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Cathepsin L (CTSL), a cysteine protease that can cleave and activate the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) spike protein, could be a promising therapeutic target for coronavirus
disease 2019 (COVID-19). However, there is still no clinically available CTSL inhibitor that can be used.
Here, we applied Chemprop, a newly trained directed-message passing deep neural network approach,
to identify small molecules and FDA-approved drugs that can block CTSL activity to expand the discovery
of CTSL inhibitors for drug development and repurposing for COVID-19. We found 5 molecules (Mg-132,
Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin) that were able to significantly inhibit the activ-
ity of CTSL in the nanomolar range and inhibit the infection of both pseudotype and live SARS-CoV-2.
Notably, we discovered that daptomycin, an FDA-approved antibiotic, has a prominent CTSL inhibitory
effect and can inhibit SARS-CoV-2 pseudovirus infection. Further, molecular docking calculation showed
stable and robust binding of these compounds with CTSL. In conclusion, this study suggested for the first
time that Chemprop is ideally suited to predict additional inhibitors of enzymes and revealed the note-
worthy strategy for screening novel molecules and drugs for the treatment of COVID-19 and other dis-
eases with unmet needs.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The emergence of coronavirus disease 2019 (COVID-19), caused
by the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has created a massive crisis for global public health.
Several effective vaccines have now been put into use[1–3], but
new variants continue to emerge, and in particular, the delta
(B.1.617.2) variant of SARS-CoV-2 has spread rapidly across conti-
nents, and the omicron variant, a newly emerged SARS-CoV-2 vari-
ant, may be more transmissible than all the previous variants and
partly resistant to existing vaccines[4–7]. On the other hand, vac-
cines are not as convenient and acceptable to people as drugs,
and millions of immunocompromised persons are unlikely to
respond robustly to vaccination[8]. It remains critical to rapidly
develop therapeutic drugs for COVID-19. Remdesivir is the only
approved antiviral drug for COVID-19 thus far, which targets of
RNA-dependent RNA polymerase (RdRp). This turns out to be not
effective as announced by the World Health Organization (WHO)
and European Medical Association[9–11]. Therefore, broadening
the spectrum of therapeutic targets is important. Recent studies
have attempted to develop antiviral drugs by focusing primarily
on the host cell receptor angiotensin-converting enzyme 2
(ACE2) and the surface protease transmembrane protease serine
2 (TMPRSS2), the spike (S) protein, the main protease (Mpro) and
the papain-like protease (PLpro), and the results of some of these
studies have already been reported, but their efficacy is still under
evaluation[8,11].

Cathepsin L (CTSL), an endosomal cysteine protease, is another
host cell protease that has an essential role in coronavirus infection
[12]. In our recent study, we revealed that the circulating level of
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CTSL was elevated after SARS-CoV-2 infection and was positively
correlated with disease course and severity[13]. We confirmed that
knockdown CTSL by siRNAs led to a significant dose-dependent
reduction in SARS-CoV-2 pseudovirus cell entry in Huh7 cells,
while overexpression of CTSL using plasmids markedly increased
pseudovirus cell entry in a dose-dependent manner[13]. Further-
more, E64D, one of the well-known CTSL inhibitors, significantly
inhibited CTSL activity and prevented SARS-CoV-2 pseudovirus
infection both in human cells and in humanized mice (hACE2
transgenic mice)[13]. In the current study, we revealed that the
lentivirus expressing human CTSL (Lv-CTSL) significantly upregu-
lated CTSL protein level and enhanced SARS-CoV-2 pseudovirus
infection in a dose-dependent manner, while the lentivirus
expressing shRNA against human CTSL (Lv-shCTSL) significantly
reduced CTSL protein level and attenuated pseudovirus infection
in a dose-dependent manner both in Huh7 cells and A549 cells
(Supplementary Fig. 1A-F). Of note, Nie X et al. found that CTSL
expression was significantly upregulated in multiple internal
organs of COVID-19 patients and that this upregulation of CTSL
expression might contribute to excessive inflammatory activity
[14]. We further found that SARS-CoV-2 infection promotes CTSL
gene transcription and enzyme activity. Upregulation of CTSL
expression, in turn, enhances SARS-CoV-2 infection[13]. Obviously,
CTSL is thus a promising therapeutic target for COVID-19. Unfortu-
nately, there is no currently available drug that can specifically
inhibit CTSL[15].

Computational drug repurposing screening is an effective
approach that can aid in determining new indications for existing
drugs[16]. Various computational techniques and software pro-
grams are typically used in drug repurposing. Chemprop, a newly
trained directed-message passing neural network (MPNN) that
was used to discover promising new antibiotics by predicting the
likelihood that a molecule would inhibit the growth of E. coli[17],
shows strong molecular property prediction capabilities across a
range of properties[18]. As a new deep learning approach for drug
repurposing, Chemprop can automatically map molecules into
continuous vectors to predict their properties, which provides bet-
ter preservation of molecular information than other methods[18].
In this study, we combined in silico predictions and empirical
investigations to discover new CTSL inhibitors. In our efforts to
identify small molecules to expand the discovery of CTSL inhibitors
for drug development and FDA-approved drugs that can inhibit
CTSL for drug repurposing for COVID-19, the Selleck bioactive com-
pound libraries, the ZINC in vitro compound library and the FDA-
approved drug library were screened for their ability to inhibit
CTSL. We found a number of compounds and several drugs display-
ing activity inhibition against CTSL, and the most active ones were
selected for further investigation of their antiviral activity against
SARS-CoV-2.
2. Materials and Methods

2.1. Model training and predictions

We translated every molecule from its simplified molecular
input line entry specification (SMILES) string into a molecular
graph structure, with nodes representing atoms and edges repre-
senting chemical bonds. The feature vectors of nodes and edges
were initialized using their corresponding computable features,
such as atomic mass and bond type, respectively[18]. We then
trained a graph neural network to predict whether a molecule inhi-
bits the activity of CTSL in a supervised fashion[19].

In particular, we trained a bond-level directed-message passing
neural network to learn to encode the molecular graph structure
into a hidden vector representation[17]. The initial hidden state
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for each directed bond is the concatenation of the bond vector
and the corresponding atom vector encoded by a fully connected
layer with nonlinear activation. We aggregated all directed bond
information on each step of message passing by summing the mes-
sages from neighboring bonds and then concatenating the sum
with its message. Another fully connected layer will then encode
this hidden vector, learning to understand the local chemistry. This
message passing step was repeated a fixed number of times, and all
directed bonds’ learned hidden states were aggregated and
summed to produce a single vector encoding the whole molecule.
Finally, a fully connected classifier decoded this learned vector to
predict whether the molecule is an inhibitor of CTSL as a binary
classification task.

2.2. Deduplication

We applied a data deduplication algorithm to ensure our train-
ing set and testing set are mutually exclusive. In detail, SMILES is a
specification to represent a chemical structure in strings. There are
many possible SMILES strings to describe a chemical structure in
most cases. In response to this situation, we utilized the canonical-
ization algorithm implemented in RDKit[20] to generate the
canonical SMILES string for each molecule during the data collec-
tion. These canonical SMILES strings are unique for each chemical
structure, and therefore, we can remove test molecules that exist
in the training set.

2.3. T-distributed stochastic neighbor embedding (t-SNE)

We projected the learned representation of the molecules onto
a 2D space using t-SNE for further investigation. T-SNE is a statis-
tical method that first constructs a probability distribution over
pairs of high-dimensional data in which similar data are assigned
a higher probability and vice versa. Then, it defines another simi-
larity probability distribution in a low-dimensional map and
attempts to minimize the Kullback-Leibler divergence between
the joint probabilities of the two distributions. Specifically, we
used the implementation of scikit-learn with the default values
for all parameters to perform the calculation.

2.4. Hyperparameter optimization

We applied the Bayesian hyperparameter optimization scheme
to improve our model because hyperparameters are often crucial
for the performance of neural network models. Bayesian optimiza-
tion is an efficient and effective technique based on the Bayes the-
orem. By building a probabilistic model, all the previous trials will
become prior knowledge to effectively identify a better set of
hyperparameters for our model. We ran 20 iterations of Bayesian
optimization, searching for the number of message-passing steps,
neural network hidden size, number of feed-forward classifier lay-
ers, and dropout probability. Our search space and the best param-
eters are shown in Supplementary Table 1.

2.5. Analysis of CTSL activity in a cell-free system

The inhibition of CTSL by small molecules or drugs was evalu-
ated in a cell-free system using a commercially available kit
(Abcam, Cat. No. ab65306) according to the manufacturer. In detail,
5 ll of CTSL protein (25 mg/L), which was prepared from human
liver tissue (Sigma-Aldrich, Cat. No. C6854) was used as the
enzyme in this cell-free enzymatic reaction system. For the prelim-
inary screening, all the molecules and drugs were prepared at a
concentration of 5 mM. 2 ll of these 5 mM molecules or drugs
was added to the set 100 ll system (5 ll of CTSL protein (25 mg/
L) + 90 ll of CL buffer + 2 ll of CTSL inhibitor + 1 ll of DTT
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(1 mM) + 2 ll of CL substrate Ac-FR-AFC (10 mM)) to achieve a
working concentration of 100 lM. For further confirmation and
determination of the half maximal inhibitory concentration, all
the molecules and drugs were prepared with a range of concentra-
tions (5 mM, 1 mM, 0.2 mM, 0.04 mM, 4 lM and 0.4 lM) to achieve
a working concentration of 100 lM, 20 lM, 4 lM, 0.8 lM 80 nM
and 8 nM, respectively, and tested as described above. The equiv-
alent amount of solvent was used as a control.

2.6. Cell culture and reagents

The human hepatoma cell line Huh7 and the human lung
epithelial carcinoma cell line A549 were maintained in high-
glucose Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS, Gibco, Carlsbad, CA), 100 units/ml penicillin and
100 mg/ml streptomycin (Thermo Fisher Scientific). The human
Calu-3 lung adenocarcinoma cell line was cultured in minimum
essential medium (Eagle) with 2 mM L-glutamine and Earle’s BSS
adjusted to contain 1.5 g/l sodium bicarbonate, 0.1 mM non-
essential amino acids and 1.0 mM sodium pyruvate and 10% FBS.
All the cells were maintained at 37 �C in a humidified atmosphere
containing 95% air and 5% CO2. Mg-132 (Cat. No. S2619), Z-FA-FMK
(Cat. No. S7391), leupeptin hemisulfate (Cat. No. S7380), Mg-101
(Cat. No. S7386), calpeptin (Cat. No. S7396), daptomycin (Cat. No.
S1373), beta-lapachone (Cat. No. S7261) and other molecules and
drugs were purchased from Selleck (Selleckchem, Houston, TX,
USA). The adenovirus expressing human ACE2 (Ad-ACE2, Cat. No.
AD-h-ACE2-3flag, Pubmed ID: NM_021804) and the control aden-
ovirus (Ad-Con) were purchased from Vigenebio Ltd (China). The
lentivirus expressing human CTSL (Lv-CTSL) and the control len-
tivirus (Lv-Con), the lentivirus expressing shRNA against human
CTSL (Lv-shCTSL) and the control lentivirus (Lv-Scramble) were
purchased from XIEBHC BIO (China). The plasmid expressing
human TMPRSS2 (pCDH-CMV-MCS-EF1-Puro-TMPRSS2, pCDH-
TMPRSS2, NM_005656.3) and the control plasmid (pCDH-CMV-
MCS-EF1-Puro-Con, pCDH-Con) were purchased from Vigenebio
Ltd (China).

2.7. Pseudovirus

The SARS-CoV-2 pseudovirus used in the current study was pur-
chased from Genomeditech (Shanghai, China). It was generated
with the incorporation of SARS-CoV-2 spike protein (SARS-2-S)
into a HIV-based pseudovirus system and have been widely used
in previous studies[21–24]. The pseudovirus expresses the SARS-
CoV-2 S protein on the surface and contains a defective HIV-1 gen-
ome encoding firefly luciferase and a green fluorescent protein as a
reporter[21]. Thus, when the pseudovirus infects the host cells, it
can express luciferase but cannot replicate or assemble into new
viruses. The SARS-CoV-2B.1.351 (Beta) variant pseudovirus con-
taining a luciferase reporter were produced according to our previ-
ous study[25]. Therefore, the luciferase activity was used as
indicators of pseudovirus infection in the current study.

2.8. Luciferase assay

Huh7 cells were seeded into a 96-well plate at a cell density of
0.5�104 per well and allowed to adhere until the cells were
approximately 70% confluent, followed by treatment with different
concentrations of drugs or the equivalent amount of solvent for
1 h. In detail, the concentrations of different drugs were as follow:
Mg-132 (10 nM, 0.1 lM, 0.5 lM, 1 lM and 5 lM), Z-FA-FMK (8 nM,
80 nM, 4 lM, 20 lM and 100 lM), leupeptin hemisulfate (0.8 lM,
4 lM, 20 lM, 100 lM and 400 lM), Mg-101 (80 nM, 0.8 lM, 4 lM,
20 lM and 100 lM), calpeptin (312.5 nM, 3.125 lM, 12.5 lM,
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25 lM and 50 lM), daptomycin (4 lM, 20 lM, 100 lM, 200 lM
and 400 lM), and beta-lapachone (8 nM, 80 nM, 0.8 lM and
4 lM). Then, the cells were infected with SARS-CoV-2 pseudovirus
(1.3x104 TCID50/ml) in a 5% CO2 environment at 37 �C for 24 h
before firefly luciferase activity analysis. The activity of firefly luci-
ferase was measured in cell lysates using luciferase substrate (Per-
kinElmer, BRITELITE PLUS 100 ml KIT, Cat. No. 6066761) following
the manufacturer’s instructions. Briefly, for 96-well plates, the cul-
ture supernatant was aspirated gently to leave 100 ll in each well;
then, 100 ll of luciferase substrate was added to each well. Two
minutes after incubation at 37 �C, 150 ll of lysate was aspirated
to a clean 1.5 ml sterile EP tube to rapidly measure the firefly luci-
ferase activity for each well using a luminometer (Turner BioSys-
tems) as described previously[26]. For A549 cells, the cells were
treated with 25moi Ad-ACE2 when seeded, then the luciferase
assay performed as Huh7 cells as stated above.

2.9. Effect of drug treatment on live SARS-CoV-2 infection

The live SARS-CoV-2 used in this study was described previ-
ously[27]. Huh7 cells were seeded into a 96-well plate at a cell
density of 2�104 per well and allowed to adhere until the cells
were approximately 70% confluent, followed by treatment with
different concentrations of drugs or an equivalent amount of sol-
vent for 1 h. Then, the cells were infected with live SARS-CoV-2
at a multiplicity of infection (MOI) of 0.5 at 37 �C for 1 h, followed
by changing to fresh medium with the indicated concentrations of
drugs. The detection of infected cells was performed 48 h later by
using an immunofluorescence assay (IFA) as described previously
[27,28]. In brief, the infection and replication of the virus were
determined by detecting the nucleoprotein (N) of SARS-CoV-2
using an N-specific polyclonal antibody (Sino Biological, China),
and followed by Alexa Fluor� 488-labelled donkey anti-rabbit sec-
ondary antibody (Jackson). All the cells were stained with 40,6-dia
midino-2-phenylindole (DAPI, Sigma, USA) for nuclear visualiza-
tion. The average infection ratio was analyzed by a Celigo� Image
Cytometer. In brief, DAPI-stained cells were designated total cells,
and N-protein-positive stained cells were designated infected cells.
The average infection ratio was quantified by N-protein-positive
stained cells/DAPI-stained cells, and calculated inhibition rate of
different dosages of drugs compared with virus control. All SARS-
CoV-2 infection experiments were performed in a biosafety level-
3 laboratory.

2.10. Cell viability assay

The effects of Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-
101, calpeptin, daptomycin and beta-lapachone on cell viability
were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H
-tetrazolium bromide (MTT) assay. Huh7 cells were seeded into a
96-well plate at a cell density of 0.5�104 per well and allowed to
adhere until the cells were approximately 70% confluent, followed
by treatment with different concentrations of drugs or the equiva-
lent amount of solvent for 24 h. The concentrations of different
drugs were as follow: Mg-132 lM (10 nM, 0.1 lM, 0.2 lM,
0.5 lM, 1 lM, 5 lM, 25 lM, 50 lM, 100 lM and 200 lM), Z-FA-
FMK (8 nM, 80 nM, 4 lM, 20 lM, 40 lM, 100 lM, 200 lM,
300 lM and 400 lM), leupeptin hemisulfate (0.8 lM, 4 lM,
20 lM, 100 lM, 200 lM, 500 lM, 2.5 mM and 5 mM), Mg-101
(8 nM, 80 nM, 0.8 lM, 4 lM, 20 lM, 100 lM and 200 lM), calpep-
tin (312.5 nM, 3.125 lM, 6.25 lM 12.5 lM, 25 lM, 50 lM, 100 lM,
200 lM, 400 lM and 800 lM), daptomycin (0.8 lM, 4 lM, 20 lM,
100 lM, 200 lM, 500 lM, 2.5 mM and 5 mM), and beta-lapachone
(8 nM, 80 nM, 0.8 lM, 4 lM, 20 lM and 100 lM). Cells without any
treatments were used as the blank control. After treatments, MTT
was added to the culture medium to a final concentration of
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0.5 mg/ml, and then the cells were incubated for 4 h at 37 �C in an
incubator. After removing the culture medium, the cells were lysed
by gently rotating in 200 ll of DMSO for 10 min in darkness at
room temperature. The absorbance at 570 nm was measured using
an automatic plate reader. The average absorbance reflected cell
viability, with the data normalized to the blank control group.
Experiments were performed in quintuplicate and repeated at least
three times.

2.11. Antibodies

Anti-ACE2 were purchased from Abcam (ab108209), Anti-CTSL
were purchased from R&D(AF952-SP), Anti-b-actin were purchased
from sigma(A5316), Anti-TMPRSS2 were purchased from Abcam
(ab109131).

2.12. Real-time PCR assay

Total RNA was extracted from cultured cells using the RNAprep
pure Cell/Bacteria Kit (TIANGEN BIOTECH Corp., Beijing, China),
and the reverse transcription was performed with using RevertAid
First Strand cDNA Synthesis Kit (Fermentas K1622) according to
the manufacturer’s instruction. Real-time PCR was performed on
a Stratagene Mx3000P real-time quantitative PCR system (Agilent
Technologies) using b-actin as the housekeeping gene as described
previously[29]. The primer sequences for the quantitative PCR
assays are as follow, human ACE2 forward: 50-CGAAGCCGAA
GACCTGTTCTA-30, human ACE2 reverse: 50-GGGCAAGTGTG
GACTGTTCC-30. human b-actin forward: 50-CTACAAT
GAGCTGCGTGTGG-30, human b-actin reverse: 50-CCAGAGGCGTA
CAGGGATAG-30. The primer pair 1[30] for TMPRSS2 mRNA whose
products showed as TMPRSS21 in supplementary fig. 5A, forward:
50-TTTGAACTCAGGGTCACCAC-30, reverse: 50-
CCTCTGAGATGAGTACACCTG-30. The primer pair 2[31] for
TMPRSS2 mRNA whose products showed as TMPRSS22 in supple-
mentary fig. 5A, forward: 50- CTCTCCCTAACCCCTTGTCC-30, reverse:
50- AGAGGTGACAGCTCCATGCT-30. The primer pair b[32] for
TMPRSS2 mRNA whose products showed as TMPRSS2b in supple-
mentary fig. 5A, forward: 50- CACTGTGCATCACCTTGACC-30,
reverse: 50- ACACACCGATTCTCGTCCTC-30.

2.13. Receptor protein selection and preparation

We use human CTSL X-ray structures co-crystallized with a
covalent inhibitor from Protein Data Bank (PDB) database (PDB
code 5MQY, resolution 1.13 Å) to perform molecule docking[33].
The Schrödinger protein preparation wizard was used to prepare
each crystal structure[34]. Hydrogen atoms were added and gener-
ated possible metal binding states. Hydrogen bond sampling with
adjustment of active site, water molecule orientations was per-
formed using PROPKA at pH 7.4. Delete artifacts from the crystal
structure and retain water within 5 Å of the binding site. Finally,
the protein-ligand complexes were subjected to geometry refine-
ments using the OPLS3 force field in restrained minimizations[35].

2.14. Ligand preparation

The chemical structures of Z-FA-FMK, Calpeptin, Mg-101(ALLN),
Mg-132, Leupeptin Hemisulfate and Daptomycin were obtained
from PubChem database. These ligands were subjected to LigPrep
(ligand preparation) module of Schrödinger suite. A robust pKa
prediction tool, Epik, was used to generate possible ionization
and tautomeric states at pH 7.4 and each ligand could generate
maximum 32 stereoisomers. The ligands were then minimized by
the OPLS3e force field[36,37].
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2.15. Noncovalent docking

Determination of noncovalent interactions of ligands with CTSL
was done through extra precision (XP) modules. The 5MQY recep-
tor grid was generated using Receptor Grid Generation module of
Schrödinger suite centroid of the co-crystallized inhibitor. The
ligands could be flexible and their nitrogen inversions (pyramidal
nitrogen atoms) and ring conformations were sampled during the
docking process. Only amides were penalized for nonplanar con-
formations as a default setting. Lastly, Epik state penalties were
applied to the docking scores. This is for adopting higher energy
states for ligands that were ionized or tautomerized in the prepa-
ration stage. The output poses per ligand was set to 1 best pose,
while post-docking minimization was also performed.
2.16. Covalent docking

To carry out the covalent docking we used docking modules
available in Schrödinger suite: CovDock in Schrödinger 2021–2
version. CovDock considers custom reactions that are present in
a list of possible covalent reactions (implemented in the software)
using SMARTS pattern, so it is possible to automatically recognize
the reactive residue and the portion of the ligand that are involved
in the reaction. The prepared ligands were selected from a project
table, while a reactive receptor residue (Cys-25) was selected from
a 5MQY protein on the workspace. The customized covalent dock-
ing algorithm was then selected as the reaction type. No con-
straints were imposed on the ligand for docking and pose
prediction mode was selected. The total energy 2.5 kcal/mol was
set as the cutoff to retain poses for further refinement by default,
while the maximum number of poses to retain for further refine-
ment, was 200. The output poses per ligand reaction site was set
to 1 best pose.
2.17. Statistical analysis

All values are depicted as the mean ± SEM. Statistical analysis
was performed using GraphPad Prism software, version 8.0.1. Dif-
ferent treatments were compared with Student’s t test and one-
way ANOVA for two-group and multiple-group comparisons,
respectively. A log(inhibitor) vs. normalized response -- variable
slope test was used for IC50, CC50 and EC50 determination.
P < 0.05 was considered significant. Representative results from
at least three independent experiments are shown unless other-
wise stated.
3. Results

3.1. Initial training dataset selection

To identify potential CTSL inhibitors, we first used Chemprop
MPNNs to build a robust model that can predict CTSL inhibitors.
By searching the publicly available PubChem database with human
CTSL (Gene ID: 1514), we obtained 2067 active molecules which
can inhibit CTSL and 58,070 negative molecules which cannot inhi-
bit CTSL (https://pubchem.ncbi.nlm.nih.gov/gene/1514#section =
Chemicals-and-Bioactivities). Then, we applied a web crawler to
collect simplified molecular input line entry specification (SMILES)
strings from the PubChem database and preprocessed data by
reformatting it and removing compounds with duplicate SMILES
strings. Finally, we obtained 58,997 molecules as the initial train-
ing dataset, with 1558 compounds (2.64%) showing inhibitory
activity against CTSL (Supplementary Table 2).
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3.2. Initial model training and predicting potential CTSL inhibitors
from bioactive compound libraries

After the establishment of the initial training dataset, we used
these data to train a binary classification model that predicts the
probability of whether a new compound will inhibit the activity
of CTSL. Firstly, we applied the Bayesian hyperparameter optimiza-
tion scheme to improve our model. We ran 20 iterations of Baye-
sian optimization to search for the best set of hyperparameters
for our model (see Materials and Methods for details). Secondly,
with the best set of hyperparameters, we randomly split the data-
set into 80% training data, 10% validation data, and 10% test data.
We trained our model on the training data for 30 epochs and iter-
ated over the validation data to compute the performance at the
end of each epoch. After the training, we selected the model with
the best performance on the validation data and evaluated it on
the test data. Additionally, we utilized the ensemble modeling
technique to further improve our performance. We repeated the
procedure mentioned above with 20 different random splits of
the data and averaged the prediction results. The resulting model
achieved a receiver operating characteristic-area under the curve
(ROC-AUC) of 0.98 on the test data (Fig. 1A).

After model development and optimization using the initial
training dataset, we applied the best-performing model to identify
potential CTSL inhibitors from the training dataset composed of
Selleck bioactive compound libraries and the ZINC15 in vitro data-
base[38]. We removed the molecules with the same molecular
graphs as the training dataset, leaving 310,283 molecules of
diverse structure and function. Then, we determined the prediction
scores for each molecule, and molecules were ranked based on
their probability of displaying activity inhibition against CTSL
(Supplementary Table 3, Fig. 1B). We next employ the t-
distributed stochastic neighbor embedding (t-SNE) algorithm to
further investigate the low-dimensional node representation
learned by our model. The distributions of the training dataset
and prediction dataset were similar (Fig. 1C).

Next, among the molecules that we can get currently, we chose
50 molecules that were the most strongly predicted to display CTSL
inhibition properties by our model for verification through molec-
ular biology experiments (Supplementary Table 4). Initially, we
uniformly chose a single dose of 100 lM to test whether they could
inhibit CTSL activity in a cell-free system (see Materials and Meth-
ods for details). The results showed that 12 of the 50 predicted
molecules displayed over 50% inhibition against CTSL, and the
top 5 were Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101
and calpeptin, with inhibition efficiencies greater than 90% (Sup-
plementary Table 4, Fig. 2A). Then, we tested a range of concentra-
tions of Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and
calpeptin in this cell-free system for further confirmation and
determination of the half maximal inhibitory concentration
(IC50). Notably, all 5 molecules inhibited CTSL activity in a
concentration-dependent manner with IC50 values of 12.28 nM,
54.87 nM, 5.77 nM, 5.77 nM, and 43.98 nM, respectively (Fig. 2B-
F). These results verified the feasibility and reliability of the deep
learning strategy we used in screening CTSL inhibitors.

3.3. The predicted CTSL inhibitors from bioactive compounds prevent
SARS-CoV-2 infection in Huh7 cells in vitro

Since Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and
calpeptin showed very significant inhibitory effects on CTSL activ-
ity in cell-free systems, we further explored whether they could
inhibit SARS-CoV-2 infection in Huh7 cells in vitro. First, we tested
the cytotoxicity of these 5 molecules in Huh7 cells. The results
showed that Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101
and calpeptin had 50% cytotoxic concentration (CC50) values of
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100.22 lM, 328.10 lM, 6.00 mM, 64.32 lM, and 115.70 lM,
respectively (Supplementary Fig. 2A–E).

Since biosafety level 3 (BSL-3) is required for working with live
SARS-CoV-2, we first tested the anti-SARS-CoV-2 effect with a
pseudovirus system that can be used safely in biosafety level 2
(BSL-2) laboratories (Fig. 3A). As reported in the previous research,
the pseudovirus expresses the SARS-CoV-2 spike(S) protein on the
surface can faithfully reflect key aspects of SARS-CoV-2 cell entry
[39]. We selected a series of concentrations of these 5 molecules
that did not cause cytotoxicity for determination. All 5 molecules
suppressed SARS-CoV-2 pseudovirus infection with half maximal
effective concentration (EC50) values of 212.50 nM, 701.20 nM,
39.29 lM, 3.12 lM and 29.82 lM, respectively. The selectivity
index (SI), which was calculated as the ratio of CC50 and EC50,
was 471.62, 467.91, 152.71, 20.62, and 3.88, respectively
(Fig. 3B–F). To consolidating these findings, we repeat all these
in vivo experiments above using the human lung epithelial carci-
noma cell line A549. The results showed that Mg-132, Z-FA-FMK,
leupeptin hemisulfate, Mg-101 and calpeptin had CC50 values of
477.43 lM, 428.00 lM, 34.84 mM, 355.24 lM, and 595.30 lM,
respectively in A549 cells (Supplementary Fig. 3A–E). Considering
that A549 cells are far less susceptible to SARS-CoV-2 pseudovirus
than Huh7 cells due to the low expression level of ACE2[13,40], we
used adenovirus overexpression human ACE2 (Ad-ACE2) to
increase pseudovirus infection rate of A549 cells. Firstly, we
demonstrated the overexpression efficiency of 25 moi Ad-ACE2
in Huh7 cells for 24 hours (h) at both the mRNA and the protein
level (Supplementary Fig. 4A and B). Then, A549 cells were pre-
treated with 25moi Ad-ACE2 for 24 h before treated as Huh7 cells
stated above. All 5 molecules suppressed SARS-CoV-2 pseudovirus
infection in A549 cells with EC50 values of 159.20 nM, 1.13 lM,
4.26 lM, 1.15 lM and 34.81 lM, respectively. The SI was
2998.93, 378.76, 8178.40, 308.90, and 17.10, respectively (Supple-
mentary Fig. 4C–H). In addition, we evaluate the effect of these 5
molecules on B.1.351 (Beta) variant, one of the SARS-CoV-2 vari-
ants, in Huh7 cells. The results showed that these 5 molecules
had similar or even stronger inhibitory effect against SARS-CoV-2
B.1.351 (Beta) variant pseudovirus infection (Fig. 3G–K). Compared
with Calu-3 cells, although CTSL expression is much higher in
Huh7 cells and A549 cells, TMPRSS2 expression level was very
low in Huh7 cells and even lower in A549 cells (Supplementary
Fig. 5A and B). Consider that multiple studies have shown that
human airway cells express TMPRSS2 and that this protease is used
preferentially to cathepsins[41–43], we further explored whether
these drugs were still effective in the case of TMPRSS2 overexpres-
sion both in Huh7 cells and in A549 cells (Supplementary Fig. 6A–
C). The results showed that all these 5 molecules suppressed SARS-
CoV-2 B.1.351 (Beta) variant pseudovirus infection in Huh7 cells
with EC50 values of 901.00 nM, 10.01 lM, 17.08 lM, 0.86 lM
and 23.92 lM, respectively (Supplementary Fig. 6D–H). And they
suppressed SARS-CoV-2 B.1.351 (Beta) variant pseudovirus infec-
tion in A549 cells with EC50 values of 907.60 nM, 5.31 lM,
7.71 lM, 1.89 lM and 36.35 lM, respectively (Supplementary
Fig. 6I–M). These data suggest that these drugs remain effective
after TMPRSS2 overexpression, although some EC50 are signifi-
cantly elevated.

Finally, 3 compounds, Mg-132, Z-FA-FMK and leupeptin
hemisulfate, which had a SI greater than 100 in both Huh7 and
A549 cells, were further tested for validation using live SARS-
CoV-2 in the P3 laboratory (Fig. 4A). Exhilaratingly, all 3 molecules
inhibited SARS-CoV-2 infection in a concentration-dependent
manner and acted at fairly low concentrations in the micromolar
range with EC50 values of 0.21 lM, 9.61 lM and 10.55 lM, respec-
tively (Fig. 4B-D). These results indicated that these 5 small mole-
cules are expected to become therapeutic drugs for COVID-19 by
inhibiting CTSL activity.



Fig. 1. Initial model training and predicting potential CTSL inhibitors from bioactive compound libraries. A, Receiver operating characteristic-area under the curve (ROC-
AUC) plot evaluating model performance after training. Blue is the mean of twenty folds (grey). B, Rank-ordered prediction scores of initial prediction dataset that were not
present in the training dataset. C, Visualization of all molecules from the initial training dataset (green) and the initial prediction dataset(orange) using t-distributed
stochastic neighbor embedding (t-SNE), revealing chemical relationships between these libraries. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.4. Daptomycin predicted from an FDA-approved drug library
alleviate SARS-CoV-2 pseudovirus infection in Huh7 cells in vitro

For drug repurposing screening, we applied our model to iden-
tify potential CTSL inhibitors from the FDA-approved drug library.
First, to increase chemical diversity, we added the experimentally
validated molecules from the initial prediction dataset to the train-
ing dataset, using 50% CTSL activity inhibition as a hit cutoff. Then,
we used these molecular data to train the second binary classifica-
tion model (Supplementary Table 5). This model also achieved a
ROC-AUC of 0.98 on the test data (Fig. 5A). Later, we applied this
secondly trained model to the FDA-approved drug library, a unique
collection of 3177 drugs that are marketed around the world or
have passed at least phase I clinical trials (https://www.selleck.
cn/screening/fda-approved-passed-phase-i-drug-library.html), as
the prediction dataset. Before prediction, we removed the com-
pounds that had the same molecular graphs as the training dataset,
and 2773 drugs with diverse structures and functions remained.
We determined the prediction scores for each compound, and they
were ranked based on their probability of displaying activity inhi-
bition against CTSL (Supplementary Table 6, Fig. 5B). We also
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employ t-SNE to further investigate the low-dimensional node rep-
resentation learned by our secondly trained model. The distribu-
tion of the second training dataset and the FDA-approved drug
library was similar (Fig. 5C).

Next, among the drugs we obtained, we chose 50 drugs unique
to the FDA-approved drug library that were the most strongly pre-
dicted to display CTSL activity inhibition properties by our sec-
ondly trained model for verification as described above. The
results showed that 4 of the 50 predicted drugs displayed over
50% inhibition against CTSL, and the top 2 were daptomycin and
beta-lapachone, with inhibition efficiencies over 90% in the cell-
free system at a concentration of 100 lM (Supplementary Table 7,
Fig. 5D). Therefore, daptomycin and beta-lapachone were chosen
as candidate drugs. Intriguingly, daptomycin inhibited CTSL activ-
ity in a concentration-dependent manner with an IC50 value of
7.87 lM (Fig. 5E). However, the IC50 value of beta-lapachone was
higher than 100 lM (Fig. 5F).

We further explored whether daptomycin and beta-lapachone
could inhibit SARS-CoV-2 pseudovirus infection in Huh7 cells
in vitro. At the same time, we also tested the cytotoxicity of these
2 drugs. The results showed that daptomycin was much less toxic



Fig. 2. Prediction dataset validation with a cell-free CTSL activity detection system. A, Among the available molecules, the top 50 molecules from the prediction dataset
were chosen for verifying the inhibition effect against CTSL in a cell-free system at a single dose of 100 lM. Twelve of the 50 predicted molecules displayed over 50%
inhibition against CTSL, and the top 5 were Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin, with inhibition efficiencies greater than 90%. The data are
expressed as the mean of three individual trials. B-F, Five predicted CTSL inhibitors, Mg-132(B), Z-FA-FMK(C), leupeptin hemisulfate(D), Mg-101(E) and calpeptin(F), with
inhibition efficiencies greater than 90% at 100 lM were further tested for determination of the half maximal inhibitory concentration (IC50) in the cell-free system.
Corresponding molecular structure was drawn by Chemdraw. Non-linear fit to a variable response curve from one representative experiment with three replicates is shown
(black lines). The data are expressed as the mean ± s.e.m.
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than beta-lapachone, with CC50 values of 3.57 mM and 47.40 lM,
respectively (Supplementary Fig. 7A and B). As expected, dapto-
mycin and beta-lapachone inhibited SARS-CoV-2 pseudovirus
infection with EC50 values of 207.27 lM and 5.09 lM, respectively.
The SI values were 17.22 and 9.31, respectively (Fig. 5G and H). We
further found that daptomycin had a much stronger suppression
efficiency in A549 cells (Fig. 5I), and had a similar inhibition effi-
ciency on SARS-CoV-2 B.1.351 (Beta) variant pseudovirus infection
in Huh7 cells (Fig. 5J). And we further found that daptomycin
remain effective for suppressing SARS-CoV-2 B.1.351 (Beta) variant
pseudovirus after TMPRSS2 overexpression both in Huh7 cells and
A549 cells (Fig. 5K-L). These results indicated that daptomycin may
be a potent therapeutic drug for COVID-19.
3.5. Molecular docking analysis

To further investigate the specific binding pattern of these inhi-
bitors to CTSL, we performed molecular docking calculations using
Schrödinger software suite with the human CTSL structures from
Protein Data Bank (PDB) database (PDB code 5MQY, resolution
1.13 Å). 5MQY is a high-resolution human CTSL protein structure
cocrystallized with a covalent inhibitor, compound 35. Since the
Z-FA-FMK, Calpeptin, Mg-101(ALLN), Mg-132 and Leupeptin
Hemisulfate are all covalent inhibitors[44–47], we performed
covalent docking available in Schrödinger suite: CovDock in
Schrödinger 2021–2 version. To verify the stability of the method,
we separated the protein and ligand in 5MQY and performed re-
docking calculations with them. The re-docking calculations
showed superposition of compound 35 to its crystallographic
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structure (Supplementary Figure 8) with a Random Mean Square
Deviation (RMSD) of 0.141 Å, which is acceptable.

The docking scores and molecular interactions of protein resi-
dues and ligands are listed in (Supplementary Table 8). Compound
35 forms a hydrogen bond with Gln19 residue of 5MQY with a
docking score of �6.3 kcal/mol (Fig. 6A). Mg-132 forms two hydro-
gen bonds with Gln19 and Gly68 residues of 5MQY with a docking
score of �5.1 kcal/mol (Fig. 6B). Z-FA-FMK forms two hydrogen
bonds with Gly68 and Asp162 residues of 5MQY with a docking
score of �7.2 kcal/mol (Fig. 6C). Leupeptin Hemisulfate forms three
hydrogen bonds with Gln19, Gly68 and Asp162 residues of 5MQY
with a docking score of �7.5 kcal/mol (Fig. 6D). Calpeptin forms
two hydrogen bonds with Gly68 and Gly164 residues of 5MQY
with a docking score of �6.9 kcal/mol (Fig. 6E). Mg-101(ALLN)
forms two hydrogen bonds with Gly68 and Asp162 residues of
5MQY with a docking score of �6.5 kcal/mol (Fig. 6F).

Finally, we investigate the specific binding pattern of Dapto-
mycin to CTSL. We use Schrödinger extra precision (XP) module
to perform molecular docking calculations. Daptomycin forms
three hydrogen bonds with Asp160, Met161 and Asp162 residues
of 5MQY with a docking score of �4.5 kcal/mol (Fig. 6G).
4. Discussion

Although a number of small molecules and drugs have been
reported to resist SARS-CoV-2, no effective drug has yet been
developed[8]. CTSL has an essential role in viral infection, inflam-
matory status, tumor invasion and metastasis, and other chronic
diseases, such as atherosclerosis, renal disease, and diabetes[48].
Therefore, CTSL is considered an attractive therapeutic target. To



Fig. 3. The predicted CTSL inhibitors from bioactive compounds prevent SARS-CoV-2 pseudovirus infection in Huh7 cells in vitro. A, Schematic of the predicted CTSL inhibitor
assay setup. Huh7 cells were pretreated with different drugs 1 hour (h) before infection with SARS-CoV-2 pseudovirus or SARS-CoV-2 B.1.351 (Beta) variant pseudovirus at the same
dose (1.3�104 TCID50/ml). Pseudovirus infection and cell viability were evaluated 24 h later by a luciferase activity and MTT assay, respectively. B-F, Inhibition of pseudovirus
infection by different doses of Mg-132 (B), Z-FA-FMK (C), Leupeptin Hemisulfate (D), Mg-101 (E), and Calpeptin (F) and viability of Huh7 cells treatedwith different doses of the drugs
as indicated. Non-linear fit to a variable response curve from one representative experiment with four replicates is shown (red lines). Cytotoxic effect on Huh7 cells exposed to
increasing concentrations of drugs in the absence of virus is also shown (blue lines). The CC50, EC50, and SI values of this graph are indicated. n = 4. The data are expressed as the
mean ± s.e.m. G-K, Inhibition of SARS-CoV-2 B.1.351(Beta) variant pseudovirus infection by different doses of Mg-132 (G), Z-FA-FMK (H), Leupeptin Hemisulfate (I), Mg-101 (J), and
Calpeptin (K) and viability of Huh7 cells treated with different doses of the drugs as indicated. Non-linear fit to a variable response curve from one representative experiment with
four replicates is shown (purple lines). Cytotoxic effect on Huh7 cells exposed to increasing concentrations of drugs in the absence of virus is also shown (blue lines). The CC50, EC50,
and SI values of this graph are indicated. CC50: 50% cytotoxic concentration. EC50: half maximal effective concentration. SI: the selectivity index, which is calculated as the ratio of CC50
and EC50. n = 4. The data are expressed as themean ± s.e.m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The predicted CTSL inhibitors from bioactive compounds prevent live SARS-CoV-2 infection in Huh7 cells in vitro. A, Schematic of the predicted CTSL inhibitor
assay setup. Huh7 cells were pretreated with different drugs 1 h before infection with live SARS-CoV-2 at the same dose (0.5 moi), followed by changing to fresh mediumwith
the indicated concentrations of drugs 1 h later. The detection of infected cells was performed 48 h later by using an immunofluorescence assay. B-D, Inhibition of live SARS-
CoV-2 infection by different doses of Mg-132 (B), Z-FA-FMK (C), and Leupeptin Hemisulfate (D). Non-linear fit to a variable response curve from one representative
experiment with three replicates is shown (blue lines). The EC50 value of this graph is indicated. n = 3. The data are expressed as the mean ± s.e.m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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date, many CTSL inhibitors have been synthesized since the first
CTSL inhibitor, cystatin, was isolated from Aspergillus in 1981
[48]. However, none of these compounds can be clinically used,
perhaps mainly due to toxicity and unpredictable side effects
[49]. Recently, K777 has completed phase I clinical trials, which
reduced SARS-CoV-2 viral infectivity through inhibition of the
activity of host CTSL. However, the efficacy and safety still need
to be verified[50]. Thus, it is of significance to identify more secure
molecules to expand CTSL inhibitor discovery for drug develop-
ment and identify FDA-approved drugs that can inhibit CTSL for
drug repurposing for COVID-19.

To identify more CTSL inhibitors, we applied Chemprop MPNNs
to the Selleck bioactive compound libraries and the ZINC15 in vitro
database, which contains 310,283 unique molecules that have
been reported or inferred to be biologically active. Based on the
predicted score ranking and availability, we selected 50 molecules
for experimental validation and eventually identified 12 com-
pounds with more than 50% inhibition against CTSL activity at
100 lM in a cell-free system, five of which, Mg-132, Z-FA-FMK,
Leupeptin Hemisulfate, Mg-101 and Calpeptin, were able to exert
inhibition at nanomolar concentrations. It is reported that protea-
some inhibitor, Mg-132, can also cross-inhibit CTSL[51,52]. Cys-
teine protease inhibitors, Z-FA-FMK, Leupeptin Hemisulfate, MG-
101 and calpain inhibitor, calpeptin were also reported to inhibit
CTSL[53–61]. These data verified the feasibility and reliability of
the deep learning strategy we used in screening CTSL inhibitors.
Notably, these 5 molecules can significantly inhibit SARS-CoV-2
infection in Huh7 cells and A549 cells in vitro. These results indi-
cated that these 5 small molecules are expected to become thera-
peutic drugs for COVID-19 by inhibiting CTSL activity. However,
the molecules we bought for validation span a ranking of 18 to
2804 (Supplementary Table 4), because many molecules are
unavailable due to the impact of the COVID-19 epidemic. Accord-
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ing to a study by Stokes JM et al., who trained Chemprop for
screening new antibiotics, although the molecule with the best
inhibitory effect does not necessarily mean the highest predicted
score, higher prediction scores correlated with a greater probabil-
ity of activity inhibition against CTSL[17]. Thus, there must be
more potential CTSL inhibitors in the top-ranked molecules that
we did not obtain.

To find a clinically available inhibitor of CTSL, we applied Chem-
prop MPNNs to the FDA-approved drug library, a unique collection
of 3177 drugs marketed worldwide or that passed a phase I clinical
trial. Only 4 of 50 molecules showed over 50% inhibition against
CTSL at 100 lM in the cell-free system, and only 2 molecules, dap-
tomycin and beta-lapachone, displayed over 90% inhibition, agree-
ing with the correspondingly low model prediction scores, which
may be due to the relatively small number of drugs in the FDA-
approved library. Further investigation demonstrated that dapto-
mycin has an excellent CTSL inhibitory effect (IC50 = 7.87 lM) in
a cell-free system. Moreover, daptomycin significantly inhibited
SARS-CoV-2 pseudovirus infection with little cytotoxicity (EC50 =
207.27 lM, CC50 = 3.57 mM in Huh7 cells and EC50 = 98.81 lM,
CC50 = 7.61 mM in A549 cells). The inhibitory rate of beta-
lapachone on pseudovirus infection was 41% at 40 lM, but it
showed obvious cytotoxicity. Daptomycin is a semisynthetic com-
pound derived from the fermentation of Streptomyces roseosporus
[62]. It is one of a few membrane-active antimicrobial peptides
(AMPs) that have been approved by the FDA for clinical use[63].
Hence, we believe that daptomycin may have the potential to
become an antiviral drug. However, the EC50 is much higher than
the dose of daptomycin for clinical use. We will further modify
daptomycin to enhance its antiviral ability and reduce side effects.

To investigate the specific binding pattern of these inhibitors to
CTSL, we performed molecular docking calculations using
Schrödinger software suite with the human CTSL structures from



Fig. 5. The second model training and the identification of daptomycin. For drug repurposing screening for COVID-19 from the FDA-approved drug library, we trained the
second model by adding the experimentally validated molecules from bioactive compounds aforementioned to the initial training dataset. A, The ROC-AUC plot evaluating the
second model performance after training. Blue is the mean of twenty folds (grey). B, Rank-ordered prediction scores of the FDA-approved drug library that were not present in
the training dataset. C, Visualization of all molecules from the second training dataset (green) and the second prediction dataset(orange) using t-SNE, revealing chemical
relationships between these libraries. D, Among the available drugs, the top 50 drugs from the FDA-approved drug library were chosen for verifying the inhibition effect against
CTSL in the cell-free system at a single dose of 100 lM. Four of the 50 predicted drugs displayed over 50% inhibition against CTSL, and the top 2 were daptomycin and beta-
lapachone, with inhibition efficiencies greater than 90%. The data are expressed as the mean of three individual trials. E-F, Daptomycin(E) and beta-lapachone(F) were further
tested for determination of IC50 in the cell-free system. These 2 drugs were used at a concentration ranging from 8 nM and 80 nM to 100 lM, respectively. The IC50 value of this
graph is indicated. n = 3. The data are expressed as the mean ± s.e.m. G-H, Inhibition of pseudovirus infection by different doses of Daptomycin (G), and beta-lapachone (H) and
viability of Huh7 cells treated with different doses of the drugs as indicated. Non-linear fit to a variable response curve from one representative experiment with four replicates
is shown (red lines). Cytotoxic effect on Huh7 cells exposed to increasing concentrations of drugs in the absence of virus is also shown (blue lines). The CC50, EC50, and SI values of
this graph are indicated. n = 4. The data are expressed as the mean ± s.e.m. I, Inhibition of pseudovirus infection by different doses of Daptomycin, and viability of A549 cells
treated with different doses of the drugs as indicated. Non-linear fit to a variable response curve from one representative experiment with four replicates is shown (red lines).
Cytotoxic effect on A549 cells exposed to increasing concentrations of drugs in the absence of virus is also shown (green lines). The CC50, EC50, and SI values of this graph are
indicated. n = 5. The data are expressed as the mean ± s.e.m. J, Inhibition of SARS-CoV-2 B.1.351(Bata) variant pseudovirus infection by different doses of Daptomycin, and
viability of Huh7 cells treated with different doses of the drugs as indicated. Non-linear fit to a variable response curve from one representative experiment with four replicates
is shown (purple lines). Cytotoxic effect on Huh7 cells exposed to increasing concentrations of drugs in the absence of virus is also shown (blue lines). The CC50, EC50, and SI
values of this graph are indicated. n = 5. The data are expressed as the mean ± s.e.m. K, Inhibition of SARS-CoV-2 B.1.351(Bata) variant pseudovirus infection by different doses of
Daptomycin, and viability of Huh7 cells with TMPRSS2 overexpression. Non-linear fit to a variable response curve from one representative experiment with four replicates is
shown (purple lines). Cytotoxic effect on Huh7 cells exposed to increasing concentrations of drugs as indicated is also shown (blue lines). The EC50 values of this graph are
indicated. n = 5. The data are expressed as the mean ± s.e.m. L, Inhibition of SARS-CoV-2 B.1.351(Bata) variant pseudovirus infection by different doses of Daptomycin, and
viability of A549 cells with TMPRSS2 overexpression. Non-linear fit to a variable response curve from one representative experiment with four replicates is shown (purple lines).
Cytotoxic effect on A549 cells exposed to increasing concentrations of drugs as indicated is also shown (green lines). The EC50 values of this graph are indicated. n = 5. The data
are expressed as the mean ± s.e.m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Molecular docking results of CTSL inhibitors in the crystal structure of human CTSL (5MQY). A-G, 3D structure of the human CTSL (5MQY) showing the main
residues involved in the protein-ligand interaction of Compound 35 (A), Mg-132 (B), Z-FA-FMK (C), Leupeptin Hemisulfate (D), Calpeptin (E), Mg-101 (F) and Daptomycin (G).
Compound 35 is a covalent inhibitor cocrystallized with human CTSL protein in 5MQY, used here as a positive control. Short intermolecular contacts with distances of <4.0 Å
between the ligand fragment (gray) and protein residues (dark green) are shown as dashed yellow lines. Structure visualization was by PyMol. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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PDB database (PDB code 5MQY, resolution 1.13 Å). The Leupeptin
Hemisulfate, Z-FA-FMK, Calpeptin and Mg-101(ALLN) shows
greater binding affinity than the co-crystallized inhibitor com-
pound 35 (Ki = 77 nM[33]), our biological experimental also con-
firm these results. However, the docking score of Mg-132 is only
�5.1 kcal/mol while the IC50 values of CTSL activity is 12.28 nM.
This is probably due to the lack of accuracy in Glide docking scor-
ing. We will further conduct molecular dynamics simulations to
investigate more precise protein-ligand binding patterns. Finally,
we investigate the specific binding pattern of Daptomycin to CTSL.
Daptomycin forms three hydrogen bonds with Asp160, Met161
and Asp162 residues of 5MQY while the docking score is just
�4.5 kcal/mol. This is consistent with its poor performance in bio-
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logical experiments. These specific binding sites will help us to
modify drugs to achieve better affinity.

In conclusion, we successfully trained a machine learning
model that uses Chemprop MPNNs and the publicly available Pub-
Chem database to predict CTSL inhibitors. We identified 5 bioactive
molecules and one FDA-approved antibiotic, daptomycin, that can
significantly inhibit CTSL and alleviate SARS-CoV-2 pseudovirus
infection in vitro. Molecule docking results show that the Gln19,
Gly68 and Asp162 residues of CTSL are the primary binding site,
this provides a reference for the design of specific inhibitors. In
the future, experiments using live SARS-CoV-2 viruses in vitro
and in vivo using adequate animal models and clinical trials are
needed to investigate the role of daptomycin in treating COVID-19.
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[33] Kuhn B, Tichý M, Wang L, et al. Prospective Evaluation of Free Energy
Calculations for the Prioritization of Cathepsin L Inhibitors[J]. J Med Chem
2017;60(6):2485–97.

[34] Sastry GM, Adzhigirey M, Day T, et al. Protein and ligand preparation:
parameters, protocols, and influence on virtual screening enrichments[J]. J
Comput Aided Mol Des 2013;27(3):221–34.

[35] Harder E, Damm W, Maple J, et al. OPLS3: A Force Field Providing Broad
Coverage of Drug-like Small Molecules and Proteins[J]. J Chem Theory Comput
2016;12(1):281–96.

[36] Shelley JC, Cholleti A, Frye LL, et al. Epik: a software program for pK a
prediction and protonation state generation for drug-like molecules[J]. J
Comput Aided Mol Des 2007;21(12):681–91.

[37] Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid
simulations] potential functions for proteins, energy minimizations for
crystals of cyclic peptides and crambin[J]. J Am Chem Soc 1988;110
(6):1657–66.

[38] Sterling T, Irwin JJ. ZINC 15–Ligand Discovery for Everyone[J]. J Chem Inf
Model 2015;55(11):2324–37.

[39] Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus
neutralization assay for SARS-CoV-2[J]. Emerg Microbes Infect 2020;9
(1):680–6.

[40] Chen J, Fan J, Chen Z, et al. Nonmuscle myosin heavy chain IIA facilitates SARS-
CoV-2 infection in human pulmonary cells[J]. Proceedings of the National
Academy of Sciences of the United States of America, 2021, 118(50).

[41] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease
Inhibitor[J]. Cell 2020;181(2):271–280.e278.

[42] Ou T, Mou H, Zhang L, et al. Hydroxychloroquine-mediated inhibition of SARS-
CoV-2 entry is attenuated by TMPRSS2[J]. PLoS Pathog 2021;17(1):e1009212.

[43] Laporte M, Raeymaekers V, Van Berwaer R, et al. The SARS-CoV-2 and other
human coronavirus spike proteins are fine-tuned towards temperature and
proteases of the human airways[J]. PLoS Pathog 2021;17(4):e1009500.

[44] Zhang S, Shi Y, Jin H, et al. Covalent complexes of proteasome model with
peptide aldehyde inhibitors MG132 and MG101: docking and molecular
dynamics study[J]. J Mol Model 2009;15(12):1481–90.

[45] Lawrence C P, Kadioglu A, Yang A-L, et al. The cathepsin B inhibitor, z-FA-FMK,
inhibits human T cell proliferation in vitro and modulates host response to
pneumococcal infection in vivo[J]. Journal of immunology (Baltimore, Md :
1950), 2006, 177(6): 3827-3836.

[46] Ray SK, Wilford GG, Matzelle DC, et al. Calpeptin and methylprednisolone
inhibit apoptosis in rat spinal cord injury[J]. Ann N Y Acad Sci
1999;890:261–9.

[47] Fu L, Shao S, Feng Y, et al. Mechanism of Microbial Metabolite Leupeptin in the
Treatment of COVID-19 by Traditional Chinese Medicine Herbs[J]. mBio
2021;12(5):e0222021.

[48] Gomes CP, Fernandes DE, Casimiro F, et al. Cathepsin L in COVID-19: From
Pharmacological Evidences to Genetics[J]. Front Cell Infect Microbiol
2020;10:589505.

[49] Zhou YW, Xie Y, Tang LS, et al. Therapeutic targets and interventional
strategies in COVID-19: mechanisms and clinical studies[J]. Signal Transduct
Target Ther 2021;6(1):317.

[50] Mellott DM, Tseng CT, Drelich A, et al. A Clinical-Stage Cysteine Protease
Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells[J]. ACS
Chem Biol 2021;16(4):642–50.

[51] Garrison P, Bangs JD. p97 Inhibitor CB-5083 Blocks ERAD in Trypanosoma
brucei[J]. Mol Biochem Parasitol 2020;239:111313.

[52] Costanzi E, Kuzikov M, Esposito F, et al. Structural and Biochemical Analysis of
the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/
3CLpro) and Human Cathepsin-L[J]. Int J Mol Sci 2021;22(21).

https://doi.org/10.1016/j.csbj.2022.05.023
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0005
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0005
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0015
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0015
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0020
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0020
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0020
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0030
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0030
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0035
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0035
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0040
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0040
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0045
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0045
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0055
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0055
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0055
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0060
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0060
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0060
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0065
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0065
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0065
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0070
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0070
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0075
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0075
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0080
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0080
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0085
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0085
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0090
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0090
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0095
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0095
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0100
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0100
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0105
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0105
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0105
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0110
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0110
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0110
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0120
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0120
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0120
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0130
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0130
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0130
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0135
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0135
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0140
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0140
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0140
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0145
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0145
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0145
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0150
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0150
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0155
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0155
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0155
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0155
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0160
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0160
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0160
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0165
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0165
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0165
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0170
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0170
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0170
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0180
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0180
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0180
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0185
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0185
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0185
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0185
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0190
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0190
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0195
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0195
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0195
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0205
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0205
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0205
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0210
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0210
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0215
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0215
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0215
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0220
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0220
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0220
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0230
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0230
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0230
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0235
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0235
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0235
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0240
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0240
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0240
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0245
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0245
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0245
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0250
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0250
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0250
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0255
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0255
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0260
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0260
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0260


Wei-Li Yang, Q. Li, J. Sun et al. Computational and Structural Biotechnology Journal 20 (2022) 2442–2454
[53] Roscow O, Ganassin R, Garver K, et al. Z-FA-FMK demonstrates differential
inhibition of aquatic orthoreovirus (PRV), aquareovirus (CSRV), and
rhabdovirus (IHNV) replication[J]. Virus Res 2018;244:194–8.

[54] Shen J, Cai Q, Yan L, et al. Cathepsin L is an immune-related protein in Pacific
abalone (Haliotis discus hannai)–Purification and characterization[J]. Fish
Shellfish Immunol 2015;47(2):986–95.

[55] Millest A, Breen S, Loveday B, et al. Effects of an inhibitor of cathepsin L on
bone resorption in thyroparathyroidectomized and ovariectomized rats[J].
Bone 1997;20(5):465–71.

[56] Ebisui C, Tsujinaka T, Kido Y, et al. Role of intracellular proteases in
differentiation of L6 myoblast cells[J]. Biochem Mol Biol Int 1994;32
(3):515–21.

[57] Guo M, Mathieu P, Linebaugh B, et al. Phorbol ester activation of a proteolytic
cascade capable of activating latent transforming growth factor-betaL a
process initiated by the exocytosis of cathepsin B[J]. The Journal of biological
chemistry 2002;277(17):14829–37.
2454
[58] Haspel J, Shaik RS, Ifedigbo E, et al. Characterization of macroautophagic flux
in vivo using a leupeptin-based assay[J]. Autophagy 2011;7(6):629–42.

[59] Li SZ, Zhang HH, Zhang JN, et al. ALLN hinders HCT116 tumor growth through
Bax-dependent apoptosis[J]. Biochem Biophys Res Commun 2013;437
(2):325–30.

[60] Sasaki T, Kishi M, Saito M, et al. Inhibitory effect of di- and tripeptidyl
aldehydes on calpains and cathepsins[J]. J Enzyme Inhib 1990;3(3):195–201.

[61] Lopez-Hernandez FJ, Ortiz MA, Bayon Y, et al. Z-FA-fmk inhibits effector
caspases but not initiator caspases 8 and 10, and demonstrates that novel
anticancer retinoid-related molecules induce apoptosis via the intrinsic
pathway[J]. Mol Cancer Ther 2003;2(3):255–63.

[62] Debono M, Abbott BJ, Molloy RM, et al. Enzymatic and chemical modifications
of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin
(LY146032)[J]. J Antibiot 1988;41(8):1093–105.

[63] Chen C H, Lu T K. Development and Challenges of Antimicrobial Peptides for
Therapeutic Applications[J]. Antibiotics (Basel, Switzerland). 2020. 9(1).

http://refhub.elsevier.com/S2001-0370(22)00179-9/h0265
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0265
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0265
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0270
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0270
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0270
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0275
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0275
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0275
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0280
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0280
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0280
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0285
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0285
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0285
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0285
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0290
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0290
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0295
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0295
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0295
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0300
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0300
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0305
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0305
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0305
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0305
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0310
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0310
http://refhub.elsevier.com/S2001-0370(22)00179-9/h0310

	Potential drug discovery for COVID-19 treatment targeting Cathepsin L using a deep learning-based strategy
	1 Introduction
	2 Materials and Methods
	2.1 Model training and predictions
	2.2 Deduplication
	2.3 T-distributed stochastic neighbor embedding (t-SNE)
	2.4 Hyperparameter optimization
	2.5 Analysis of CTSL activity in a cell-free system
	2.6 Cell culture and reagents
	2.7 Pseudovirus
	2.8 Luciferase assay
	2.9 Effect of drug treatment on live SARS-CoV-2 infection
	2.10 Cell viability assay
	2.11 Antibodies
	2.12 Real-time PCR assay
	2.13 Receptor protein selection and preparation
	2.14 Ligand preparation
	2.15 Noncovalent docking
	2.16 Covalent docking
	2.17 Statistical analysis

	3 Results
	3.1 Initial training dataset selection
	3.2 Initial model training and predicting potential CTSL inhibitors from bioactive compound libraries
	3.3 The predicted CTSL inhibitors from bioactive compounds prevent SARS-CoV-2 infection in Huh7 cells in&blank;vitro
	3.4 Daptomycin predicted from an FDA-approved drug library alleviate SARS-CoV-2 pseudovirus infection in Huh7 cells in&blank;vitro
	3.5 Molecular docking analysis

	4 Discussion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


