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ABSTRACT: The search for exchange-correlation functionals going
beyond the adiabatic approximation has always been a challenging task
for time-dependent density-functional theory. Starting from known
results and using symmetry properties, we put forward a nonadiabatic
exchange-correlation functional for lattice models describing a generic
transport setup. We show that this functional reduces to known results
for a single quantum dot connected to one or two reservoirs and
furthermore yields the adiabatic local-density approximation in the static
limit. Finally, we analyze the features of the exchange-correlation
potential and the physics it describes in a linear chain connected to two
reservoirs where the transport is induced by a bias voltage applied to the
reservoirs. We find that the Coulomb blockade is correctly described for
a half-filled chain, while additional effects arise as the doping of the chain
changes.

1. INTRODUCTION
The miniaturization of electrical circuits is of great importance
for future technologies. Fundamental building blocks for circuits
can implement their functionality within single molecules, e.g.,
by trapping them in mechanically controllable break junctions,
and transport can be studied experimentally.1−9 At these length
scales, the understanding of such devices requires a quantum
mechanical description. A wealth of approaches can be used to
study said devices, and through the years, a lot of effort has been
put into this matter. One of the most successful theories for
describing charge transport through nanoscale devices is the
Landauer−Büttiker (LB) approach,10−12 where transport is
expressed as a scattering problem. In the LB framework, the
electrons traverse the device ballistically; i.e., electron−electron
scattering is ignored. However, the LB approach can be
generalized for interacting electrons within nonequilibrium
Green’s (NEGF) function theory.13,14 A numerically more
efficient alternative to NEGF for the description of interacting
quantum systems is density-functional theory (DFT).15,16 Since
transport is by definition a nonequilibrium phenomenon, time-
dependent DFT (TD-DFT)17−19 has to be employed for
studying molecular transport.20 This leads to the remarkable
result that, in principle, the steady-state flow of interacting
electrons though a transport device can be computed from the
LB formula, provided it is evaluated using non-interacting
Kohn−Sham (KS) electrons of TD-DFT moving in an effective
local potential. In practice, however, this approach is limited by
the quality of the available approximations to the effective
potential. A common approach is to use approximations derived
in the context of equilibrium or ground state DFT in order to
evaluate the effective potential in the device region. This
procedure is referred to as adiabatic approximation within TD-

DFT, which ignores dynamical effects (memory).21−23 Embed-
ding approaches, like dynamical mean-field theory24 or density
matrix embedding theory,25 have received a lot of attention
recently due to their ability to describe strongly correlated
electrons. In the context of density-functional theories, impurity
models, such as the Anderson impurity model,26 have been
studied extensively over the past years in the Kondo and
Coulomb blockade regime.27−39 These studies provided
important insight in how to describe strongly correlated physics
within DFT approaches by reverse engineering the (nearly)
exact effective potentials for simple model systems. A big
remaining challenge is to generalize these effective potentials for
generic transport setups.
In this work, we put forward an effective potential based on its

analytical derivation for the case of a single impurity coupled to
one lead.38 A recent study comparing results using this effective
potential to results from numerically exact, time-dependent
density-matrix renormalization group demonstrated the quality
of this effective potential for an impurity site coupled to a single
lead.40 We generalize the effective potential to any tight-binding
transport setup. The generalization to any system is carried out
by exploiting a simple gauge symmetry argument: in a system
composed of an impurity connected to a lead, the application of
a potential to the impurity is equivalent to the application of the
opposite potential to the lead. We first show how this argument
can be used to generalize the effective potential of the one site−
one lead setup38 to a simple transport setup composed of one
site coupled to two leads. The resulting effective potential yields
the known exact results, which reproduce Coulomb blockade
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physics in the single impurity Anderson model.39 Then, we
further generalize the effective potential to a generic setup
employing a local-density (or embedding)-like approximation,
which reduces to the known adiabatic local-density approx-
imation (LDA) for lattice models27 in the static limit.

2. MODEL
In this work, we consider a tight-binding model for a generic
transport device, sketched in Figure 1. The Hamiltonian for the
system studied reads
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Here, ϕ̂iσ
† and ϕ̂iσ are the field operators of site i and spin σ of the

device, t is the energy associated with the hopping between sites,
g is the gate voltage applied to the device, U is the on-site
coulomb interaction, and N̂ is the particle number operator of
the device. The chemical potential μ is set to zero. The field
operators ϕ̂αkσ

† and ϕ̂αkσ add and remove electrons in lead α, and
the dispersion relation of the electrons inside the leads is given
by ϵαk. Finally,V(αk)i is the hopping amplitude and α is the set of
sites of the device that are connected to lead α. In this work, the
leads are modeled as non-interacting one-dimensional tight-
binding chains, giving the dispersion ϵαk =−2t cos k. This means
that the electrons have the same hopping amplitude in the leads
and in the device region. In the following, we consider the spin
unpolarized case; i.e., observables do not depend on spin, e.g.,
ni↑ = ni↓ ≡ ni/2. We use a TD-DFT approach to numerically
describe the dynamics of the system. This means that the
evolution of the charge density for the system governed by
Hamiltonian (1) is computed from an effectively non-
interacting system. This is governed by a Hamiltonian similar
to eq 1, where the interaction term is replaced by an effective
local potential, the so-called KS potential. Once an approx-
imation for the effective potential is given, the charge flow can be
computed from the non-interacting system. In the steady state
(SS), this charge flow is completely determined by the spin-

summed density matrix of the device region, DSS, the currents
between sites i and j of the device, Iij

SS, and the currents from the
device to lead α, Iα

SS. For the non-interacting system, they are
given by

D D f b2
d
2

( ) ( )SS ∫∑ ε
π

ε ε= +
α

α α
(2a)

I H DIm( , )ij ij
SS SS= − [ ] (2b)

I T f b f b2
d
2

( ) ( ) ( )SS ∫∑ ε
π

ε ε ε= [ + − + ]α
α

αα α α
′

′ ′
(2c)

Here, f(ε + bα) is the Fermi function of lead α with associated
voltage bias bα, and the matrices Dα and Tαα′ are defined as
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Dα is the density of states of the device projected on lead α, and
the off-diagonal matrix elements of Tαα′(ε) are the transmission
coefficients between leads. Both are defined in terms of the
advanced/retarded Green’s function of the device region, GA/R,
and the decay rate associated with lead α, Γα. The trace is
performed over the device region. In principle, Γα is energy
dependent, however, here we take the wide-band limit
approximation. This disregards the energy dependence of the
leads’ density of states, taking it constant and equal to its value at
the Fermi energy.41−47 This is justified when the applied bias is
small compared to the leads’ bandwidth. One major advantage
of taking the wide-band limit is that it allows for an analytical
evaluation of the LB formula at finite temperatures.48−50

3. GENERALIZED NONADIABATIC
EXCHANGE-CORRELATION FUNCTIONAL

The effective potential contains two contributions: the
scattering induced by the nuclei or the boundaries of the device
and the effect of electron−electron collisions. The former is
commonly referred to as “external potential” and characterizes
the device, while the latter is the so-called (Hartree-)exchange-
correlation (Hxc) potential. The Hxc potential derived in ref 38
for a quantum dot coupled to a single reservoir is given by
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with g = (1 − C) exp(Uβ/2) − C sinh(Uβ/2), C = n − c,
c = −ṅ/Γ = I/Γ, where Γ is the decay rate associated with the
only reservoir, U is the interaction strength, and β is the inverse
temperature. We point out that there is a typo in the
corresponding formula (equation 8b in ref 38) that has been
corrected here. Note the dependence of the functional on the
normalized current c: this will be important in the generalization
to generic lattice geometries. The potential (4) can be rewritten
as a functional of the density n and current to the dot I by using

Figure 1. Sketch of a typical lattice model used to describe transport
devices. The electrons can hop to the nearest neighbors with amplitude
t and to the connected leads with amplitude V and have an on-site
interaction U.
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the continuity equation I ≡ −ṅ. The two forms of the functional
given in eq 4 are equivalent but numerically stable in different
regimes: the first one is stable for n − I/(2Γ) > 1, while the
second one is stable for n− I/(2Γ) < 1. These expressions differ
from the one given in ref 38 by a constant of U/2. This constant
shift ensures half-filling at vanishing chemical potential (μ = 0)
for any interaction strength. Starting from this functional, we
first present a generalization to a reservoir-dot-reservoir system,
then to a dot connected to any number of leads, and finally to
any transport setup in the tight-binding model.
The functional (4) provides a form for the dot potential in the

dot-reservoir system. By gauge symmetry, the dynamics are not
altered if one applies the opposite potential to the reservoir
instead. In general, any pair of dot (vHxc) and reservoir (Vxc)
potentials

v n c( , )Hxc Hxcα= ϵ (5a)

V n c( 1) ( , )xc Hxcα= − ϵ (5b)

with 0 ≤ α ≤ 1 gives rise to equivalent dynamics by gauge
symmetry.
The crucial aspect of the previous argument is that we can

subdivide the system into two parts. When we consider a
transport scenario, where an additional reservoir is attached to
the device, there are two possible ways of subdividing the system
by grouping the dot either with the left or the right lead. For both
configurations, we can apply the procedure leading to eq 5a, and
summing the resulting potentials leads to

v n c n c( , ) ( , )Hxc 1 Hxc 2 Hxcα α= ϵ + ϵ − (6a)

V n c n c( 1) ( , ) ( , )xc
1

1 Hxc 2 Hxcα α= − ϵ + ϵ − (6b)

V n c n c( , ) ( 1) ( , )xc
2

1 Hxc 2 Hxcα α= ϵ + − ϵ − (6c)

where we use the fact that in the steady state the currents flowing
from the dot to the two leads are opposite to each other by
Kirchhoff’s law and that both leads are characterized by the same
decay rate. By imposing the additional condition α1 + α2 = 1, one
can ensure that in the limit of vanishing current the potentials in
the reservoirs are identically zero. This means that the density of
the dot does not induce a potential anywhere else but locally
when no currents flow (LDA).
The generalization to any number of leads connected to a dot

follows immediately from the previous considerations, and the
potentials read
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where ck = Ik/Γk is the normalized current flowing to reservoir k.
Again, the condition 1k kα∑ = leads to a local approximation in
the adiabatic limit (no currents), andVxc

k is identically zero for all
k’s. This condition is still not enough to fix an arbitrary number
of α’s. Wemake the choice αk = αmotivated by the fact that only
the dimensionless currents, ck, enter the functional. As a direct
consequence, the first order nonadiabatic correction for the
potential vHxc, i.e., the correction due to having finite but small
currents flowing, vanishes by virtue of Kirchhoff’s law (charge
conservation in the steady state) provided all decay rates are
identical. With the aforementioned considerations, the
potentials can be rewritten as

v
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whereNL is the number of reservoirs connected to the dot. From
the expressions (8a and 8b), it is evident how the electron
density of the dot induces a potential locally and on the
reservoirs, i.e., the elements connected to it. This is important
for the generalization to any tight-binding model, where the dot
is connected not only to leads but also to other sites.
For each site, we have the local potential vHxc and the nonlocal

contributions Vxc coming from other sites. When only nonlocal
contributions due to directly connected sites are considered, the
exchange-correlation potential of a general site i can be written
as

v v Vi i

k i

ik
Hxc xc∑= +

⟨ | ⟩ (9)

where the first term is the local contribution and the remainder is
the sum of the nonlocal ones. The local component vHxc

i is eq 8a
calculated with the density ni and the normalized currents ci

k

going out of site i. The nonlocal part, Vxc
ik ≡ vHxc

k − ϵHxc(nk,ck
i ), is

the nonlocal contribution (8b) evaluated at the density of the
nearest neighbors and the associated currents going to site i.
Finally, ⟨k|i⟩ indicates the restriction of the sums to the nearest
neighbors only. In equilibrium, when no currents are flowing in
the system, the nonlocal contribution vanishes and the effective
potential reduces to the LDA for lattice systems. For the
reservoirs, the local component, vHxc

i , cannot be defined as no
density can be associated with them in the wide-band limit and,
like in the expression for the reservoir-dot-reservoir, only the
nonlocal contributions appear. It is important here to notice the
dependence of the functional on ci

k: this is the normalized
(dimensionless) current flowing from site i to site k. The
normalization factor, Γk, can only be evaluated for sites
connected to leads. For currents between sites in the device
region, eq 3c can be evaluated for Vα → t, yielding 2t for the
normalization factor. Equation 9 represents the main result of
this paper. It is applicable to any lattice system of any
dimensionality and connectivity with local interactions. In the
following section, an analysis of the effect of this nonadiabatic
functional is presented.

4. RESULTS
In this section, we investigate the influence of the derived
exchange-correlation functional on the transport properties of
nanojunctions. In particular, we analyze the steady state of tight-
binding chains connected to two leads, one at each end of the
chain. The development of a steady state is a consequence of the
application of a potential difference to the leads. The xc-
potential (9) is then found self-consistently as it depends on the
steady state densities and currents and vice versa. To compare
results coming from different functionals or different interaction
strengths, we tune the gate voltage to have a fixed number of
electrons in the chain. The reason for choosing this approach
stems from the strong dependence of the number particles on
the temperature of the leads (for a fixed gate), which is reflected,
e.g., in the resistance, and this can be different for different
functionals/interaction strengths.
The tight-binding parameters chosen for the simulations

expressed in units of the hopping amplitude, which is set to
t = 1 eV, are temperature 0 < kBT = β−1 ≤ t and bias voltage
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bL,R = ±t/8. The other parameters that determine the junction
are not constant for all calculations and will be specified when
needed. All resistances shown in the following are normalized by
the resistance (R0) of a non-interacting infinite chain at zero
temperature at the particle-hole symmetric point with hybrid-
ization Γ = 0.5.
4.1. Half-Filling. When the gate voltage is set to 0, the

junction is at the particle-hole symmetric point, meaning there
are N electrons in it, with N being the length of the chain. In
Figure 2, the resistance of a junction of lengthN = 80 at different
interaction strengths is shown as a function of the temperature of
the system. As expected, the non-interacting system is metallic;
i.e., its resistance is a monotonically increasing function of the
temperature and becomes linear for high temperatures. In this
regime, the effect of the interaction is negligible as the energy

scale associated with temperature is much larger than interaction
strength. The role of the interactions becomes more important
at lower temperatures, where it hinders transport, resulting in an
increase of the resistance due to the Coulomb blockade.
Furthermore, Figure 2 shows that at half-filling a larger
interaction strength results in higher resistance. This effect is
due to the potential induced in the leads, which suppresses the
bias voltage, effectively shrinking the transport window,
resulting in a smaller current flowing through the junction.
The adiabatic functional, in turn, gives rise to only a minimal
(negligible) increase in the resistance and does not describe the
Coulomb blockade physics, as it misses this nonlocal potential
induced in the leads. As stated before, the correct Coulomb
blockade physics of the single impurity model is caught by the
functional;39 see the inset of Figure 2.
When considering lower temperatures, a peculiar feature

appears in the resistance of the junction shown as a softening of
the Coulomb blockade effect. In the upper panel of Figure 3, we
report the resistance of junctions of length N = 80 with different
interaction and hybridization strengths: U ∈ {0.3, 0.4, 0.5} and
Γ ∈ {0.32, 0.5, 1.125}. The value of Γ determines the high-
temperature behavior of the resistance, since the interaction
becomes irrelevant when T ≫ U, as observed above. We
observe, as expected, a higher resistance for lower values of Γ,
since this is related to the hopping amplitude to the leads,
facilitating tunneling through the junction at higher values. For
fixed Γ, the interaction strength dictates the temperature at

which the system transitions to the Coulomb blockade regime
and also the position of the softening feature. In particular, the
feature appears at higher temperatures when there is a higher
interaction. Moreover, for fixed U, the softening appears
amplified as the hybridization strength deviates from the
hopping t, linking this peculiar feature to the dynamics of the
edge regions. In fact, even though finite size and odd−even
effects affect the resistance of the junction, its qualitative
behavior persists up to convergence with the system size; see the
lower panel of Figure 3. In all the previous calculations, the
shown results do not go down to T = 0; they stop in fact at
βU = 20, as for example in Figure 3. This is due to practical
difficulties in the convergence of the self-consistent exchange-
correlation potential. Its determination is, in fact, a fixed point
iteration with a function (ϵHxc) highly nonlinear in the density
and current. Moreover, the exchange-correlation potential is an
oscillating function in a chain junction, stemming from the
underlying Friedel’s oscillation of the non-interacting case.
These complications are worsened at lower temperatures, where
the Fermi−Dirac distribution becomes step-like, sharpening all
the nontrivial features of the functional. An undamped self-
consistent iteration, in fact, fails to converge as temperature goes
down and cannot reach the regime where the Coulomb blockade
is established. Advancedmixing schemes are needed to converge
the functional at low temperatures: in this work, we use a Pulay
mixing scheme.51 At each iteration, this method exploits the
history of guesses for the quantity needed to establish a better
guess for minimizing the error in the next iteration. In the
presented results, the potential has been mixed with a history
length of 9. This is found to give faster and more stable
convergence for this problem.

4.2. Doped Regime. By applying a gate voltage to the chain
junction, we can tune the number of particles occupying the
system andmove it away from the particle-hole symmetric point.
This affects the transport properties of the system itself.
Different functionals and/or different interaction strengths
yield a different number of particles in the junction for a fixed
gate potential. For this reason, we choose to compare results by

Figure 2. Normalized resistance of a junction of length N = 80 with
different interaction strengths (solid line) and with the adiabatic
functional with interaction strength U = 0.5 (dashed line) as a function
of temperature. The temperature is defined in units of kBT/t. The inset
shows the resistance of the one site impurity model, where the
functional coincides with the one in ref 39.

Figure 3. Upper panel: junction resistance as a function of βU for
different interaction and hybridization strengths. Lower panel:
convergence of the junction resistance as a function of the system
length for U = 0.5 and Γ = 0.5.
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tuning the gate voltage to have a fixed number of electrons in the
chain for all temperatures. In the top panel of Figure 4, we
compare the resistances of a chain of length N = 80 with a fixed
total number of particles Nel = 60 resulting from the adiabatic
and nonadiabatic functionals at different interaction strengths.
In accordance with ref 23, the nonadiabatic approximation
yields a higher resistance. An additional distinction is given by

the qualitative behavior of the resistances. While the adiabatic
functional becomes less resistive as the interaction strength
increases (behavior in agreement with mean-field results, not
shown), the nonadiabatic approximation exhibits a crossover. In
fact, the resistances for different interaction strengths cross at a
temperature kBT/t ≃ 0.18. The decrease in the resistance for
increasing interaction strength in the adiabatic functional is
explained simply by the change induced in the transmission
functions Tαα′ due to the exchange-correlation potential. For the
nonadiabatic case, this effect competes with the suppression of
the transport window caused by the nonlocal potential induced
in the leads. At high temperatures, the transmission functions are
unaltered by the interaction; hence, the effect of the bias
renormalization, although small in amplitude, dominates. At a
fixed temperature, |Vxc| is larger for larger interaction strengths;
this explains why larger U’s produce larger resistances. As
temperature decreases, the two effects have comparable impacts
and compete with one another. |Vxc| starts decreasing roughly at
a constant kBT/U, meaning different temperatures for different
interaction strengths; see the lower panel of Figure 4. This
results in a stronger drop in the resistance for, e.g.,U = 0.70 while
the transport window suppression for weaker interaction is still
growing, resulting in the crossing of the resistances. This effect is
amplified as we move away from the particle-hole symmetric
point, since by doing so the magnitude of the bias
renormalization drops. At a fixed number of particles Nel = 76,
in fact, the resistances do not cross and the results are similar to
the ones at particle-hole symmetry.

5. CONCLUSIONS AND OUTLOOK

In this work, we have derived a novel nonadiabatic, nonlocal
exchange-correlation potential for studying transport in devices
modeled by lattice Hamiltonians within TD-DFT. Our
exchange-correlation potential is based on the solution for a
single quantum dot coupled to a reservoir, which exhibits a step-
like feature important for the description of Coulomb
blockade.38

The derivation is built by exploiting gauge symmetry: the
dynamics of a reservoir-dot device stay unchanged if a potential
is applied to the dot or to the reservoir with opposite sign. For a
generic lattice model, we apply this idea to every link through
which a current flows, independent of whether it connects two
sites or a site to a lead. The proposed functional reduces to the
LDA27 in the static limit; i.e., nonadiabaticity and nonlocality of
the potential are linked closely together in our construction. In
the nonequilibrium situation, our approximation reduces to the
exact result for a single dot transport setup.39

We have analyzed the effect of this exchange-correlation
potential in chain systems connected by the ends to two
reservoirs. We found that the “step” in the approximation for the
effective potential makes it challenging to find a self-consistent
solution for low temperatures/strong interactions, since the step
sharpens as βU increases. First results for two-dimensional tight-
binding models indicate that this is amplified for lattices with
higher coordination. To this end, it would be interesting to
develop alternative strategies for converging self-consistent
approaches based on new insights.52 For one-dimensional tight-
binding chains, we have shown how Coulomb blockade physics
is well described by this functional as an effect of the suppression
of the transport window due to an induced potential in the leads
opposite to the voltage bias applied. At the particle-hole
symmetric point, an additional feature appears at roughly
constant βU, showing a softening of the Coulomb blockade
effect. The amplitude of this softening depends on the decay rate
of the leads Γ. Away from particle-hole symmetry, the
nonadiabatic functional differs qualitatively from the LDA as
the on-site attraction (repulsion) competes with the renormal-
ization of the transport window produced by the nonlocality of
the functional. We believe that TD-DFT for tight-binding
models offers a numerically efficient scheme for studying
transport in quantum systems approaching mesoscopic scales.
The aim of this work was to propose an approximation for the
effective potential taking electron−electron scattering effects
into account, which are believed to play an important role in so-
called superballistic transport and has recently received a lot of
attention.53−55 An interesting route to explore is to study
thermoelectric transport using a novel DFT approach proposed
recently,50,56−59 by generalizing the exchange-correlation
potential for describing the combined charge and energy flow
through the transport device.
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