR-146a (64), and miR-532 (66) were observed
either in vitro or in vivo models of DOX-induced cardiotoxicity.
Interestingly, upregulation of miR-34a, a well-known tumor
suppressive miRNA, could epigenetically suppress SIRT1
(61, 62), thus partially explaining the downregulation of this
HDAC, by DOX, in the aforementioned study (47).

Therapeutically, adenovirus-mediated overexpression of miR-
212/132 cluster has been shown to prevent DOX-induced

cardiotoxicity in a mouse model (65). This effect may be
partially due to direct targeting of Fitm2, a transmembrane
protein involved in fat storage, by miR-232/132. Moreover,
downregulation of miR-29b (59) and miR-30 (60) was also
observed in DOX-treated cardiomyocytes in an animal model,
leading to de-repression of BAX, a proapoptotic protein,
and β-adrenoceptor (β1- and β2AR), involved in myocyte
contraction, respectively.

On the other hand, lncRNAs, which are more than
200 nucleotides long, regulate gene expression by diverse
mechanisms (69). For example, lncRNAs can serve as
a scaffold to recruit activators or repressors to regulate
gene expression. The molecular function and clinical
application of lncRNAs in cardiovascular disease have been
recently reviewed (70, 71). Particularly, several studies
have provided evidence to demonstrate that lncRNA can
directly “sponge” or bind to miRNAs, thus regulating
the activity of those miRNAs through a competing
endogenous RNA (ceRNA) mechanism (71–74). For
example, DOX can upregulate the lncRNA, LINC00339
(Table 2), resulting in the suppressing of miR-484 by ceRNA
mechanism, in cardiomyocytes in vitro and in an animal
model (67).

CONCLUSION

Although DOX is still the mainstay anthracyclines (9) for
the treatment of several human cancers, a major concern

TABLE 2 | Expression changes of ncRNA in cardiomyocytes treated with DOX.

ncRNA Changes Targets Experimental model References

miR-15b Upregulated Bmpr1a, Gata4, Nkx2-5 H9c2 rat cardiomyocyte (57)

miR-23a Upregulated PGC-1α Rat (Sprague–Dawley);

Primary rat cardiomyocyte

(58)

miR-29b Downregulated Bax Rat (Wistar);

Primary rat cardiomyocyte

(59)

miR-30 Downregulated β1AR, β2AR, Giα-2, BNIP3L Rat (Sprague–Dawley);

primary rat cardiomyocyte;

H9c2 rat cardiomyocyte

(60)

miR-34a Upregulated Bcl-2, SIRT1 Rat (Sprague–Dawley);

H9c2 rat cardiomyocyte

(61, 62)

miR-140 Upregulated Nrf2, SIRT2 Rat (Sprague–Dawley);

mice (C57BL/6);

H9c2 rat cardiomyocyte

(63)

miR-146a Upregulated ErBb4 Mice (C57BL/6); primary

rat cardiomyocyte

(64)

miR-212/132 Overexpression1 Fitm2, Sgk3, Rbfox1 Mice (C57BL/6N);

primary rat cardiomyocyte;

human

iPSC-derived cardiomyocyte

(65)

miR-532 Upregulated ARC Primary rat and

mice cardiomyocyte

(66)

LINC00339 Upregulated miR-484 Rat (Sprague–Dawley);

primary rat cardiomyocyte;

H9c2 rat cardiomyocyte

(67)

1Adenovirus-mediated overexpression.
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is the side effect of cardiotoxicity. In this review, we have
summarized recent findings that epigenetic modifications were
observed in cardiomyocytes treated with DOX, both in
vitro and in vivo. Although the causal relationship between
cardiotoxicity and epigenetic modifications has not been fully
explored, epigenetic modifications may contribute to either a
cardiotoxic or cardioprotective process. Whether this process
is contributed by DOX-mediated ROS or specific signaling
pathways may require further investigation (54). Therapeutically,
combinations of chemotherapeutic agents with epigenetic
therapies, such as small molecule inhibitor of epigenetic
writer/reader/eraser or miRNAs manipulations, may confer
protection of patients from cardiotoxicity. However, whether
such a potential cardioprotective agent will affect the efficacy
of DOX or create other side effects requires further clinical
investigation (i.e., the colloquial “double-edged sword”). For
example, dexrazoxane, the only Food and Drug Administration–
approved cardioprotective agent, has been shown to prevent
DOX-mediated cardiotoxicity (75). However, the beneficial effect
of dexrazoxane is still debated because of the risk for the

development of acute myeloid leukemia and myelodysplastic
syndrome in children (76, 77). In conclusion, epigenetic
modifications may play a role in DOX-mediated apoptosis and
atrophy in cardiomyocytes. Delineation of specific epigenetic
therapies as detrimental vs. beneficial cardioprotective merits
further investigation.
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