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Abstract: Alzheimer’s disease (AD), the most common form of dementia in elderly individuals, is
marked by progressive neuron loss. Despite more than 100 years of research on AD, there is still no
treatment to cure or prevent the disease. High levels of amyloid-β (Aβ) plaques and neurofibrillary
tangles (NFTs) in the brain are neuropathological hallmarks of AD. However, based on postmortem
analyses, up to 44% of individuals have been shown to have high Aβ deposits with no clinical
signs, due to having a “cognitive reserve”. The biochemical mechanism explaining the prevention
of cognitive impairment in the presence of Aβ plaques is still unknown. It seems that in addition
to protein aggregation, neuroinflammatory changes associated with aging are present in AD brains
that are correlated with a higher level of brain iron and oxidative stress. It has been shown that iron
accumulates around amyloid plaques in AD mouse models and postmortem brain tissues of AD
patients. Iron is required for essential brain functions, including oxidative metabolism, myelination,
and neurotransmitter synthesis. However, an imbalance in brain iron homeostasis caused by aging
underlies many neurodegenerative diseases. It has been proposed that high iron levels trigger an
avalanche of events that push the progress of the disease, accelerating cognitive decline. Patients with
increased amyloid plaques and iron are highly likely to develop dementia. Our observations indicate
that the butyrylcholinesterase (BChE) level seems to be iron-dependent, and reports show that BChE
produced by reactive astrocytes can make cognitive functions worse by accelerating the decay of
acetylcholine in aging brains. Why, even when there is a genetic risk, do symptoms of the disease
appear after many years? Here, we discuss the relationship between genetic factors, age-dependent
iron tissue accumulation, and inflammation, focusing on AD.

Keywords: Alzheimer’s disease; butyrylcholinesterase; pseudocholinesterase; iron; IRE; BChE;
BuChE; neuroinflammation; amyloid

1. Introduction

Alzheimer’s disease (AD) is a slowly progressive neurological disorder in which
neurodegeneration is believed to begin 20–30 years before clinical onset [1]. Late-onset AD
(LOAD) is clinically characterized by a progressive decline in memory and other cognitive
functions, leading to the loss of the ability to perform everyday activities [2]. AD’s clinical
expression correlates with synaptic damage accompanied by neuronal loss in the brain,
particularly in the hippocampus and cerebral cortex [3–6]. The mainstay of the therapy
approved to treat AD dementia is based on only a few drugs, cholinesterase inhibitors
(ChEIs), that act by increasing neurotransmitters’ availability at synapses in the brain [7–12].
The therapy treats the final symptoms but does not prevent the underlying cause of
the disease. The are many hypotheses regarding the primary cause of AD, including
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cholinergic neuron damage, the accumulation of proteins such as amyloid-β (Aβ) in
plaques, hyperphosphorylated-tau in neurofibrillary tangles leading to massive loss of
synapses, inflammation, the role of butyrylcholinesterase (BChE) in forming Aβ plaques,
and oxidative stress. By definition, age is the most potent risk factor for LOAD [13–16].

However, the disease seems to be multifactorial, with environmental and genetic
factors contributing to disease risk, manifestation, and progression [17]. The results from
genome-wide association studies (GWAS) have shown that the ε4 allele of APOE is the
most potent genetic risk factor for LOAD [18–22], followed by recently detected genetic
risk factors that encode proteins involved in microglial function and inflammation, in-
cluding triggering receptor expressed on myeloid cells-2 (TREM2) [23,24]. Many studies
have shown that an imbalance between the production and clearance of amyloid-β (Aβ)
forming amyloid plaques is probably a significant contributor to neurodegeneration and
disease development [25]. TREM2, present on the microglia cell membrane, interacts with
apolipoprotein E (ApoE) and clusterin (CLU), leading to the internalization of apolipopro-
teins linked with Aβ [26–28]. Apolipoprotein E (ApoE) is a protein mostly produced by
astrocytes and microglia, and its function is to distribute cholesterol and lipids to neurons
through binding to cell-surface ApoE receptors [29]. Additionally, ApoE forms complexes
with Aβ and plays a role in the clearance and metabolism of Aβ [30]. The lipidation of
ApoE and CLU enhances the eliminated Aβ process. ApoE E4 indicates reduced lipidated
status compared to other allelic forms, leading to ineffective clearance [26,31]. ApoE in-
fluences the propensity of Aβ to aggregate into fibrillar plaques, affecting the rate of Aβ
clearance from the brain and the rate of conversion of Aβ monomers and oligomers to
mature fibrils, as well as the influence on microglial activation [32,33].

Aβ refers to peptides derived from the amyloid precursor protein (APP) that vary in
length from 36 to 43 amino acids and are a major component of the amyloid plaques found
in AD brains [34–36]. Aβ40 is the most common, but Aβ42 is more fibrillogenic and thus
more associated with AD [37–39]. It has been proposed that the neurotoxicity of the Aβ42
is linked to its aggregation state and interactions with metal ions such as iron, aluminum,
copper, and zinc, which could play a crucial role in the release of reactive oxygen species
(ROS) [36,40,41]. Accumulation of Aβ plaques is thought to initiate a pathogenic cascade
that leads to synaptic dysfunction and neurodegeneration [42,43].

2. Neuroinflammation in AD

Postmortem analyses revealed that proteinopathy of AD caused by abnormal Aβ
aggregation is observed in 30–40% of cognitively normal individuals [44–47]. However,
only subjects with a build-up of both Aβ plaques and high iron levels are likely to develop
dementia. It has been proposed that high iron levels trigger an avalanche of events that
push the progress of the disease, accelerating cognitive decline [48]. Iron is significantly
elevated in multiple cortical regions of AD brains, and its accumulation may cause neuronal
loss, possibly by inducing oxidative stress and neurodegeneration by ferroptosis [49,50].

Iron serves as a cofactor in several biological processes, including transport of oxy-
gen, electron transfer in cytochromes, ATP synthesis, regulation of protein expression cell
growth, and differentiation [51,52]. Moreover, iron is involved in the synthesis of neuro-
transmitters and myelination, and it is bound in iron–sulfur clusters that are required for
many enzymes in the brain. The brain is one of the most metabolically active organs in the
body, and an adequate supply of iron is essential to meet its high energy requirements [53].

The pleiotropic function of iron comes from its ability to reverse transition between
its two oxidation states, ferrous (Fe2+) and ferric (Fe3+). However, ferrous ions can react
with a product of mitochondrial respiration, hydrogen peroxide, to generate hydroxyl free
radicals in the Fenton reaction. Subsequently, free radicals increase ROS production and
enhance oxidative stress, promoting lipid peroxidation that can induce cell death by a
pathway, ferroptosis, and thus neurodegeneration. Iron is a toxic trace element. Therefore,
it has to be circulated throughout the body, attached to its carrier proteins or chelators
involved in iron uptake, storage, and export in peripheral tissues [54–57].
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Ferroptosis is a type of programmed cell death that involves iron dysregulation,
lipid peroxidation, and inflammation. Ferroptosis is initiated by depletion of glutathione
peroxidase (GPX4), resulting in an accumulation of lipid ROS in cells, leading to oxidative
cell death. Interestingly, GPX4 knock-out in mice revealed not only iron dysregulation,
lipid peroxidation, and inflammation, but also signs of AD and neurodegeneration [49,58].

It has been hypothesized that brain iron elevation occurs after the formation of Aβ
plaques and neurofibrillary tangles (NFTs), and iron accumulation causes toxicity and
neurodegeneration by inducing oxidative stress or cell death via ferroptosis [59]. How
brain iron can trigger neurodegeneration remains incompletely understood. Here, we
describe the known mechanisms involved in neuroinflammatory processes in the brain,
with the focus on iron and AD.

Dietary iron absorbed by the gut enterocytes is transported throughout the body in
blood plasma, bound to the iron carrier protein transferrin (Tf) as Tf-bound iron (TBI) [60].
Usually, only 30% of Tf proteins carry iron, which gives a large buffering capacity in case
of increment in iron plasma concentration. TBI circulating in the blood cannot enter the
brain directly, and the transport is controlled in a multistep transcellular pathway by the
blood–brain barrier (BBB). The BBB is formed by brain microvascular endothelial cells
(BMVECs), astrocytes, and pericytes, forming tight junctions. Most brain iron is acquired by
Tf receptor (TFR-1)-mediated endocytosis at the lumen BMVECs of brain capillaries [61,62].
When the acidic pH is reached in endosomes, iron is released from Tf, and endosomal
ferri-reductase catalyzes the reduction of Fe3+ to Fe2+, enabling Fe2+ export into the cytosol
from the endosome through divalent metal transporter-1 (DMT1) [63].

After crossing into the cytosol of the BMVEC, iron can be utilized in metabolic path-
ways, stored in the cytosolic and mitochondrial ferritin, or exported to the interstitial fluid
in the brain via ferroportin (FPN) [64]. Ferritin is the cytosolic storage protein used to
sequester iron in cells, keeping iron in a soluble, nontoxic but bioavailable form [65–67].
Both forms of iron, non-Tf-bound iron (NTBI) and TBI, have been identified in the brain
interstitial fluid. However, NTBI is considered to be a physiologic form of iron, and the
amount of TBI in the brain is thought to be 100 times less than levels circulating in plasma,
whereas NTBI levels are high [68–70].

The brain comprises neurons and glial cells that include oligodendrocytes, astrocytes,
ependymal cells, and microglia. These cells can uptake both Tf-bound and non-Tf-bound
iron via two distinct pathways, via DMT-1 and TFR-1 receptors, from the interstitial fluid.
Oligodendrocytes only acquire non-Tf-bound iron via the Tim-1 receptor [71–74]. Iron can
only be exported by these cells through FPN, a receptor controlled by hepcidin [61,64].

One evident hallmark of neuroinflammation is the cells’ activation and increased
acquisition of extracellular iron, causing the intracellular sequestration of iron in response
to exogenous and endogenous danger signals. Such iron withdrawal plays a role in the
brain to reduce the iron availability for bacteria, malignancies, and the endogenously
produced ROS [75–79].

Microglia, which firstly respond to dangerous stimuli, are very long-lived myeloid
immune cells of the central nervous system (CNS) (brain-resident macrophages), compris-
ing up to 20% of the total brain glial cells. Their primary function is to search for and
respond to danger signals by activation. M1 activation is proinflammatory and neurotoxic
in response to the bacterial lipopolysaccharides, Aβ, interleukin 1 (IL-1), and ROS [80–85].
M1-activated microglia cells secrete proinflammatory cytokines such as tumor necrosis
factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1-beta (IL-1β), and interleukin-12
(IL-12) [86]. Microglia in the M1 state also produce nitric oxide synthase (iNOS), which
produces nitric oxide that increases the toxic effects of glutamate and consequently po-
tentiates N-methyl-D-aspartate (NMDA)-receptor-mediated neurotoxicity [87–89]. In the
anti-inflammatory M2 state induced by interleukin-4 (IL-4) and interleukin-13 (IL-13),
cells secrete anti-inflammatory cytokines such as interleukin-10 (IL-10) and transforming
growth factor-beta (TGF-β). Danger signals, such as LPS, induce intracellular iron seques-
tration in cytosolic and mitochondrial ferritin in microglia and astrocytes to hide it from
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pathogens [90,91]. However, excess cytosolic iron can generate excessive ROS and the
risk of microglial activation and inflammation of inflammasomes. NLRP3 inflammasomes
are cytosolic multiprotein complexes abundantly expressed by microglia and astrocytes
in response to dangerous stimuli like LPS, amyloid-β, iron-damaged mitochondria, and
ROS [83]. The M1 state of microglia is activated by the NLRP3 inflammasome assembly
with caspase-1 and triggers the release of IL-1β and IL-18 [92].

M1-activated microglia, by secreting Il-1α, TNF, and C1q, convert trophic astrocytes
to a reactive subtype, termed A1. Together, these cytokines are necessary and sufficient
to alter astrocytic transcriptomes, inducing the neurotoxic A1 cells to kill healthy neurons
and oligodendrocytes [93–95]. Nonactivated astrocytes are essential for CNS and perform
many functions, including maintenance of extracellular ion balance; biochemical support of
BMVECs; and regulation of homeostasis, metabolism, and synaptic transmission. Growing
evidence reports the significant role of A1 astrocytes in various human neurodegenerative
diseases, including Alzheimer’s, Huntington’s, and Parkinson’s diseases and multiple
sclerosis. A1 astrocytes localize to Aβ plaques in AD. Astrocytes are the most abundant glial
cells in the CNS and play a critical role in neuroinflammation and produce chemokines and
cytokines, including interleukin-1-beta (IL-1β) and interleukin-6 (IL-6) [96]. Additionally,
astrocytes also produce butyrylcholinesterase (BChE), the increased expression of which
strongly correlates with the activation of astrocytes [97,98] (Figure 1).
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Figure 1. Neuroinflammation scheme. Danger signals, like reactive oxygen species (ROS) and
LPS, are microglia activators and induce intracellular iron sequestration. LPS stimulates astrocytic
hepcidin synthesis, which prevents iron efflux. LPS inhibits TREM-2 expressed on microglial cells,
lowering AB clearance. Intracellular iron is bound to cellular ferritin but can dissociate and, via
ROS, activate NLRP3 inflammasome, which triggers inflammation and microglial activation, M1
state. M1 microglial release of TNF-α, IL-1α, and C1q, which induce the phagocytosis of neurons
and oligodendrocytes by A1 astrocytes, contributing to neurodegeneration and Alzheimer’s disease
(AD). A1 astrocytes produce IL-1α, IL-6, and BChE.
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3. Brain Iron and Aging

The concentration of iron varies significantly in different parts of the brain. Deposition
of iron in the brain is positively correlated with age, with high concentrations in the frontal
cortex, substantia nigra, basal ganglia, and hippocampus [99]. More iron is observed
at the cellular level as a function of age in the microglia and astrocytes of the cortex,
cerebellum, hippocampus, basal ganglia, and amygdala, which are particularly susceptible
to the neuropathological changes that characterize AD [100–102]. Iron accumulation can
stimulate the activation of these cells in the neuroinflammatory processes that contribute
to AD. Iron levels in the brain rise with aging, and excess active iron can be toxic through
various mechanisms, including oxidative stress and the promotion of lipid peroxidation
that can induce cell death by a regulated cell death pathway, ferroptosis [49,58,103]. Even a
delicate imbalance in brain iron is likely to have an adverse effect because, unlike serum
transferrin (Tf), which is only 30–40% saturated with iron, brain Tf is 100% saturated and
has a limited capacity for buffering excess iron [53,104,105].

4. Regulation of Iron Homeostasis

Iron enters brain cells mainly via DMT-1 and TFR-1 [62,106,107]. Its metabolism is
controlled by two regulatory systems, one that relies on the iron exporter FPN and its
regulator, hepcidin, and the second that controls cellular iron levels through iron-regulatory
proteins that bind iron-responsive elements in regulated messenger RNAs [108].

Hepcidin is a peptide hormone produced by hepatocytes, but only a small fraction of
this peptide hormone crosses the blood–brain barrier (BBB) [79,109]. The brain biosynthe-
sizes its own hepcidin by astrocytes and microglia in response to LPS and proinflammatory
cytokines via the IL-6/STAT3 and SMAD4 pathways [110,111]. Hepcidin in the extra-
cellular space inhibits iron export by binding to FPN and mediates FPN internalization
and degradation in lysosomes [64]. In the CNS, iron sequestration by hepcidin may be
beneficial and neuroprotective as it denies iron to pathogens, limiting infection and inflam-
mation [79]. On the other hand, aging enhances the expression of hepcidin and LCN-2,
increases the concentration of intracellular iron, and promotes inflammation via NLRP3 in-
flammasomes [84,112,113]. It seems that hepcidin brain secretion may have both beneficial
and detrimental effects, depending on the cause of inflammation.

Iron efflux via FPN is also controlled by APP [114,115]. APP is a transmembrane
glycoprotein that plays many roles in the nervous system, including neuronal develop-
ment, signaling, intracellular transport, maintenance of dendritic structure, and regulation
of synapses [34,116–119]. Non-amyloidogenic α-secretase processing of APP generates
sAPPα, which binds to FPN on the cell surface and stabilizes it, thus promoting neu-
ronal iron efflux and decreased intraneuronal iron. On the other hand, amyloidogenic
processing of APP impairs iron export by depleting FPN on the cell surface, thus increasing
cellular iron that induces neurodegeneration. It is proposed that in this way, β-secretase
processing of APP might indirectly promote ferroptosis [120–122]. Strikingly, a transgenic
mouse model that has abundant Aβ deposition is not sufficient for synapse loss. However,
β-secretase cleavage of APP by itself has been reported to cause synaptic and memory
deficits [123].

Cellular iron homeostasis involves the coordination of iron uptake, storage, and
efflux to ensure appropriate iron levels inside the cell and is controlled by the second
mechanism at the post-transcriptional level. Brain iron homeostasis is regulated by a post-
transcriptional gene expression regulation system composed of iron-regulatory proteins
(IRPs), IRP1 and IRP2 and iron-responsive elements (IREs) that are present in mRNAs
encoding for essential proteins of iron homeostasis. IREs are conserved mRNA motifs of
25–30 nucleotides located in the untranslated regions (UTRs) of mRNAs that can form
a stem-loop [124]. Under high-cellular-iron conditions, the IRPs cannot bind the IREs
because IRP1 assembles an iron–sulfur cluster, and it acts as a cytosolic aconitase, while
IRP2 is degraded by the proteosome. Therefore, IRPs become IRE-binding proteins only
in low concentrations of iron. Depending on the IRE position in the untranslated regions
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(UTRs) of mRNA, IRP binding regulates gene expression differentially. IRPs bound to IREs
at the 5′UTR of mRNA inhibit translation initiation by preventing the recruitment of the
small ribosomal subunit to the mRNA. The IRPs bound to IREs at the 3′UTR of mRNA
decrease their turnover by preventing endonucleolytic cleavage and mRNA degradation.
The IRP mRNA stabilization mechanism has not been fully understood yet for all 3′-
IRE-containing mRNAs, such as DMT1, which only has a single 3’IRE and may require
additional regulation factors [63,108,125]. In the case of a high iron concentration in cells,
IRPs bind to the IRE of TFR1 and DMT1 mRNAs, decreasing their translation and resulting
in lower cellular uptake of iron. In the opposite situation, when cellular iron levels are low,
IRPs bind to the IRE at the 3′-UTR of TFR1 and DMT1 mRNAs, stabilizing them, increasing
their cellular expression level, and thus increasing iron uptake. IRP–IRE interactions
regulate the expression of the mRNAs encoding essential proteins for iron homeostasis,
such as transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT-1), H-ferritin
(Fth1), L-ferritin (Ftl), mitochondrial aconitase (Aco2), and ferroportin (FPN) [126].

Under low-iron conditions, IRP1 also binds to the IRE at the 5′-UTR of APP mRNA
to repress APP translation [127,128]. A high iron load upregulates APP translation and
increases the amyloidogenic processing of APP that generates Aβ peptide [85]. Monomeric
Aβ reduces oxidative stress, inhibits Fe3+ reduction, and prevents lipid peroxidation and
ferroptosis induced by Fe2+ [129–131].

5. Butyrylcholinesterase in AD

Butyrylcholinesterase (UniProt P06276), also known as plasma cholinesterase or pseu-
docholinesterase, is a serine hydrolase present in most tissues, with the highest levels
in plasma and the liver [132]. Although the enzyme BChE and its coding gene were
discovered years ago, still little is known about the regulation of the expression and its
biological role, particularly in the central nervous system (CNS) [133,134]. BChE is ex-
pressed during mitosis in early embryonic development and promotes proliferation prior
to differentiation [135].

BChE has a widespread distribution in the human body, and it serves as an inherent
protector from damage caused by toxic compounds before they reach acetylcholinesterase
(AChE) in synapses. BChE is found in glia and white matter in the brain, and it is involved,
along with AChE, in cholinergic neurotransmission [136,137]. In the human brain, BChE
is mainly expressed in glial cells, particularly astrocytes, in contrast to AChE, which is
found in neurons. Nevertheless, BChE is also found in specific neurons, mainly localized
in the amygdala, hippocampus, and thalamus [138,139]. The primary source of BChE in
the CNS is non-neuron cells such as astrocytes and microglia, which also express nicotinic
acetylcholine (ACh) receptors, indicating that BChE might play a regulatory role in the
functional status of these cells via its ACh-hydrolyzing activity [140]. BChE was found
in amyloid plaques and neurofibrillary tangles (NFTs), suggesting that the protein may
be involved in AD’s pathogenesis [141–145]. Other researchers demonstrated that BChE
might transform Aβ from an initially benign to an eventually malignant form [146].

Interestingly, mRNA sequence analysis revealed putative IRE in 3′-UTR of BChE (at
low quality) (Figure 2), suggesting that BChE can also be regulated by iron homeostasis.
Under low iron concentration, IRP1/IRP2 proteins probably bind to stem-loop in 3′-UTR
of BChE transcript and stabilize it by preventing degradation, thus increasing the BChE
expression level. To support this hypothesis, we found a strong correlation between
BChE activity and the red blood cell (RBC) count in a large cohort of 1200 individuals
(not published previously, found the correlation of the old data) [147]. We observed that
the level of the BChE activity is proportional to the RBC count (Figure 3). Since RBCs
bind 65% of body iron, it seems that the BChE level is proportional to the body iron
level [148]. The lifetime of RBCs is about 100–120 days, and the aging RBCs undergo
eryptosis, programmed death. Much of the breakdown products are recirculated by the
spleen and the liver. The iron is released into the plasma to be recirculated by Tf. Thus,
the recirculated TBI is proportional to the RBC count. Since that the liver mainly produces
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serum BChE, the biosynthesis may be regulated similarly to TFR1 by IRPs. On the other
hand, iron upregulates erythropoiesis levels by enhancing erythropoietin (EPO) synthesis
by transcriptional activation. HIF-2αmediates the EPO gene’s transcriptional activation by
binding to its hypoxia response element (HRE). Iron excess prevents binding of IRP1 to the
IRE sequence at 5′-UTR of the HIF-2α and leads to prolonged translation of HIF-2α and
thus increases the level of EPO [149–153]. Taken together, the BChE and the RBC levels can
similarly reflect the concentration of cellular iron or TBI.

Strikingly, increased BChE activity is associated with A1 astrocytes in the AD brain.
The expression of BChE is also increased in the hippocampus and temporal cortex of
patients with AD, whereas the expression of AChE is reduced.
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revealed putative IRE in the 3′-UTR of BChE (at low quality) and in the 5′-UTR. The Searching for IREs (SIREs) web
bioinformatic program was used to predict the 3′-UTR iron-responsive elements in BCHE mRNA [154]. In 5′-UTR, only
the consensus IRP binding sequence was found; however, since the expected structure of the 5′-UTR is complex [155],
a stem-loop can be formed in a controlled process. Under conditions of high cellular iron, the IRPs cannot bind the
IREs. IREs are conserved mRNA motifs. IRPs bound to IREs at the 5′-UTR of mRNA inhibit translation initiation by
preventing ribosome binding to the mRNA. The IRPs bound to IREs at the 3′-UTR of mRNA decrease its turnover by
preventing endonucleolytic cleavage and mRNA degradation. We suppose that the BChE expression can be positively
regulated by iron in the 5′-UTR IRE element and in 3′-UTR by one stem-loop with additional regulator factors as a negative
feedback mechanism. In order to validate the predicted IREs, the in vitro functionality has to be determined by competitive
EMSA experiments.
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6. Conclusions

Iron homeostasis becomes dysregulated during aging, leading to iron overload, which
may promote neuroinflammation, protein aggregation, neurodegeneration, and AD de-
velopment. Therefore, iron chelation and iron-targeted therapeutic strategies have been
proposed as potential therapeutic strategies for neurodegenerative diseases [157]. Indeed,
the anti-inflammatory iron chelator deferiprone is currently in phase 2 trials for AD and
could soon become an FDA-approved iron chelator recommended for AD therapy [158].
Interestingly, conjugation of a cholinesterase inhibitor, such as galantamine, with the nat-
ural iron chelator lactoferrin was suggested as an AD therapy. Administration of iron
chelates, like deferoxamine (DFO), significantly reverses changes due to iron overload. It
has been shown that DFO inhibits Aβ toxicity via the modulation of Aβ–metal interactions,
inhibits amyloidogenic APP processing, reduces the formation of ROS, and decreases Aβ
oligomerization. DFO and other prospective metal chelators are promising drug candidates
for managing neurodegeneration in the aging population [159–161].

Protein aggregation, neuroinflammation, and neuronal loss that lead to cognitive
dysfunctions are neuropathological hallmarks of AD, and age-related iron dyshomeostasis
can play a leading role in the processes. BChE produced by glial cells in response to
proinflammatory signals and iron-dependent elevated levels of the BChE can make AD
patients’ cognitive situation worse by accelerating acetylcholine decay in aging brains.
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