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Abstract

bioinformatics.

Background: Epilepsy is a neurological disease characterized by unprovoked seizures in the brain. The recent
advances in sensor technologies allow researchers to analyze the collected biological records to improve the
treatment of epilepsy. Electroencephalogram (EEG) is the most commonly used biological measurement to effectively
capture the abnormalities of different brain areas during the EEG seizures. To avoid manual visual inspection from
long-term EEG readings, automatic epileptic EEG seizure detection has become an important research issue in

Results: We present a multi-context learning approach to automatically detect EEG seizures by incorporating a
feature fusion strategy. We generate EEG scalogram sequences from the EEG records by utilizing waveform transform
to describe the frequency content over time. We propose a multi-stage unsupervised model that integrates the
features extracted from the global handcrafted engineering, channel-wise deep learning, and EEG embeddings,
respectively. The learned multi-context features are subsequently merged to train a seizure detector.

Conclusions: To validate the effectiveness of the proposed approach, extensive experiments against several baseline
methods are carried out on two benchmark biological datasets. The experimental results demonstrate that the
representative context features from multiple perspectives can be learned by the proposed model, and further
improve the performance for the task of EEG seizure detection.

Keywords: Context learning, Deep learning, Epileptic seizure, Electroencephalogram, Feature extraction

Background

Epilepsy is the fourth common neurological disease
globally, and there are approximately 50 million people
affected by epilepsy worldwide [1]. People with epilepsy
are two to three times more likely to die prematurely
compared to non-affected individuals [2]. Although anti-
epileptic drugs are successful with certain individuals,
about 30% of patients are unresponsive to such phar-
macological intervention [3]. Epilepsy is characterized
by unprovoked seizures associated with sudden irregular
neuronal discharges in the brain [4]. In order to provide
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treatment and prevention to patients, epileptic seizure
detection has garnered great interest among researchers
in bioinformatics.

The recent advancement in sensor technologies has
opened the possibility of closely monitoring patients’
conditions for a wide range of biomedical applications
[5-7]. The biological data recorded by pervasive sensors
can be used to analyze clinical observations of epileptic
seizures, and thus improve the treatment of epilepsy [8].
In particular, the brain electrical activity can be effectively
measured via electroencephalogram (EEG). For instance,
multi-channel scalp EEG signal, a non-invasive biological
measurement monitored by multiple EEG electrodes, is
able to capture the abnormalities of different brain areas
during the seizure. Unfortunately, long-term EEG visual
inspection is extremely laborious for physicians, and
requires highly-trained scarce neurological professionals
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to diagnose epilepsy [9]. This has motivated researchers
to develop automatic EEG seizure detector using machine
learning methodologies.

Most existing EEG seizure detectors can be regarded as
a classification model containing four components: data
acquisition, preprocessing, feature extraction, and clas-
sification [10]. Among these steps, feature extraction is
key, since its aim is to characterize distinctive EEG pat-
terns, which directly affect the performance of seizure
detector. Consequently, on one hand, various handcrafted
features have been employed to detect EEG seizures. Of
the numerous available approaches, wavelet transform, an
excellent tool for non-stationary and transient biological
signal processing, stands out due to its effectiveness [11, 12].
Wavelet transform provides both time and frequency sig-
nal views simultaneously [13]. Not only can it be used
for signal denoising, it can also extract the features with
tiny variations and sudden changes that are difficult for
physicians to observe. On the other hand, deep learn-
ing techniques have been adopted to automatically learn
features from epileptic EEG signals [14, 15]. These deep
learning-based methods have been proposed to capture
seizure patterns from raw biological data by using multi-
layer neural networks. Previous studies have validated that
deep learning can achieve better detection performance
than handcrafted feature engineering.

Despite many deep learning studies reporting promis-
ing results in EEG seizure detection, some challenges still
need to be addressed. One of the major challenges is that
most methods ignore the dynamic correlations between
EEG timestamps and randomly feed each timestamp to
the classifier. This leads to the failure of recognizing tem-
poral signal patterns. Another challenge is the ambiguity
of feature extraction. Since the EEG data always contains
multiple channels, adopting conventional deep learning
methods can hardly extract enough features for the task of
EEG seizure detection [16]. Complementary information
need to be extensively incorporated to enhance the feature
representation.

In order to address the above challenges, we propose a
multi-context seizure detection approach to unsupervis-
edly learn features of multi-channel EEG data from differ-
ent perspectives. Specifically, we first utilize a fix-length
sliding window to segment the entire EEG records into
fragments, and adopt wavelet transform as preprocessing
to express the fragment sequence in the time-frequency
domain, depicted as EEG scalogram sequence. Taking the
advantage of context learning in bioinformatics [17-19],
we propose to incorporate handcrafted features to further
capture representative patterns of EEG seizures. We sum-
marize the main contributions of this paper as follows:

e We develop a channel-wise deep learning module to
learn a dictionary of EEG scalogram fragments by
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unsupervisedly extracting inherent features from
each EEG channel.

e We develop a embedding-based module, i.e., EEG
embeddings, to learn temporal features from EEG
scalogram sequence translated by the learned EEG
dictionary.

e We propose a new multi-context fusion approach
that explicitly incorporates the features extracted
from the global handcrafted engineering,
channel-wise deep learning, and EEG embeddings
modules. The integrated features are subsequently
used for EEG seizure detection.

® We empirically demonstrate that the proposed
approach outperforms seven existing EEG seizure
detection methods on two benchmark datasets.

The rest of the paper is organized as follows: The
details of the proposed seizure detection approach are
introduced in “Methods” section. Experimental results are
presented and analyzed in “Results” section. “Discussion ”
section discusses the effectiveness of our model, and the
study is concluded in “Conclusions” section.

Methods

In this section, we present the overview of our EEG seizure
detection approach, followed by detailed discussions of
each part of the proposed model.

Framework

Figure 1 illustrates the framework of our proposed
seizure detection model. Our approach aims at capturing
latent seizure characteristics from EEG records in vari-
ous aspects. Since the EEG records are time series and
contain different physiological patterns in different inter-
vals (i.e., timestamps) [20], we firstly segment and con-
vert the entire EEG records into several EEG scalogram
sequences using wavelet transform. Then we propose to
extract EEG context features in three aspects, referred
to as global, channel-wise, and temporal features, utiliz-
ing global principal component analysis (GPCA), stacked
denoising autoencoders (SDAEs), and EEG embeddings,
respectively. Finally, all the learned features are concate-
nated and fed to a support vector machine (SVM) classi-
fier [21] for EEG seizure detection.

EEG scalogram representation

Brain abnormality is often reflected by increased ampli-
tudes and frequency changes in EEG signals [22]. Thus,
incorporating signal processing knowledge into EEG
seizure detection is able to enhance its performance.
Wavelet transform enables us to represent each EEG
fragment with an EEG scalogram in the time-frequency
domain, making our model robust against signal shift-
ing and noise over time. Formally, given a single-channel
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Fig. 1 Schematic illustration of the overall approach pipeline. In this framework, we focus on extracting EEG context features in three aspects,
referred to global, channel-wise, and temporal features, utilizing global principal component analysis (GPCA), stacked denoising autoencoders
(SDAEs), and EEG embeddings, respectively. Then we feed the integrated features to the seizure detector

EEG fragment x(£), we can generate its scalogram using
continuous wavelet (CWT) [13], as follows:

scalogram, (a, 1) =|CWTx(a, 1) 12

00 _ 1
_ %/ X()W* <tar) dt?, M

where W is the mother wavelet, and the asterisk denotes
the function of complex conjugate. Here the dilation
parameters ¢ and 7 in Eq. (1) determine the oscillatory fre-
quency and shifting position of the wavelet, respectively.
In this way, we can describe the time-varied frequency
content in epileptic EEG signals, and further extract fea-
tures using our proposed multi-context learning mod-
ule. In our model, we employ Morlet, a commonly used
mother wavelet, to generate EEG scalogram.

EEG multi-context learning

The motivation of learning multi-context features arises
from the inability of a single feature to reach accurate and
robust performance. In particular, we attempt to unsu-
pervisedly extract a set of abstract features from EEG
scalogram sequences by incorporating the inter and intra
correlations of EEG channels, as well as the dynamic
relationships among EEG timestamps, namely global,
channel-wise, and temporal features, respectively.

Principal component analysis for EEG global feature selection
To alleviate the influence of feature irrelevancy and redun-
dancy, according to the handcrafted feature engineering,
we adopt GPCA to derive top-k principal components of

all-channel EEG scalograms, referred to the global fea-
tures. The principal component number k is optimized by
employing the leave-one-out validation [23]. In this way,
we can exclude redundant and irrelevant information car-
ried by each EEG channel to enhance the inter-channel
representation.

Deep model for EEG channel-wise feature learning
Regarding the generated EEG scalograms, we take them
as spectral images and separately extract their spatial fea-
tures from each channel, referred to the channel-wise fea-
tures. More specifically, the EEG scalogram fragments of
each EEG channel are further processed through SDAEs
[24] constructed by a series of denoising autoencoders
(DAE) [25].

DAE is a neural network with one hidden layer, which
can be expressed by learning an encoder network and a
decoder network, as shown in Fig. 2a. In order to uncover
robust hidden representations, different from the con-
ventional autoencoder (AE) [26], DAE randomly corrupts
input data X by sampling & ~ Py (X | x) before the feature
encoding. In our model, we assume that there are C chan-
nels of the input. Given the input vector of each channel
x, we can obtain its reconstruct vector y by:

y=hwypx) =f (W(l+1)f (W(% + b(”) + b(’“)), @)

where b® and W are the learnable bias vector and
weight matrix in the /-th layer, respectively. Here in Eq. (2),
we use the sigmoid as the activation function defined as
f(z) =1/(1 + exp(—2z)). Subsequently, given an unlabeled
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Fig. 2 Deep model for EEG channel-wise feature learning. We separately extract spatial features of scalograms from each EEG channel. a represents
the structure of DAE network and b represents the structure of SDAEs network

training sample x) € R”, we use cross entropy to mea-
sure the reconstruction error between the input x and
output y?, as follows:

G (4 (49)) = 3 4 s o)

k=1
+ (1= ) 10g (1-5")].

By stacking DAE, we obtain a deep neural network, i.e.,
SDAEs, as shown in Fig. 2b. We adopt greedy layer-wise
strategy [27] to train the SDAEs model. In particular, the
output hidden features extracted from the previous layer
of SDAEs is fed to the next layer as input. The learn-
able parameters of each layer is trained individually while
keeping the parameters of the previous layers fixed. After
the training, in our model, we combine all the channel
features in the last hidden layer of SDAEs as the channel-
wise features. These features are effective to represent
the unique characteristics of each channel in a high-order
vector space.

Furthermore, as the SDAEs is trained, we also obtain
a dictionary of basic EEG scalogram patterns (i.e., EEG
words), where each pattern corresponds to one hidden
unit and can be represented as the one-hot index value
of hidden unit. Since different activation values of hid-
den units reflect different word distributions, each EEG
fragment can be then regarded as a weighted combination
of EEG words contained in the learned EEG dictionary
[18]. In this way, we can utilize a max probability pool-
ing to sample (i.e., translate) the EEG fragment as an EEG
word to further represent the main EEG pattern activated
in this fragment. Consequently, a sequence of EEG scalo-
grams can be translated into a sequence of EEG words,
regarded as EEG sentence, shown in Fig. 1. This cre-
ates an interpretable bridge between signal processing and
semantic learning, providing a different angle to analyze
EEG signals.

EEG embeddings for temporal feature extraction

In the task of biosignal processing, previous studies have
validated the effectiveness of using temporal features to
represent raw EEG signals [17, 18]. In our model, we adopt
a similar strategy to extract temporal features utilizing the
translated EEG sentence, referred to EEG embeddings.
The main idea of learning EEG embeddings is to represent
each EEG word as a unique fixed length vector and predict
the current EEG word based on its context words. In this
step, EEG words with similar semantics would be mapped
to close positions in the embedding space incorporating
the context information [28].

Figure 3 illustrates the training step of EEG embeddings,
where w; denotes the current EEG word at timestamp ¢,
and wy_o ~ wyro denote the context EEG words at the
previous 2 and the following 2 timestamps. Each EEG
word w; is mapped into a unique real-valued vector v, €
R, where g is the pre-defined dimensionality of EEG
embeddings. Then, we use the softmax function to infer
the current word w; according to the integrated context
word vectors.

Given an T-length EEG sentence {wy,t = 1,2,.., T}, we
define the objective function of EEG embeddings (EMB)
by maximizing the average log probability to train the EEG
embeddings, as follows:

1 T—k
LeMB :? Z logp (Wt | We—to We—k+15" Wt+k)
t=k
1 T—k
= D logp (we | ctx(wy)),
t=k
where p (w; | ctx (wy)) denotes the prediction function
that infers the current EEG word based on its context EEG
words {Veexw,) £ = 1,2,---, T}

Due to the large amount of context information, the
training process of EEG embeddings is time consuming.
To avoid this, we use a hierarchical structure to reduce
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Fig. 3 Framework of the EEG embeddings algorithm. We adopt a CBOW-based model to extract the temporal features from EEG scalogram

the time complexity from O(n) to O(logn). More specif-
ically, a hierarchical softmax function based on a binary
Huffman tree is utilized. In a Huffman tree, the shortest
path is assigned to the most frequent EEG word. Thus, our
objective function can be further defined as:

me

pw | etxw) = [Tp (4" | Intg ), 6,),  (3)
j=2

where d}”‘ € {0, 1} is the Huffman code of word w; in node
j, and 9}1’1 denotes the parameters of the sub-softmax
functions on the Huffman tree path of word w;. Here the
function Intg(-) in Eq. (3) denotes the integration of the
context EEG word vectors, which is typically an average or
a concatenation of the context vectors. Subsequently, the
sub-softmax probability of hierarchical softmax function
can be calculated as:

g <d’W ‘[Intg (we) ’01'%) - P((@%)Tlntg (Wt))}l_d]%

sy ]

The EEG embeddings can be trained with back-
propagation. According to the constructing strategy of
Huffman tree, more frequent EEG words are assigned
shorter codes, and only the nodes on the path need to be
updated for each training sample. This would effectively

reduce the training complexity. After training all the EEG
sentences, we can obtain a set of EEG embedding vectors
with EEG semantic properties. These properties refer to
the temporal relationship, since we incorporate the con-
text information carried by the ordered EEG words in EEG
sentence.

Seizure detection using EEG multi-feature fusion

Based on the above learned multi-context features, we
merge them together to derive a fusional hidden represen-
tation. Formally, given a training data x”, we can obtain
the fusional feature of this sample as follows:

D= [0 00 000 REE
where @ denotes the concatenation operator, k is the fea-
ture index, and #; denotes the dimensionality of each base
feature. The integrated fusional vectors with the corre-
sponding labels are then fed to train a seizure detector
using SVM classifier [21]. Taking the advantages of multi-
context features, SVM can learn a more distinct hyper-
plane to separate the non-ictal and ictal classes in the
vector space.

Results

To validate the performance of our proposed approach for
EEG seizure detection, we conduct computational exper-
iments on two benchmark datasets. After describing the
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datasets and our experiment settings, we briefly present
quantitative results, to measure the quality of the features
extracted by our proposed method.

Datasets

In the experiments, two benchmark EEG datasets, named
the CHB-MIT dataset and the Bonn dataset, are used for
evaluation.

The CHB-MIT dataset is collected from the Children’s
Hospital Boston [29]. This dataset is open access avail-
able and can be downloaded at the PhysioNet [30]. In this
dataset, the multi-channel EEG signals are captured from
23 patients suffering from intractable seizures. Experts
annotated the beginning and end of each seizure as
ground truth. The EEG records consist of 23 channels, and
the data of each channel is recorded at 256 Hz with 16-bit
resolution. Figure 4 illustrates two examples of multi-
channel EEG seizure onset within two different patients
on the CHB-MIT dataset. Following the previous work
[17], to enlarge the sample numbers, we generate 4302
23-channel EEG fragments from nine different patients
by sliding a 3sec fix-length window with 1sec step length
through the entire EEG signals.

The Bonn dataset is also a public dataset collected at
the University of Bonn [31]. This dataset is categorized
into 5 subsets (referred to A-E) according to expert visual
inspection. Each subset contains 100 single-channel EEG
signals of 23.6 s obtained from 5 patients. The EEG data
is recorded at 173.61 Hz with 12-bit resolution. The raw
EEG samples from sets A, B, C, D and E are shown in
Fig. 5. Note that only subset E contains epileptic seizure
activity. We adopt the same segmentation strategy and
generate 10500 single-channel EEG fragments from all the
subsets.

From the figures on the two datasets, we can observe
that the EEG patterns are different among patients on
both datasets, and the rhythms vary across channels

Page 52 of 128

unevenly and irregularly on the CHB-MIT dataset. This
makes it difficult to detect EEG seizures from multi-
channel records than the single-channel records.

Experiment settings

In our experiment, each EEG fragment is labeled based
on the ground truth as in one of the two classes: ictal and
non-ictal states. Taking the computational expense into
consideration, we adopt hold-out validation in the same
way to [17, 32, 33]. Note that the holding-out portions of
the dataset is a manner similar to cross-validation. In par-
ticular, we randomly divide the data to training and testing
folds with ration 4 : 1. Due to the scarcity of abnormal
events, we trim our experiment data to balance the num-
ber of ictal and non-ictal fragments. Furthermore, facing
the high-dimensional inputs caused by multiple channels,
we adopt 2-layer SDAEs for each EEG channel. We set 80
as the hidden size of the first layer and 60 for the second
layer. The embedding size is fixed to be 20. Some training
strategies including normalization and regularization are
also utilized for our model.

Evaluation metrics. Since the seizure detection task
belongs to a classification problem, we quantify the eval-
uation results according to the confusion matrix. Table 1
lists four different measurements used in our experi-
ments, where TN, TP, EN, FP are true negative, true
positive, false negative, and false positive, respectively.
In addition, precision-recall (PR) and receiver operator
characteristic (ROC) curves are plotted, respectively, to
illustrate the quality of different seizure detectors. We also
calculate the area-under-the-curve (AUC) of both two
(i.e., AUC-PR and AUC-ROC), to measure the diagnostic
ability of each method.

Baselines. We employ several widely used classifica-
tion algorithms as the baseline methods such as standard
SVM [21], neural networks (NN) [34], and SDAEs [24].
For the sake of fairness, we employ principal component
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Fig. 4 Two raw samples of multi-channel EEG signals on the CHB-MIT dataset. The red bar marks the beginning of EEG seizure, and both patients a
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Fig. 5 Four raw single-channel EEG samples on the Bonn dataset. Among all the subsets, only subset E contains epileptic seizure activity

analysis (PCA) [23] as the data preprocessing mecha-
nism for each method, referred to PSVM, PNN, and
PSDAEs, respectively. We select top-k components with
the same dimension of our proposed model. We also
employ these methods in the time-frequency domain
using wavelet transform, named WT-PSVM, WT-PNN,
and WT-PSDAEs. Moreover, we compare the state-of-
the-art context learning method Context-EEG [17] which
incorporates the temporal features for the task of EEG
seizure detection.

Detection performance
We compare the seizure detection performance of our
proposed model (W T-CtxFusionEEG) with the aforemen-
tioned baseline methods. We also implement a reduced
model (WT-CtxEEG) that combines the previous Con-
textEEG method with our scalogram sequence repre-
sentations. We summarize the testing results of seizure
detection in Tables 2 and 3. We can observe that the over-
all performance of our proposed WT-CtxFusionEEG is
better than the baselines in terms of all the six evaluation
measurements.

From the given results, most methods on the CHB-MIT
dataset perform worse than those on the Bonn dataset.

Table 1 Evaluation metrics definition

Measure Definition

Precision TP/ (TP + FP)

Recall TP/ (TP + FN)

F1-score 2xPxR/(P+R)

Accuracy (TP + TN)/(TP + TN + FP + FN)

This is because the rhythmic patterns in the multi-channel
EEG records are less observable than those in the single-
channel records. Although multiple channels can provide
more information to describe EEG seizures, they also
introduce high dimensions to data since some channels
may be irrelevant and redundant to the seizure with dif-
ferent individuals [32]. Thus, most of the classifiers can
easily extract distinct features benefiting from the sim-
ple patterns in frequency and amplitude on the Bonn
dataset. In this situation, our WT-CtxFusionEEG method
can achieve the best result of 100% in terms of F1-score
and Accuracy.

Given the results of baselines, the NN-based mod-
els perform worse than the SVM-based models in the
time domain, but achieve better in the time-frequency
domain. It is because the raw biosignals contain noise that
makes the neural network hard to reach a global mini-
mum using gradient decent optimization algorithm. This
observation can also be found from the performance com-
parison in different domains that most of the models take
advantages of the EEG scalogram representation. We can
justify that EEG seizure detector can capture more pow-
erful information by incorporating handcrafted features.
From the results, we can also observe that the perfor-
mance of WT-PSDAEs, utilizing standard deep learn-
ing method, is better than WT-PNN and WT-PSVM.
It results from the high-quality hidden features learned
from the EEG scalograms. Regarding the context learn-
ing, both the Context-EEG and WT-CtxEEG models yield
better results compared with the other corresponding
baselines, respectively. The reason is that the temporal
features extracted by such models help to enhance the
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Table 2 Detection performance comparisons on two benchmark datasets
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CHB-MIT Dataset

Bonn Dataset

Method Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy
PSVYM 0.8887 0.8766 0.8826 0.8136 1.0000 0.5593 0.7174 0.6060
PNN 0.6460 0.8981 0.7515 0.6630 0.9640 0.6301 0.7621 0.6990
PSDAEs 0.6625 0.8988 0.7627 0.6750 0.9760 0.7625 0.8561 0.8360
Context-EEG [17] 0.7408 0.9560 0.8348 0.7687 0.9980 0.8559 0.9215 0.9150
WT-PSVM 0.8142 0.9200 0.8638 0.7976 1.0000 0.8993 0.9470 0.9440
WT-PNN 0.8192 0.9863 0.8950 0.8485 1.0000 0.9025 0.9488 0.9460
WT-PSDAES 0.9027 09177 0.9101 0.85%4 1.0000 0.9276 0.9625 0.9610
WT-CtxEEG 0.9166 0.9837 0.9490 0.9222 1.0000 0.9634 0.9814 0.9810
WT-CtxFusionEEG 0.9608 0.9865 0.9725 0.9571 1.0000 1.0000 1.0000 1.0000

feature representation. Furthermore, given the best result
achieved by WT-CtxFusionEEG which adopts the strat-
egy of integrated feature representation, we can conclude
that our proposed model is able to capture representative
features from EEG signals.

Figure 6 illustrates the PR and ROC curves of each
method on the CHB-MIT dataset, respectively. From the
PR curves shown in Fig. 6a, we can see that the precision
rate of the WT-CtxFusionEEG model decreases slowly at
the beginning, which means that WT-CtxFusionEEG is
able to obtain critical information to separate data effec-
tively. This observation can also be found from the ROC
curve of WT-CtxFusionEEG, where the true positive rate
increases fast from the start, as shown in Fig. 6b. More-
over, according to the results listed in Table 3, the pro-
posed WT-CtxFusionEEG method achieves the best AUC
of 0.9649 and 0.9874 in terms of the PR and ROC, com-
pared with the reduced model (W T-CtxEEG) with 0.9249
and 0.9782, respectively. Based on all the above analysis,
we can conclude that our proposed WT-CtxFusionEEG
approach can learn hidden representations in different

Table 3 AUC of ROC and PR curves of each method on two
benchmark datasets

CHB-MIT Dataset Bonn Dataset

Method AUC-ROC AUC-PR AUC-ROC AUC-PR
PSVM 0.7283 0.6012 0.6987 08111
PNN 0.7754 0.5487 0.8548 0.8608
PSDAEs 0.7166 0.3679 0.9608 0.9620
Context-EEG [17] 0.8784 0.8304 0.9930 0.9925
WT-PSVM 0.8552 0.7411 0.9706 0.8603
WT-PNN 0.9432 0.7701 0.9696 09718
WT-PSDAEs 08214 0.7577 0.9779 0.9853
WT-CtxEEG 0.9782 0.9249 0.9994 0.9974
WT-CtxFusionEEG 0.9874 0.9649 1.0000 0.9980

aspects, and the multi-context fusion strategy provides
complementary information towards each other, which is
key for EEG seizure detection.

Discussion

To further analyze the performance of our proposed
WT-CtxFusionEEG approach, in this section, we conduct
extensive experiments to discuss the effectiveness of our
model.

Parameter sensitivity analysis

We conduct sensitivity analysis to discuss the impact of
hyper-parameter configuration on the CHB-MIT dataset.
Specifically, we study two main aspects that are the
size of inherent units and the the size of embed-
dings, respectively. We plot the Accuracy and F1-score
results using different settings of hyper-parameters, as
shown in Fig. 7. Note that we use the aforementioned
hyper-parameter setting as the basic configuration of our
WT-CtxFusionEEG model. In each step, we vary one
hyper-parameter while keeping others fixed to the basic
configuration.

Inherent unit size. Fig. 7a shows the change of Accuracy
and F1-score for different sizes of hidden units. From the
figure, we can observe that the proposed model gets the
best performance when the layer size is 80-60. We can
also see that the dimension of hidden structure is reduced
effectively and 80-60 is enough to capture the inherent
features for each EEG channel. While too few hidden units
would result in the proposed models being unable to learn
enough features, too many hidden units would also put the
proposed model at the risk of the curse of dimensionality.

Embedding size. We report the experimental results
using different embedding sizes in Fig. 7b. From the
figure, we can see that when the size of embedding vec-
tor is small, our model lacks the capability of capturing
temporal features, resulting in limited performance on
both Accuracy and Fl-score. As we increase the size
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Fig. 6 PR and ROC curves of the baselines and proposed methods on the CHB-MIT dataset. a plots the PR curves and b plots the ROC curves

of embedding vector, our model shows an increasing
modeling power. However, when the size is too large, we
have insufficient samples to train the EEG embeddings,
which results in a worse performance and stability. In our
experiment, we choose 20 as the size of EEG embeddings.

In summary, despite of the influence, it is obvious
that our proposed WT-CtxFusionEEG model consistently
beat the baseline methods with different hyper-parameter
settings.

Wavelet comparative analysis

We discuss the performance influences of the pro-
posed WT-CtxFusionEEG model using various mother
wavelet functions, including the Morse, Bump, and Morlet
wavelet. Table 4 lists the comparative performance under
different mother wavelets based on the same parameter
configuration on the CHB-MIT dataset. From the table,
when the mother wavelet changes, our proposed WT-
CtxFusionEEG model is stable and can still achieve com-
parable results. The comparison among wavelet functions
shows that the Bump wavelet performs worse than the
others. This is because the variance of Bump in frequency

is relatively narrow, and the generated scalogram lacks
to preserve detailed frequency information. The Morlet
wavelet, adopting equal variance in time and frequency;,
performs the best, which demonstrates that the Morlet
wavelet is more suitable for EEG seizure detection.

Conclusions

In this paper, we present and evaluate our proposed multi-
context learning approach (WT-CtxFusionEEG) for auto-
matic EEG seizure detection. The proposed approach is
a multi-stage unsupervised feature learning model that
explicitly takes into account the features extracted from
three modules, including the global handcrafted engineer-
ing, channel-wise deep learning, and EEG embeddings.
We transform EEG signals into time-frequency domain
via wavelet transform, and generate the EEG scalogram
sequence. We adopt GPCA to derive the global features
from all-channel EEG scalograms in handcrafted feature
space. The channel-wise inherent features are separately
extracted from each EEG channel through SDAEs. We
develop EEG embeddings to extract the temporal fea-
tures with EEG semantic properties. To train the EEG
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Fig. 7 Performance variations with different parameter settings on the CHB-MIT dataset. a shows the sensitivity analysis with different sizes of
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Table 4 Comparative performance of WT-CtxFusionEEG under
different mother wavelets on the CHB-MIT dataset

Mother ~ AUC-ROC AUC-PR Precision Recall F1-score Accuracy
Wavelet

Morse 09543 09195 09279 09748 0.9508  0.9242
Bump  0.9642 09362 09039 09781 0.9396  0.9083
Morlet  0.9874 09649  0.9608 0.9865 0.9725 0.9571

seizure detector, the learned multi-context features are
subsequently merged for classification. The effectiveness
of the proposed method is evaluated on two benchmark
biological datasets against several baselines. We empiri-
cally demonstrate that WT-CtxFusionEEG can learn rep-
resentative features from different perspectives to better
understand the characteristics of EEG seizure patterns.
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