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Although many studies have provided evidence that abstract knowledge can be
acquired in artificial grammar learning, it remains unclear how abstract knowledge can
be attained in sequence learning. To address this issue, we proposed a dual simple
recurrent network (DSRN) model that includes a surface SRN encoding and predicting
the surface properties of stimuli and an abstract SRN encoding and predicting the
abstract properties of stimuli. The results of Simulations 1 and 2 showed that the
DSRN model can account for learning effects in the serial reaction time (SRT) task
under different conditions, and the manipulation of the contribution weight of each SRN
accounted for the contribution of conscious and unconscious processes in inclusion
and exclusion tests in previous studies. The results of human performance in Simulation
3 provided further evidence that people can implicitly learn both chunking and abstract
knowledge in sequence learning, and the results of Simulation 3 confirmed that the
DSRN model can account for how people implicitly acquire the two types of knowledge
in sequence learning. These findings extend the learning ability of the SRN model
and help understand how different types of knowledge can be acquired implicitly in
sequence learning.

Keywords: sequence learning, abstract processes, chunking processes, simple recurrent network, dual simple
recurrent

INTRODUCTION

Implicit learning refers to all unintentional learning, in which the underlying structure of
a complex stimulus environment is acquired independently of conscious attempts to do
so and the resulting knowledge is difficult to express (Reber, 1989; Seger, 1994; Dienes
and Berry, 1997; Shang et al., 2013; Fu et al., 2018). Despite decades of research, it
remains controversial whether people can acquire abstract knowledge in implicit learning
(Cleeremans, 1994). Some researchers assume that the knowledge acquired in implicit learning
is abstract and represents “the structure of the stimuli and their relationships” (Reber,
1989). Early evidence for this “abstractionist” view stemmed primarily from transfer effects
in artificial grammar learning (AGL) tasks (Reber, 1967, 1969, 1989; Reber and Lewis, 1977;
Altmann et al., 1995; Redington and Chater, 1996; Dienes and Altmann, 1997; Dienes et al.,
1999). For example, it was found that participants could transfer grammatical knowledge
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about memorised strings to novel instances (Mathews, 1990;
Cleeremans, 1993; Knowlton and Squire, 1996), even novel
instances in different modalities (Altmann et al., 1995; Dienes
et al., 1999). However, this “abstractionist” view has been
questioned by considerable research (Perruchet and Pacteau,
1990; Brooks and Vokey, 1991; Vokey and Brooks, 1992; Shanks
and St John, 1994). For example, it was demonstrated that the
transfer effect in AGL was based on the similarity between novel
strings and the “whole exemplar” stored in memory during
training or explicitly memorised fragments or chunks of materials
(Dulany et al., 1984; Mathews et al., 1989; Perruchet and Pacteau,
1990). Gomez (1997) argued that implicit knowledge can be
acquired only at the simple level of complexity such as first-order
dependencies, whereas other more complex knowledge such as
second-order dependencies can only be acquired explicitly.

What Is Learned in Sequence Learning?
Sequence learning has become one of the most widely used
paradigms in research into implicit learning (Cleeremans and
Dienes, 2008), in which subjects were asked to complete a serial
reaction time (SRT) task (Nissen and Bullemer, 1987). Most
studies have focussed on whether second-order dependencies or
more complex chunk knowledge can be learned implicitly in
sequence learning (Perruchet and Amorim, 1992; Destrebecqz
and Cleeremans, 2001, 2003; Wilkinson and Shanks, 2004;
Norman et al., 2006, 2007; Fu et al., 2008, 2010; Jiménez et al.,
2011; Pasquali et al., 2019). For example, Destrebecqz and
Cleeremans (2001) adopted two second-order conditional (SOC)
sequences (SOC1 = 3-4-2-3-1-2-1-4-3-2-4-1 and SOC2 = 3-
4-1-2-4-3-1-4-2-1-3-2) as training and transfer sequences and
found that participants responded to the training SOC sequence
much faster than the transfer SOC sequence, indicating learning
of the second-order dependencies. Moreover, Destrebecqz and
Cleeremans (2001) used an inclusion test and an exclusion test
that differed only by instructions to dissociate implicit learning
from explicit learning. Under the inclusion test, participants were
instructed to generate a sequence that was the same as the training
sequence. On the contrary, under the exclusion test, participants
were instructed to generate a sequence that was different from the
training sequence. They found that participants generated similar
numbers of triplets from the training sequence under inclusion
and exclusion tests when the response stimulus interval (RSI)
was zero, providing important evidence that people can implicitly
or unconsciously learn second-order dependencies. However,
this crucial finding was not replicated by Wilkinson and Shanks
(2004). Fu et al. (2008) replicated the experiments conducted by
Destrebecqz and Cleeremans (2001) and Wilkinson and Shanks
(2004) separately by manipulating rewards, the amount of noise,
and the amount of training, confirming that SOC sequence
knowledge can be learned implicitly.

Further, Fu et al. (2008) found that in free-generation
tasks, more triplets from training and transfer sequences were
generated under the exclusion test in the 6-block group than in
the 15-block group, indicating that people acquired knowledge
about the structures common to training and transfer sequences,
that is, the abstract structure. Fu et al. (2018), adopting three
types of triplets in the training phase, confirmed that people

can simultaneously and implicitly acquire both chunking and
abstract knowledge in sequence learning. Consistently, Goschke
and Bolte (2007), using a serial name task (SNT), found that
subjects responded more quickly when the objects were in a
repeating category sequence than when they were in a random
category sequence, indicating learning of the category sequence.
Kemeny and Meier (2016), using a task sequence learning
(TSL) paradigm, demonstrated that people can implicitly acquire
abstract conception representation in sequence learning.

However, these findings seem inconsistent to some previous
studies that suggested that abstract structure could be acquired
only in explicit learning conditions (Shanks and St John, 1994;
Dominey and Jeannerod, 1997; Gomez, 1997; Dominey et al.,
1998; Boyer et al., 2005). For example, Dominey et al. (1998)
demonstrated that surface structures can be acquired by either
implicit or explicit learners, but learning abstract structures
could occur only for explicit learners. Boyer et al. (2005) also
suggested that the core mechanism involved in sequence learning
is statistical in nature and genuine rule-based knowledge is
necessarily conscious. Nonetheless, more studies have recently
provided new evidence that abstract relationships or concepts
can be processed without awareness (Gross and Greene, 2007;
Dienes et al., 2012; Lin and Murray, 2013; Tanaka and Watanabe,
2014a,b, 2015; Huang et al., 2017; Ling et al., 2018).

Therefore, to further explore how abstract structures can be
implicitly acquired in sequence learning, a new computational
model is proposed that provides a possible interpretation about
the mechanism of implicit sequence learning. As in Dominey
et al. (1998), the surface structure is defined as the straightforward
serial order of sequence elements, whereas the abstract structure
is defined as the relationship between repeating sequence
elements in the present study. As the ability to abstract rules is an
important component of higher cognition (Wallis et al., 2001),
the investigation of how abstract structures can be acquired
unconsciously would help understand how the human brain
extends specific experience to general situations that are central
to human intelligence.

Computational Models for Sequence
Learning
Computational models play a central role in the investigation of
the nature of what is learned in implicit learning (Cleeremans and
Dienes, 2008). The neural network is one of the most influential
methods in computational models of implicit learning. A number
of computational models using neural networks have been
proposed for sequence learning (Cleeremans and McClelland,
1991; Cleeremans et al., 1998; Dominey et al., 1998; Sun et al.,
2005; Cleeremans and Dienes, 2008).

The simple recurrent network (SRN), first introduced by
Elman (1990), is one of the most widely used neural network
models of implicit learning (see Figure 1). The SRN is a three-
layered connectionist neural network that consists of input,
hidden, and output layers. It is trained to predict the next
stimulus based on the current input and the previous stimuli.
The prediction ability of the SRN stems primarily from the extra
set of context units that contain a copy of the network’s pattern
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FIGURE 1 | Schematic diagram of the simple recurrent network introduced by
Elman (1990).

of activity. Cleeremans and McClelland (1991) first adopted the
SRN model to imitate RT performance in the SRT task, in which
the training sequence was generated by a finite-state grammar.
The learned representation of the network is considered to
be at a level of abstractness between exemplars and the finite
state grammar (Cleeremans and Dienes, 2008) and is very close
to the abstract representation of grammar (Cleeremans, 1993).
However, the standard SRN is criticised because the learned
knowledge is highly inflexible and domain dependent (Marcus,
2001). That is, the knowledge embedded in the connection
weights is related to particular letters and no previous learning
would be relevant when the new sets of input units are activated.

A dual process model is proposed to investigate how abstract
structures can be learned independent of the acquisition of
surface structure in sequence learning (Dominey et al., 1998). The
dual process model assumes that two disassociate processes are
involved in learning surface structures and abstract structures of
sensorimotor sequences. The surface structure is learned based
on an SRN model, whereas the abstract structure is learned
dependent on short-term memory (STM), which encodes 7 ± 2
previous responses, and a recognition mechanism, which detects
repeating elements between current responses and previous
responses. The relevant behavioural and simulation results
demonstrated that both surface and abstract structures can be
captured by this dual process model, but abstract structures
can be learned only explicitly. However, this is inconsistent
with recent findings that people can implicitly acquire abstract
structures (Lin and Murray, 2013; Tanaka and Watanabe,
2014a,b, 2015; Huang et al., 2017; Fu et al., 2018; Ling et al., 2018).

An augmented SRN is proposed to explore how the acquired
knowledge of an artificial grammar can be transferred from
one domain to another (Dienes et al., 1999). In the augmented
SRN, an extra encoding layer between the input and hidden
units of the standard SRN is added. This layer can provide an
abstract recording of domain-dependent coding, which allows

the acquired knowledge to be transferred from one domain to
another. In the training phase, this model is trained similar to a
standard SRN. After training, the core weights from the encoding
layer to hidden units and from context units to hidden units are
frozen and the network needs to learn the mappings to and from
the abstract encoding formed by the SRN. Thus, the augmented
SRN extends the function of the simple SRN by allowing the
model to transfer its knowledge of an artificial grammar across
domains without feedback. Nonetheless, in the augmented SRN,
the frozen core wights might reflect learning of both abstract
structures and surface structures of the trained domain. Of
course, the learned abstract structures could be transferred to
the other domains, but the learned surface structures might not.
Moreover, it seems that the mappings between the trained and
untrained stimuli in one domain are not necessary for the transfer
processes. Thus, one may expect that the acquisition of abstract
structures and surface structures might be embedded in different
core weights in different learning systems. Also, the acquired
knowledge of the trained stimuli can be transferred to new stimuli
as long as they have the same abstract structure whenever they
were in the same or different domains.

To further investigate how abstract structures can be obtained
implicitly during sequence learning, we proposed a dual simple
recurrent network (DSRN), in which chunking and abstract
structures can be learned independently through a surface SRN
and an abstract SRN. The surface SRN encodes the surface
properties of stimuli and learns to predict the surface properties
of the next stimulus, whereas the abstract SRN encodes the
abstract properties of the stimuli and learns to predict the abstract
properties of the next stimulus. We assume that either the
abstract SRN or the surface SRN can learn implicitly, and the
conscious status of its acquired knowledge is dependent on the
particular condition under which they are trained. A response
layer integrates the outputs of both SRNs to make the final
prediction. We assume that the contribution weights of the
abstract SRN and the surface SRN in the response layer are
complementary and the sum of the two weights is always equal
to 1, as the two SRNs contribute to the task performance at the
same time but in different ways.

A Dual Simple Recurrent Network
(DSRN) for Sequence Learning
Figure 2 shows a schematic diagram of the proposed DSRN for
sequence learning (Fu et al., 2015). The DSRN consists of two
SRNs: a surface SRN learning surface structures of the stimulus
sequence, and an abstract SRN learning abstract structures of the
stimulus sequence.

The dynamic functions of each SRN are formulated as:

ak (t) = fk (netk (t))
netk (t) =

∑
j
wkjaj (t)

aj (t) = fj
(
netj (t)

)
netj (t) =

∑
l
wjlal (t − 1)+

∑
i
wjixi (t − 1)

(1)

where ak (t) is activation of the k-th unit in the output layer at
time t, aj (t) is activation of the j-th unit in the hidden layer at
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FIGURE 2 | Schematic diagram of the dual simple recurrent network (DSRN). The left SRN encodes the sequence context and learns to predict the next stimuli,
whereas the right SRN encodes the abstract structures in the stimuli sequence and learns to predict the abstract structure of the next stimulus. The predictions of
the two SRNs are integrated in a response layer.

time t, al (t − 1) is activation of the l-th unit at time t-1, xi (t − 1)
is activation of the i-th external input at time t-1, f is the
activation function, and w is the connection weight. The sigmoid
function is adopted as the activation function, f (x) = 1

1+exp−x .
In each trial, a stimulus was presented to the DSRN model

at time t and the model predicted the next stimulus based
on the current stimulus and the previous inner states. The
network’s output was compared to the actual stimulus and the
error was back-propagated to adjust the connection weights
(Hinton, 1986).

Learning Mechanism in the DSRN
Learning the surface structure of SOC sequences: In most recent
studies, the only difference between training and transfer SOC
sequences was the surface structure. For example, 3-4 was
followed by a 2 in SOC1 but by a 1 in SOC2. At each time
step, the current element in a sequence was presented as an
input of the surface SRN and then produced a prediction in the
output layer. Driven by the expected output, which is the next
element in the same sequence, the surface SRN can copy the
serial order of the surface structure in the context units. Due
to the network’s recurrent connection architecture and adaptive
inner representation, the surface SRN can learn the surface
structure through training, e.g., the straightforward serial order
of sequence elements. That is, the model responds to training
stimuli more quickly and accurately than transfer stimuli.

Learning the abstract structure of SOC sequences: As in
Dominey et al. (1998), the abstract structure is defined as the
relationship between the repeating sequence elements. Although
triplets from training and transfer SOC sequences had different
surface structures, they shared the same abstract structure. That
is, although a triplet from the training sequence (for example,
3-4-2) is different from the corresponding triplet from the

transfer sequence (for example, a 3-4-1), they have a common
abstract structure, that is, A-B-C. The two triplets were different
from the triplet from neither training nor transfer sequences (for
example, 3-4-3), of which the abstract structure can be considered
as A-B-A. To obtain a representation of the abstract structure,
the abstract SRN encoded the abstract property of the current
stimulus and previous stimuli, e.g., the relationship between
repeating sequence elements. As the surface SRN, the abstract
SRN can learn the abstract structure and predict the abstract
property of the next stimulus with training.

Response selection: The local representation was adopted in
both the input and response layers. Assume that the learning
materials were produced by combining and repeating any
m elements, and each unit in the input or response layer
corresponded to one of the m stimuli. Each unit of the response
layer corresponded to one of the m possible responses and
received only outputs of corresponding units in the output layer
in both surface and abstract SRNs. For instance, the first response
unit was influenced by the first output unit of the surface and
abstract SRNs. The connections from the output unit to the
response unit was fixed and the relative contribution of the two
SRNs was balanced by a constant parameter ρ. The activation of
i-th the units in the response layer was computed as:

ai (t) = ρali (t)+ (1− ρ) ari (t) (2)

where ali and ari are activation of the i-th output unit in the surface
and abstract SRNs, respectively, and ρ is the contribution weight
of the surface SRN to the response layer. The activation of the
response units was recorded and then normalised with Luce’s rule
(Luce, 2005).

ai (t) =
ai (t)∑
j aj (t)

(3)
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As in Cleeremans and McClelland (1991), we simulated the
performance of the SRT task based on two assumptions. First, the
prediction task performed by the SRN represents preparation for
the apparition of the next stimulus in human subjects. Second,
the RT is inversely related to the activation of the output units
corresponding to the element being responded to. The reciprocal
of the activation in the response layer is the DSRN’s reaction time.

Tailored DSRN for Simulations
In each simulation, an initialisation process with different
random parameters was conducted firstly to make DSRN models
familiar with the SOC sequences. After that, two phases as in
human experiments were conducted: a training phase, during
which an SRT task was performed, and a testing phase, during
which an inclusion test and an exclusion test were included.
In the training phase, the DSRN models were first initialised
with the pretrained parameters before the SRT task. Then,
one of the stimuli was presented as an input of both SRNs
and the model needed to respond to this stimulus, and the
“reaction time” computed according to the reciprocal of output
was recorded. Each model was trained with the same number
of trials as participants received in the SRT task in the training
phase. After the training phase, each model completed two free-
generation tests. Each generation test began with the presentation
of two randomly selected stimuli and then the model needed
to predict the next stimuli based on the first two. Under the
inclusion test, the model needed to select the output of the
most activated units as the response to the predicted stimulus.
However, under the exclusion test, the model needed to select
the output of the least activated units as the response to the
predicted stimulus. When one of the responses was selected,
it would be presented as the current stimulus to the DSRN,
and the DSRN needed to predict the next one on the basis of
the current one and its previous one. Each model was tested
with same number of trials as participants received in each test
in each condition.

Local coding. As in Cleeremans and McClelland (1991), the
local representation was used in both input and output units
that encoded each possible sequence element. Each stimulus was
represented as an m-bit vector (that is, m types of stimuli) and
only one was activated as 1 and the others as 0. For example, if
each stimulus was represented as a 4-bit vector, then stimulus
2 was represented as [0, 1, 0, 0]T. The abstract SRN had the
same encoding as the surface SRN for the input stimuli. For
example, the input encoding for the triplets 3-4-2 and 3-4-3
were both 0010-0001-0100 and 0010-0001-0010 in the two SRNs.
The differences between surface and abstract SRNs were in their
different output encodings. For the surface SRN, its output and
input encodings were identical to any stimuli. However, for the
abstract SRN, its output and input encodings were conceptually
different in that there were only two types of the output encodings
for any one stimulus, which was determined by the previous
two stimuli. For example, the output encodings for the third
stimulus of the triplets 3-4-3 and 3-4-2 in the abstract SRN
were 0010 and 0110, respectively, while the output encodings for
the same stimulus in the surface SRN were still 0010-0001-0100
and 0010-0001-0010.

The SRT task in the training phase. During each trial of human
experiment, a stimulus appeared at one of four locations on a
computer screen and the participants were asked to respond
to each stimulus by pressing one corresponding key on the
keyboard. Similarly, in the simulation experiment, each stimulus
was presented to the network and the network needed to prepare
for the response to the stimulus. As the prediction of the
properties of the next stimulus was based on the preceding two
stimuli, the DSRN predicted only from the third to the last one in
each block. The prediction and learning processes are as follows:

• Prediction. Using Equations (1), (2), and (3), the DSRN
is activated when the current stimulus is presented to the
network. As in Cleeremans and McClelland (1991), we
assumed that (1) the normalised activation of the response
unit represents the response tendencies, and (2) there is
a linear reduction in the RT proportional to the relative
strength of the unit corresponding to the correct response.
Thus, the activation of the response unit is recorded and the
reciprocal of this activation is taken as the reaction time.
• Learning. After prediction, the back-propagation process

immediately occurs in both SRNs. Error information is
computed as how much the real output matches the
expected output (Rumelhart et al., 1986). During the back-
propagation phase, there is a key difference between the
surface SRN and abstract SRN in the error information. The
target activation of the expected output units is set to 1 and
those of other units are set to 0. The surface SRN aims to
learn the surface structure, and its expected output is the
surface property of the next stimulus, whereas the abstract
SRN aims to learn the abstract structure, and its expected
output is the abstract property of the next stimulus.

The free-generation task in the test phase. To simulate
generation performance, we use the output of the DSRN as a
series of possible responses. One of the responses is selected based
on the activation level of each response unit. The same operation
is done for each trial in both inclusion and exclusion tests.
However, the response selection is different between inclusion
and exclusion tests. Under the inclusion test, if the output of the
most activated units is close to the second one, the next input is
randomly chosen from these two units; otherwise, it corresponds
to the most activated output units. Under the exclusion test, this
particular response is excluded and the next stimulus is chosen
from the others.

The method and parameters. To simulate the experimental
situation, the surface SRN and the abstract SRN have the same
architecture of five hidden units. The response layer has the same
number of units as the output layer. With different randomly
initialised connections, we can generate many different DSRN
models that allow us to conduct the similar analysis as in human
experiment. In the simulation, all of the weights in the DSRN
model are first initialised with small random values that are
sampled from a uniform distribution on the open interval (0, 1).
And then, the DSRN models are pretrained to be familiar with
the SOC sequences. Using these generated models, the surface
and abstract structure can be learned in the SRT task and then
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used to predict the next stimulus in the generation task. Different
simulation of training and testing tasks has a different group of
free parameters. The free parameters include the number of units
in the hidden layer, the number of epochs for pre-training, the
learning rate, the momentum, and ρ, i.e., the contribution weight
of the surface SRN in the response layer. To be noted, as we
assume that the sum of the contribution weights of the two SRNs
is always equal to 1, if the contribution weight of the surface
SRN, i.e., ρ, is determined, the contribution weight of the abstract
SRN is also determined. Thus, in each simulation, we reported
only the value of ρ, and the contribution weight of the abstract
SRN can be calculated by 1 minus ρ. Further, as the contribution
weight of each SRN is different for different tasks, ρ values are first
tested to determine the best-fit one for each condition in each
simulation. More details about the free parameters are given in
each simulation.

SIMULATION 1

Experiment 1 in Fu et al. (2008) adopted a deterministic
sequence to explore whether people can implicitly acquire the
SOC sequence in sequence learning and whether reward can
influence performance of the free-generation test. The results
revealed that people can learn the SOC structure implicitly and
reward influences the performance of the exclusion generation
test. In Simulation 1, we aimed to investigate whether the DSRN
model can account for human performance in both the SRT and
generation tasks during the experiment.

Materials and Settings
Materials: Two SOC sequences (SOC1 = 3-4-2-3-1-2-1-4-3-2-4-
1 and SOC2 = 3-4-1-2-4-3-1-4-2-1-3-2) were used in Simulation
1. The sequences were balanced for location frequency (each
location occurred three times), transition frequency (each
possible transition from one location to another that occurred
once), reversal (for example 1-2-1) frequency (one in each
sequence), repetitions (no repetitions in either sequence), and
rate of full coverage (see Reed and Johnson, 1994). The difference
between the sequences is in their second-order conditional
structure. For example, 3-4 was followed only by a 2 in SOC1 but
only by a 1 in SOC2.

Human experiment: In Experiment 1 in Fu et al. (2008), a
deterministic SOC sequence was used in the SRT task. Keys D, F, J,
and K corresponded to locations 1, 2, 3, and 4, respectively. Fifty-
six undergraduate students (24 males, 32 females) took part in
the experiment. They were randomly assigned to the no-reward
or reward groups (n = 28, per group). The participants were
instructed to respond as quickly and as accurately as possible
by pressing one of the corresponding keys on the keyboard.
After the training phase, the participants were informed that the
targets had followed a regular repeating sequence, in which the
stimulus locations were determined by the previous two. In the
free-generation test, the participants were required to generate
a sequence of 96 trials under both inclusion and exclusion
instructions. The participants in the reward condition were
informed that they would receive additional money for good

performance before the generation test while the participants in
the no-reward condition were not. The RT results indicated that
the participants learned the second-order conditional structure,
and the participants in the two groups learned equally about
the sequential structure of the materials. Importantly, the reward
significantly affected the exclusion performance in the free-
generation test.

Simulation settings: In Simulation 1, 56 DSRN models were
randomly divided into reward and no-reward conditions as in
the human experiments. In the SRT task, all of the models
in the reward and no-reward conditions were initialised with
different random parameters. Each model was pre-trained with
2,500 randomly generated stimulus series as the key press training
in the human experiments. Then, in the training phase of the
SRT task, DSRN models were exposed to a series of four-choice
RT tasks in both no-reward and reward conditions. There were
15 blocks in the training phase as in the human experiments.
Each block consisted of 98 trials and began at a random point
in one of the two SOC sequences. For counter balancing, half
of the models in each condition were trained with SOC1 and
half were trained with SOC2. Blocks from 1 to 12 and 14 to 15
consisted of the training sequence, while Block 13 consisted of
the transfer sequence. In the test phase, there were an inclusion
test and an exclusion test. In each test, two elements of the SOC
sequence were first randomly presented to the trained DSRN
model as in the training and then the model was required to
generate a sequence of 96 trials. The DSRNs were only forbidden
from generating the same element twice or more in a row under
inclusion and exclusion tests. To determine the best-fit value of
ρ, i.e., the best contribution weight of the surface SRN, we tested
the fit of the model performance to human performance when
ρ = [0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] in each condition
of each task. When ρ = 0, it means that only the abstract SRN
contributes to the task; When ρ = 1, it means that only the surface
SRN contributes to the task. We found that when ρ was set at 0.8,
the DSRN fitted the human performance the best in the SRT task.
Moreover, when ρ was set at 0.7 for the reward condition and
0.8 for the no-reward condition in the generation task, the model
performance could best reflect the difference between the reward
and no-reward conditions.

Simulation Results
SRT task: The statistical analysis of the mean RT in this
simulation was similar to the human experiments. DSRN models
trained with SOC1 and SOC2 were combined in each condition.
Mean RT analyses were conducted for correct responses across 15
blocks. RTs for the first two targets of each block were excluded
because they could not be predicted. Figure 3A shows the human
RT performance in each condition. The RTs decreased from
blocks 1 to 12, increased obviously in block 13, and then returned
to lower level in blocks 14 and 15. There was no detectable
difference between the two incentive groups in the training phase.
Figures 3B–D illustrate the performance in the training phase by
the DSRN models with different ρ values. The ρ value represented
the relative contribution of the surface SRN. For ρ = 0, the
performance was completely contributed by the activation of
the abstract SRN; for ρ = 1, the performance was completely
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FIGURE 3 | Human and model performance in the SRT task in Simulation 1. (A) Mean RTs for human participants in the SRT task. (B–D) Mean RTs for models with
different ρ values in the SRT task.

contributed by the activation of the surface SRN. The simulation
results revealed that the RTs increased dramatically in block 13
for ρ = 1 but there was no marked increase for ρ = 0. The DSRN
fit the human performance the best for ρ = 0.8, and thus the
DSRN model with ρ = 0.8 was used to simulate the RT data in
the training phase in both conditions.

For model performance, an ANOVA on the RTs with
incentives (rewards vs no-rewards) as a “between-subjects”
variable and blocks (15 levels) as a “within-subjects” variable
revealed only a significant effect of the block, F (1.17,
62.94) = 129.48, p < 0.001, and η2

p = 0.71. That is, there was
no detectable difference between the two incentive groups in the
training phase. To examine the transfer effects, an ANOVA on
the RTs with incentive as a “between-subjects” variable and blocks
(transfer block 13 vs the average of blocks 12 and 14) as a “within-
subjects” variable revealed only a block effect, F (1, 54) = 132.19,
p < 0.001, and η2

p = 0.71. That is, the DSRN models in the two
incentive conditions learned the difference between the training
and transfer SOC sequences.

Generation task: The DSRN models generated sequences of
96 trials under the inclusion or exclusion tests. We computed the
number of each type of triplets generated in each test under each
condition. A standard triplet was a triplet that was part of the
training sequence, a transfer triplet was a triplet that was part of
the transfer sequence, and a deviant triplet was a triplet that was
from neither the training nor transfer sequence. Figure 4 shows
the number of different triplets generated in human experiments
and Simulation 1. If the training sequence was implicitly learned,
one would expect no significant differences between the number
of standard triplets under inclusion and exclusion or more
standard than transfer triplets generated under the exclusion

test; otherwise, the training sequence was explicitly learned. The
DSRNs fit the human performance in the reward and no-reward
conditions the best for ρ = 0.7 and ρ = 0.8, respectively, thus the
DSRN models with ρ = 0.7 and ρ = 0.8 were used to simulate the
generation data in the test phase in the two conditions.

We first compared the number of standard triplets generated
under inclusion and exclusion instructions in the two conditions.
An ANOVA with an incentive (no-reward vs reward) as
a “between-subjects” variable and instructions (inclusion vs
exclusion) as a “within-subjects” variable was conducted. It
revealed only a significant instruction effect, F (1, 54) = 37.50,
p < 0.001, and η2

p = 0.41, indicating that more standard triplets
were generated under inclusion than exclusion for both the
reward and no-reward groups.

We further compared the number of standard and transfer
triplets generated under the exclusion test. An ANOVA with an
incentive (no-reward vs reward) as a “between-subjects” variable
and type of triplets (standard vs transfer) as a “within-subjects”
variable was conducted. It revealed a significant effect of the
triplet type, F (1, 54) = 7.77, p < 0.01, and η2

p = 0.13, and a
significant triplet type by incentive interaction, F (1, 54) = 10.95,
p < 0.01, and η2

p = 0.17. Simple effects of the triplet type for
each incentive condition demonstrated that there was an effect of
the triplet type in the no-reward condition (p < 0.001), but not
for the reward condition (p = 71). The results suggested that the
DSRN models with ρ = 0.7 in the reward condition were able to
withhold their activation under the exclusion task, but the models
with ρ = 0.8 in the no-reward condition could not.

Finally, we compared deviant triplets under inclusion and
exclusion tests in each condition. An ANOVA on deviant triplets
with incentive (no-reward vs reward) as a “between-subjects”
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FIGURE 4 | Human and model performance in the generation tests in Simulation 1. (A) The number of triplets generated by human participants in the no-reward
condition. (B) The number of triplets generated by human participants in the reward condition. (C) The number of triplets generated by models in the no-reward
condition. (D) The number of triplets generated by models in the reward condition.

variable and instructions (inclusion vs exclusion) as a “within-
subjects” variable revealed only a significant instruction effect, F
(1, 54) = 47.08, p < 0.001, and η2

p = 0.47. The results indicated
that the DSRN models in both conditions generated greater
deviant triplets under exclusion than inclusion.

Comparing Model Performance With
Human Performance
From Figures 3, 4, it can be seen that the DSRN models can
simulate human performance very well. To provide a quantitative
assessment of the fit of the model to human performance, the
Pearson correlation coefficients between human participants and
the corresponding DSRN models were taken as linear fits for the
SRT and generation performance separately. In Simulation 1, the
model accounted for approximately 89.0% of the variance in the
SRT task and approximately 97.7% in the generation task.

In the SRT task, when the DSRN model was completely
contributed by the activation of the abstract SRN (that is, ρ = 0),
no significant differences were detected between transfer block
13 and its neighbouring training blocks; when the model was
completely contributed by the activation of the surface SRN,
more slow responses were observed for transfer block 13 than

its neighbouring training blocks. The results indicated that
block 13 was different from the other blocks for the chunking
SRN, but was similar to the other blocks for the abstract SRN.
When ρ = 0.8, the model accounted for the RT performance
in the SRT task the best. The results indicated that both the
chunking and abstract processes contributed to sequence learning
in human performance.

In the generation task, different ρ values were used to
simulate human generation performance under the no-reward
and reward conditions. Interestingly, we found that manipulating
the contribution of each SRN (that is, the ρ value), the DSRN
could simulate the performance differences in the generation
test between the no-reward and reward conditions. Specifically,
under the exclusion test, the models generated more standard
than transfer triplets for ρ = 0.8 but no significant differences
between standard and transfer for ρ = 0.7. For participants,
reward instructions in the generation tasks made participants
express more conscious knowledge. Correspondingly, for models,
it was the increase of the contribution of the abstract SRN from
0.2 (i.e., 1 minus 0.8) to 0.3 (i.e., 1 minus 0.7) that led the models
to express more conscious knowledge in the generation tasks. The
results suggested that manipulating the contribution of surface
and abstract SRNs can mediate the expression of conscious
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knowledge in the generation task. This might be because that the
number of the abstract structures was smaller (only two types)
compared with the number of the surface structures (36 ones),
the abstract structures should access consciousness earlier than
the chunking knowledge.

SIMULATION 2

Experiment 3 in Fu et al. (2008) used a probable SOC sequence
to explore whether the amount of training (6 vs 15 blocks)
can influence the conscious status of the acquired knowledge
in sequence learning. The results revealed that people can
acquire chunking and abstract knowledge in sequence learning
and implicit or unconscious knowledge was detectable given a
shorter rather than longer period of training. In Simulation 2,
we aimed to investigate whether the DSRN model can account
for human performance in the probable sequence learning in
that experiment.

Materials and Settings
Materials: The deterministic SOC sequence in Simulation 1 can
be broken down into 12 sequential chunks with three locations or
triplets (for example, SOC1 can be broken down into triplets 3-
4-2, 4-2-3, 2-3-1, and so on; and SOC2 can be broken down into
3-4-1, 4-1-2, 1-2-4, and so on). In each triplet, the third location
was completely determined by the previous two locations. In
Simulation 2, we adopted the probabilistic sequences as in
Experiment 3 in Fu et al. (2008), in which the stimuli followed the
training SOC sequence with a probability of.875 and the transfer
SOC sequence with a probability of.125.

Human experiment: In Experiment 3 in Fu et al. (2008),
the participants were assigned to two conditions (6 block vs 15
block). Forty-eight undergraduate students (22 males, 26 females)
took part in the experiment. They were randomly assigned to two
groups (6-block, n = 24; 15-block, n = 24). The training phase
adopted the probabilistic sequences. The test phase was identical
to the reward condition in Experiment 1 in Fu et al. (2008).

Simulation settings: Forty-eight DSRN models were assigned
to two conditions (6 block vs 15 block) as in the human
participants in Experiment 3 in Fu et al. (2008). Each model
was initialised with different random parameters and pre-trained
with 2,500 randomly generated stimulus series. Then the models
under the 6-block condition were trained with six blocks and the
models under the 15-block condition were trained with 15 blocks.
Each block consisted of 98 trials with a probability of.875 from
the training sequence and a probability of.125 from the transfer
sequence. There was a total of 588 and 1,470 trials in the training
phase depending on the condition. All the other settings about
the DSRN are similar to Simulation 1.

Simulation Results
SRT task: As a standard triplet was a triplet from the training
sequence and a transfer triplet was a triplet from the transfer
sequence, we computed RTs for standard and transfer triplets
separately for each block in each condition. Figure 5 shows
the RTs obtained over the training phase in the human and

simulation experiments. The simulation results revealed no
significant RT differences between the standard and transfer
triplets for ρ = 0, while the RTs were much faster for the standard
triplets than the transfer triplets for ρ = 1. As in Simulation 1, we
found that the DSRN model fit the human performance the best
for ρ = 0.8, and thus the DSRN with ρ = 0.8 was used to simulate
the RT data in the training phase.

For the 6-block condition, an ANOVA on the RTs with
triplets (standard vs transfer) and blocks (6 levels) as “within-
subjects” variables revealed a significant effect of the triplets, F (1,
23) = 155.57, p< 0.001, and η2

p = 0.87, suggesting that the DSRN
models responded more rapidly to the standard triplets than the
transfer triplets. The main effect of the block was also significant,
F (5, 115) = 117.40, p < 0.001, and η2

p = 0.84, indicating that
the DSRN models responded to the targets more rapidly later in
practise than earlier. The triplets by block interaction also reached
significance, F (2.35, 54.15) = 75.60, p < 0.001, and η2

p = 0.77,
indicating a greater triplet effect later in practise than earlier.

For the 15-block condition, a comparable ANOVA revealed a
significant effect of the triplets, F (1, 23) = 139.53, p < 0.001, and
η2

p = 0.86, suggesting that the DSRN models responded more
rapidly to the standard triplets than the transfer triplets. The main
effect of the block was significant, F (14, 322) = 75.45, p < 0.001,
and η2

p = 0.77, and the triplets by block interaction also reached
significance, F (14, 322) = 44.95, p < 0.001, and η2

p = 0.66,
indicating a greater triplet effect later in practise than earlier.

Generation task: As in the SRT task, we found that the DSRN
model fit the human performance the best for ρ = 0.5 in both the
6- and 15-block conditions, and thus the DSRN with ρ = 0.5 was
used to simulate the generation data in the test phase. Figure 6
shows the mean number of triplets generated in each condition
in the human and simulation experiments. As in Simulation 1,
we first compared the proportion of standard triplets generated
under inclusion and exclusion instructions in the two conditions.
An ANOVA on the standard triplets with training (6 block
vs 15 block) as a “between-subjects” variable and instructions
(inclusion vs exclusion) as a “within-subjects” variable revealed
a significant instruction effect, F (1, 46) = 11.54, p = 0.001, and
η2

p = 0.20, and the training by instruction interaction was also
significant, F (1, 46) = 7.66, p < 0.01, and η2

p = 0.14. Simple
effects of instruction for each training condition showed that
there were more standard triplets under inclusion than exclusion
for the 15-block condition, F (1, 46) = 18.99 and p < 0.001, but
not for the 6-block condition, F (1, 46) = 0.20 and p = 0.66. The
results revealed that the DSRN models in the 15-block condition
generated more standard triplets in inclusion than exclusion, but
the DSRN models in the 6-block condition did not.

To compare the number of standard and transfer triplets
generated under the exclusion test, an ANOVA with training
(6 block vs 15 block) as a “between-subjects” variable and type
of triplets (standard vs transfer) as a “within-subjects” variable
was conducted. It revealed a significant effect of training, F (1,
46) = 18.27, p < 0.001, and η2

p = 0.28, and a triplet type by
training interaction, F (1, 46) = 4.71, p < 0.05, and η2

p = 0.09.
Simple effects of the type of each training condition revealed
that there was an effect of type for the 6-block condition, F (1,
46) = 6.84 and p < 0.05, but not for the 15-block condition,
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FIGURE 5 | Human and model performance in the SRT task in Simulation 2. (A) Mean RTs for human participants in the 6-block group. (B) Mean RTs for human
participants in the 15-block group. (C,E,G) Mean RTs for models with different ρ values in the 6-block condition. (D,F,H) Mean RTs for models with different ρ values
in the 15-block condition.

F (1, 46) = 0.20 and p = 0.65. The results indicated that the DSRN
models in the 6-block condition could generate more standard
than transfer sequences under exclusion instructions, but the
DSRN models in the 15-block condition could not.

To compare the number of deviant triplets under inclusion
and exclusion instructions in each condition, an ANOVA on

deviant triplets with training (6 block vs 15 block) as a “between-
subjects” variable and instructions (inclusion vs exclusion) as a
“within-subjects” variable was conducted. It revealed a significant
effect of instructions, F (1, 46) = 11.81, p < 0.001, and η2

p = 0.20,
and a significant effect of training, F (1, 46) = 20.01, p < 0.001,
and η2

p = 0.30. The instruction by training interaction also
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FIGURE 6 | Human and model performance under inclusion and exclusion tests in Simulation 2. (A) The number of triplets generated by human participants in the
6-block condition. (B) The number of triplets generated by human participants in the 15-block condition. (C) The number of triplets generated by DSRN models in
the 6-block condition. (D) The number of triplets generated by models in the 15-block condition.

reached significance, F (1, 46) = 10.24, p < 0.01, and η2
p = 0.18.

Simple effects of the instructions for each training condition
showed that there was an effect of instruction for the 15-block
condition, F (1, 46) = 22.02 and p< 0.001, but not for the 6-block
condition, F (1, 46) = 0.03 and p = 0.87. The results suggested that
the DSRN models in the 15-block condition generated greater
deviant triplets under exclusion than inclusion, but the DSRN
models in the 6-block condition did not.

Comparing Model Performance With
Human Performance
A probabilistic sequence rather than a deterministic sequence was
adopted in Simulation 2. Figures 5, 6 show that the DSRN models
could be also fit to simulate human performance in probabilistic
sequence learning. The model accounted for approximately
71.8% of the variance in the RT task and approximately 96.7%
in the generation task.

In the SRT task, when the DSRN model was completely
contributed by the activation of the abstract SRN (that is, ρ = 0),
no significant differences were detected between the standard and
transfer triplets in both training conditions; when the model was
completely contributed by the activation of the surface SRN (that

is, ρ = 1), RTs were faster for standard than transfer triplets in
both conditions. As in Simulation 1, we found that the model
accounted for the RT performance for ρ = 0.8 in the SRT task
the best. The results indicated that the architecture of the DSRN
model can illustrate not only learning of deterministic sequences
but also the learning effect of probable sequences.

For the generation task, the same ρ values (that is, ρ = 0.5)
were used to simulate human generation performance in the 6-
block and 15-block training conditions. On the one hand, the
DSRN models with six training blocks could not generate more
standard triplets under inclusion than exclusion tests, but could
generate more standard than transfer triplets under the exclusion
test, indicating that the chunking structure of the training
sequence was acquired implicitly. On the other hand, the DSRN
models with 15 training blocks could generate more standard
triplets under inclusion than exclusion test, but generated similar
standard and transfer triplets under the exclusion test, suggesting
that the chunking structure of the training sequence was acquired
explicitly. Thus, the DSRN models successfully simulated how
the amount of training influenced the conscious status of the
acquired chunking knowledge in probabilistic sequence learning.

Moreover, the DSRN models in the 15-block condition
generated fewer deviant triplets under inclusion than exclusion,
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while the DSRN models in the 6-block condition generated
similar deviant triplets under inclusion and exclusion. As the
standard and transfer triplets shared the same abstract structure
whereas the deviant triplets had a different abstract structure,
the results indicated that the DSRN models could control the
expression of knowledge about the abstract structure in the 15-
block condition, but could not in the 6-block condition. That
is, the abstract structure of the training sequence was acquired
explicitly in the 15-block condition, but acquired implicitly in
the 6-block condition. The results confirmed that unconscious
knowledge was detectable given a shorter rather than longer
training period.

Simulation 3

Fu et al. (2018) used a probable SOC sequence that included
three types of stimuli in the training phase to further explore
how associated or chunking learning can dissociate from rule
or abstract learning. The results revealed that people can
simultaneously acquire knowledge about chunking and abstract
structures, and the ability to control under inclusion and
exclusion tests was mainly based on knowledge about abstract
structures rather than concrete chunks. As Fu et al. (2018) used
a trial-by-trial generation task rather than a free-generation task,
we first ran a new human experiment in Simulation 3, in which
three types of stimuli were adopted in the training phase and
the free-generation task was used in the test phase. Then we
investigated whether the DSRN models could account for human
performance in the new experiment.

Materials and Settings
Materials: In Simulation 3, we adopted the probabilistic
sequences as in Experiment 3 in Fu et al. (2018). There were three
types of stimuli in the training phase: standard stimuli following
the training SOC sequence with a probability of 0.833, transfer
stimuli following the transfer SOC sequence with a probability
of 0.083, and deviant stimuli following neither the training nor
transfer SOC sequence with a probability of 0.083.

Human experiment: Twenty-six university students (11
females, 15 males; mean age = 22.12 years, SD = 2.64 years)
voluntarily took part in the experiment. They were paid for
their attendance. None of them had previously taken part in
any implicit learning experiment. All of them had normal or
corrected-to-normal vision. This experiment was approved by
the committee for the protection of subjects at the Institute of
Psychology, Chinese Academy of Sciences. In the training phase,
each participant was trained on 6 blocks. Each block consisted of
146 trials, for a total of 876 trials. The test phase was similar to the
reward condition in Experiment 1 in Fu et al. (2008). The data
from two participants (two males) were excluded because their
accuracy in the SRT task was below 90%.

Simulation settings: Twenty-four DSRN models were used
to simulate human performance. Each model was randomly
initialised and pre-trained with 1,000 randomly generated
stimuli. All of the models were trained on 6 blocks as in the
human experiment. Half of the models were trained with SOC1,

and half were trained with SOC2. As in Simulations 1 and 2, when
the DSRN was ρ = 0.8, the model performance was best fit for
human performance in both the SRT task and the generation task.
Thus, we used ρ = 0.8 to simulate the RT data and the generation
data in Simulation 3. All other settings about the DSRN were
similar to Simulation 1.

Human Experimental Results
SRT task: Figure 7 shows the mean RTs obtained over the
training phase in the human experiments and DSRN simulations.
For human performance, an ANOVA on the RTs with stimuli
(standard vs transfer vs deviant) and blocks (6 levels) as within-
subjects variables revealed a significant effect of the stimuli, F (2,
46) = 90.85, p < 0.001, and η2

p = 0.80. Post hoc analysis revealed
that the participants responded faster to the standard than
transfer stimuli (p< 0.001) and faster to the transfer than deviant
stimuli (p < 0.001), indicating that the participants acquired
knowledge about both chunking and abstract structures. The
main block effect was also significant, F (5, 115) = 90.85, p = 0.001,
and η2

p = 0.16, suggesting that the participants responded to the
targets more rapidly later in practise than earlier. The stimuli by
block interaction also reached significance, F (4.13, 94.89) = 3.09,
p < 0.05, and η2

p = 0.12, indicating a greater stimuli effect later
in practise than earlier.

Generation task: Figure 8 shows the number of different
triplets generated by the participants and DSRNs in the
generation task. For human performance, a paired-sample t
test revealed that there were no significant differences in the
standard triplets generated under inclusion and exclusion tests,
t (23) = −0.57 and p = 0.57, and so were in the transfer and
deviant triplets, t (23) = 0.26, p = 0.79, t (23) = 0.45, and
p = 0.66, respectively. Moreover, under the exclusion test, the
participants generated more standard than deviant triplets, t
(23) = 9.10, p < 0.001, and d = 1.90, and more transfer than
deviant triplets, t (23) = 8.36, p < 0.001, and d = 1.74, but there
were no significant differences between the standard and transfer
triplets, t (23) = 0.33 and p = 0.74. The results suggested that the
participants implicitly acquired knowledge about chunking and
abstract structures in the training phase.

Simulation Results
In the simulation, when the DSRN was completely contributed
by the activation of the surface SRN (that is, ρ = 1), the
responses were faster for the standard than transfer triplets, but
no significant differences were observed between the transfer
and deviant triplets; when the DSRN was completely contributed
by the activation of the abstract SRN (that is, ρ = 0), the
responses were faster for the transfer than deviant triplets, but no
significant differences were observed between the standard and
transfer triplets.

SRT task: For the model performance in the SRT task, an
ANOVA on the RTs with stimuli (standard vs transfer vs deviant)
and blocks (6 levels) as “within-subjects” variables revealed a
significant effect of stimuli, F (1.28, 29.41) = 324.28, p < 0.001,
and η2

p = 0.93. Post hoc analysis revealed that the models
responded faster to the standard than transfer stimuli (p< 0.001),
and faster to the transfer than deviant stimuli (p < 0.001),
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FIGURE 7 | Human and model performance in the SRT task in Simulation 2. (A) Mean RTs for human participants. (B–D) Mean RTs for models with different ρ

values.

FIGURE 8 | Human and model performance under inclusion and exclusion tests in Simulation 3. (A) The number of triplets generated by human participants.
(B) The number of triplets generated by models.

indicating that they acquired knowledge about both chunking
and abstract structures. The main effect of the blocks was not
significant, F (1.93, 44.35) = 2.03, p = 0.15, and η2

p = 0.08.
The stimuli by block interaction reached significance, F (4.60,
105.79) = 34.02, p < 0.001, and η2

p = 60, indicating a greater
stimuli effect later in practise than earlier.

Generation task: For model performance in the generation
task, a paired-sample t test revealed that there were no significant
differences in the standard triplets generated under inclusion and
exclusion tests, t (23) = −0.18 and p = 0.86, and no significant
differences in the transfer and deviant triplets under inclusion
and exclusion tests, t (23) = 0.35, p = 0.73, t (23) = −0.23,
and p = 0.82, respectively. Moreover, under the exclusion test,

the participants generated more standard than deviant triplets,
t (23) = 36.22, p < 0.001, and d = 5.17, and more transfer
than deviant triplets, t (23) = 24.81 and p < 0.001, and
d = 5.17, but there were no significant differences between the
standard and transfer triplets, t (23) = 1.15 and p = 0.26. The
results confirmed that the two types of knowledge could be
implicitly acquired.

Comparing the DSRN Performance With
Human Performance
In Simulation 3, a probabilistic sequence with three types
of stimuli was adopted in the training phase in the human
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and simulation experiments. The participants and models
both responded faster to the standard than transfer stimuli
and faster to the transfer than deviant stimuli, confirming
that the chunking and abstract structures could be acquired
simultaneously in sequence learning. Moreover, the model
accounted for approximately 77.1% of the variance in the RT task
and approximately 99.7% in the generation task.

In the SRT task, the standard and transfer stimuli shared the
same abstract structure, but one appeared with a high probability
of 0.833 the other with a low probability of 0.083; the transfer and
deviant stimuli both appeared with a low probability of 0.083, but
had different abstract structures. The simulation results revealed
that the surface SRN acquired the difference between the standard
and transfer stimuli, that is, the chunking structure, while the
abstract SRN learned the difference between the transfer and
deviant stimuli, that is, the abstract structure. The models could
successfully account for human performance only when both
SRNs contributed to the models, providing new evidence that
both the chunking and abstract processes contributed to sequence
learning in human performance.

In the generation test, we found that the participants
generated similar standard triplets under inclusion and exclusion
tests, indicating that they could not control the expression
of the standard triplets. That is, the chunking knowledge
about the training sequence was acquired implicitly. Moreover,
although the exclusion instructions asked the participants
to generate the sequence rarely appeared in the training
phase, the participants generated more standard and transfer
triplets than deviant triplets, but no significant differences
were observed between the standard and transfer triplets.
On the one hand, the results indicated that the participants
could not distinguish the standard from transfer stimuli,
confirming that they implicitly acquired knowledge about
the chunking structure. On the other hand, the results
suggested that the participants could not inhibit generating
more standard and transfer triplets than deviant triplets under
exclusion, suggesting that they implicitly acquired knowledge
about the abstract structure. Further, the DSRN models with
ρ = 0.8 accounted very well for the human performance
in the generation test. The results provided convergent
evidence that both abstract learning and chunking learning can
occur implicitly.

GENERAL DISCUSSION

The purpose of the current study was to investigate how people
can acquire abstract knowledge in implicit sequence learning. To
address this issue, we proposed a DSRN model that included
a surface SRN encoding and predicting the surface properties
of the stimuli, and an abstract SRN encoding and predicting
the abstract properties of the stimuli in sequence learning. The
simulation results in Simulations 1 and 2 showed that the
DSRN model accounted for learning effects in both the RT and
generation performance whenever the training sequence was a
deterministic or probabilistic sequence. Moreover, manipulating
the contribution weight of each SRN could also account for

the contribution of conscious and unconscious processes in
inclusion and exclusion tests under different conditions. The
human performance results in Simulation 3 provided further
evidence that people can simultaneously learn both chunking and
abstract knowledge in implicit sequence learning, and the results
of Simulation 3 confirmed that the DSRN model can account
for how people acquire the two types of knowledge in implicit
sequence learning.

What Is Acquired in Implicit Sequence
Learning?
Although many studies using artificial grammar learning
paradigms provided evidence for the acquisition of abstract
knowledge in implicit learning, fewer studies investigated
abstract learning in the SRT task. This is partially because
it is difficult to dissociate chunking or associative learning
from abstract or rule learning in sequence learning. To solve
this problem, three types of stimuli were adopted in the
training phase in Simulation 3 as in Fu et al. (2018): standard
and transfer stimuli, followed the same abstract structure but
differed in the probability of occurrence, whereas the transfer
and deviant stimuli occurred with the same low probability
but differed in the abstract structure. The human results
showed that the participants responded faster to the standard
than transfer stimuli and faster to the transfer than deviant
stimuli, indicating both chunking and abstract structures can
be acquired in sequence learning. Importantly, the participants
and models generated similar standard triplets under inclusion
and exclusion and more standard and transfer triplets than
deviant triplets under the exclusion test, suggesting that they
implicitly acquired chunking and abstract knowledge. The results
were consistent with previous findings that supported that
people can acquire not only knowledge about the associations of
specific stimuli but also the underlying deep structure in implicit
sequence learning.

To illustrate how people can acquire sequence knowledge in
sequence learning, we proposed a DSRN model that included
a surface SRN learning the surface structure of stimuli and
an abstract SRN learning the abstract structure of stimuli in
sequence learning. The relative contribution of each SRN was
mediated by a constant parameter ρ. Particularly, whenever the
stimuli were presented, the abstract SRN would encode the
abstract property of the current stimulus and previous stimuli,
e.g., the relationship between repeating sequence elements.
Thus, as long as the new stimuli have the same abstract
structures with the trained stimuli, the acquired abstract
knowledge can be transferred to the new stimuli to some
extent. In this way, the DSRN model has no need to learn
the mappings between the stimuli from different domains
in the input and output layers as in the augmented SRN
(Dienes et al., 1999). The proposed DSRN model was used
to simulate learning effects in the SRT task in previous
studies (Fu et al., 2008, 2018), in which the learning sequence
was either deterministic or probabilistic. Across the three
simulation experiments, the results provided clear evidence
that the proposed DSRN model could account for human RT
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performance only when both the surface and abstract SRNs were
involved in the SRT task, confirming that both the chunking
and abstract processes contributed to sequence learning in
human performance.

We believe that these results were principally consistent
with the dual pathways hypothesis (Keele et al., 2003), which
assumed that two learning systems underlie a sequence learning
device: one learning system is multidimensional or abstract and
builds associations between events from different dimensions
or modalities, while the other system is unidimensional
or concrete and associates non-categorised stimuli within
dimensional modules. Kemeny and Meier (2016) provided the
first empirical support for this hypothesis by demonstrating
that multimodal sequence learning can occur implicitly. The
present findings extend it by further demonstrating that not only
the semantic category sequence (e.g., Implement-Plant-Animal-
Plant-Implement-Animal) but also the other abstract sequence
structure (e.g., A-B-C vs. A-B-A) can be acquired in implicit
sequence learning.

Relationship Between Abstract
Knowledge and Consciousness
The results of Simulation 1 revealed that manipulating the
contribution weight of each SRN could account for the
effects of the reward on the generation performance, that
is, the expressed conscious knowledge in the free-generation
task. The results indicated that the contribution weight of
each SRN might mediate the contribution of conscious and
unconscious processes in inclusion and exclusion tests under
different conditions. The findings provide a different and new
perspective on the relationship between abstract knowledge and
conscious awareness.

We found that adding the contribution of the abstract SRN
rather than that of the surface SRN caused the models to express
more conscious knowledge in the generation task in Simulation
1. That is, for models, it was the increase of the contribution of
the abstract SRN from 0.2 to 0.3 that led the models to express
more conscious knowledge in the generation tasks. This may have
occurred because the abstract SRN acquired explicit knowledge
and the surface SRN learned implicit knowledge. This was also
consistent with the findings of Dominey et al. (1998), which
illustrated that the rule was acquired only in explicit learning.
However, our results revealed that abstract knowledge can be
acquired implicitly with a short training phase. Specifically, the
generation performance in Simulations 2 and 3 revealed that
when the training phase included only six blocks, the participants
and models could not control the generation of similar deviant
triplets under inclusion and exclusion tests and more standard
and transfer than the deviant triplets were generated under the
exclusion test. The results provided clear evidence that abstract
knowledge can be acquired implicitly.

Another possible explanation for this phenomenon might
be that although both types of knowledge could be acquired
implicitly, the knowledge acquired by the abstract SRN could
be more easily accessible to consciousness than the knowledge
acquired by the surface SRN. This is because generally there

are more surface structures than abstract structures in implicit
learning. For example, in the present study, there were 36
concrete triplets for chunking learning, but only two abstract
structures for abstract learning. If we assume that all of the triplets
were homogeneous, each abstract triplet was trained 17 times
more often than each concrete triplet. As unconscious knowledge
was detectable given a shorter rather than longer training
period, the abstract structure should access consciousness earlier
than chunk knowledge. In the other tasks with more complex
abstract structures than the SRT task (for example, AGL tasks),
the abstract structure might not be so easily available to
consciousness. This is also supported by the view that explicit
knowledge is in a way extracted from implicit knowledge and
implicit knowledge always remains ahead of explicit knowledge
(Bowers et al., 1990; Sun et al., 2005).

Moreover, the present findings also helped account for the
inconsistent findings about abstract learning and consciousness.
Although more recent studies have provided new evidence
that abstract learning can occur unconsciously (Dienes et al.,
2012; Kemeny and Meier, 2016; Huang et al., 2017; Ling et al.,
2018), other studies supported that abstract knowledge can only
be acquired consciously (Shanks and St John, 1994; Dominey
et al., 1998; Boyer et al., 2005; Cleeremans and Destrebecqz,
2005). According to our findings, this might be because the
former studies used relatively simple abstract structures while
the latter studies used more complex structures. Further research
can manipulate the complexity of the abstract structure to
investigate whether acquired knowledge in implicit learning can
be thought of as a point existing somewhere along the continuum
from abstract representations to exemplar-based representations
(Cleeremans and Destrebecqz, 2005).

In summary, our results provided convergent evidence that
both surface and abstract structures can be acquired implicitly
in sequence learning. The proposed DSRN model can account
for how the two types of learning can occur simultaneously.
Specifically, the simulation results revealed that the DSRN model
can account not only for human learning effects in the SRT task
but also how the conscious status of the expressed knowledge is
influenced by different factors in the free-generation task. These
findings extend the ability of the SRN model to learn and help
understand how different types of knowledge can be acquired
simultaneously in implicit sequence learning.
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