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Abstract

Background: The step-by-step determination of the spatio-temporal parameters of gait is clinically relevant since it
provides an estimation of the variability of specific gait patterns associated with frequent geriatric syndromes. In
recent years, several methods, based on the use of magneto-inertial units (MIMUs), have been developed for the
step-by-step estimation of the gait temporal parameters. However, most of them were applied to the gait of
healthy subjects and/or of a single pathologic population. Moreover, spatial parameters in pathologic populations
have been rarely estimated step-by-step using MIMUs. The validity of clinically suitable MIMU-based methods for
the estimation of spatio-temporal parameters is therefore still an open issue. The aim of this study was to propose
and validate a method for the determination of both temporal and spatial parameters that could be applied to
normal and heavily compromised gait patterns.

Methods: Two MIMUs were attached above each subject’s ankles. An instrumented gait mat was used as gold
standard. Gait data were acquired from ten hemiparetic subjects, ten choreic subjects, ten subjects with Parkinson’s
disease and ten healthy older adults walking at two different gait speeds. The method detects gait events (GEs)
taking advantage of the cyclic nature of gait and exploiting some lower limb invariant kinematic characteristics.
A combination of a MIMU axes realignment along the direction of progression and of an optimally filtered direct
and reverse integration is used to determine the stride length.

Results: Over the 4,514 gait cycles analyzed, neither missed nor extra GEs were generated. The errors in identifying
both initial and final contact at comfortable speed ranged between 0 and 11 ms for the different groups analyzed.
The stride length was estimated for all subjects with less than 3% error.

Conclusions: The proposed method is apparently extremely robust since gait speed did not substantially affect its
performance and both missed and extra GEs were avoided. The spatio-temporal parameters estimates showed
smaller errors than those reported in previous studies and a similar level of precision and accuracy for both healthy
and pathologic gait patterns. The combination of robustness, precision and accuracy suggests that the proposed
method is suitable for routine clinical use.
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Background
Walking allows humans to move forward by alternatively
and repetitively swinging their left and right lower limbs.
The gait pattern can be segmented into cycles that are
typically divided into different phases in relation to the
position of each foot with respect to the ground and of
one foot with respect to the other (e.g. stance, swing and
double support phases). The duration of the gait cycle
phases is estimated by identifying the initial (IC) and final
foot contacts (FC) timings, usually referred to as gait
events (GE). The duration of the gait cycle is typically esti-
mated by determining the time interval between two con-
secutive ICs of the same foot. The distance, along the
direction of progression, traversed during a gait cycle, is
referred to as stride length. Both stride length and dur-
ation can be seen as the sum of two consecutive steps, i.e.
the distance traversed or the time interval between an IC
and the following one of the contralateral limb [1].
From a lower limb kinematics perspective, human walk-

ing requires that: a) the two lower limbs alternate their
swing phase while the opposite foot is in contact with the
ground; b) at some point in stance there is at least one foot
point fixed with respect to the ground (i.e. no sliding), c)
swing begins with a roto-translation of the shank and ends
with foot impact with the ground. The above-mentioned
requirements apply to both healthy and pathologic gait
and therefore can be exploited to detect GEs and spatio-
temporal parameters.
A step-by-step determination of the spatio-temporal

parameters is of great clinical relevance [2-5]. Often, the
variability of different aspects can provide information
that is independent of the average values. Variability of
gait parameters has been associated with frequent geriat-
ric syndromes such as falls, dementia and frailty [6]. In
addition, gait variability has been associated with fall risk
and disease progression in patients with Parkinson’s disease
[7,8]. Variability is also larger in patients with other move-
ment disorders, like Huntington’s disease and in post-
stroke patients. Because variability reflects the step-to-step
consistency of the gait, it has been used to describe the
quality of the gait pattern and dynamic stability.
Various sensing technologies have been proposed to

estimate step-by-step gait temporal and spatial parame-
ters. Force platforms, instrumented mats, and footswitches
are examples of devices sensing the contact of the foot
with the ground. Motion analysis systems and magnetic
and inertial measurement units (MIMU) as well as combi-
nations of MIMUs and other wearable technologies (i.e.
pressure sensors [9]) have also been used to estimate GE
timings from body segment motion [10,11]. To some de-
gree, force platforms and instrumented mats suffer from
the same limitations. They require extensive laboratory
space, force subjects to walk in a specific environment and
are relatively costly. Their main advantage is the possibility
of estimating spatial gait parameters in addition to tem-
poral parameters. Foot switches are portable and relatively
inexpensive but may require extensive subject set up and
can provide temporal parameters only. Motion capture
systems capabilities go beyond the estimation of the gait
spatio-temporal parameters, since they are devised for 3D
point kinematics measurements. These systems are pricier
than the above mentioned alternatives and generally can
only capture a small number of consecutive steps.
The use of the MIMUs has been increasingly explored

in the recent years thanks to the development of miniatur-
ized sensing technology and the consequent improved
wearability. However, MIMU-based recordings require ap-
propriate processing to estimate gait parameters for clin-
ical applications [12].
A number of authors have proposed methods applied

to MIMU measurements for estimating gait temporal
parameters [13-23] or spatio-temporal parameters [24-32].
A single sensor placed on the lower trunk has been pro-
posed for healthy subjects [33-37 and pathologic gait
[38-42]. A larger number of methods have been proposed
using MIMUs attached to the lower limbs: on the feet or
shoes [19,23,25,26], on the shanks [13-16,27], thighs [21],
or both shanks and thighs [18,24]. In general, the farther
from the contact point the MIMU is placed, the more
difficult the GEs identification is. However, placing the
MIMUs on the shanks may offer some advantages over
the feet (or shoes). In fact, the shank is a more rigid seg-
ment and may allow for a firmer attachment of the MIMU
[13]. Moreover, the recorded signals were found to be less
variable across homogeneous subjects populations when
MIMUs are mounted on the shank than when mounted
on the foot [43].
When the MIMU is attached to a lower limb segment,

the GEs detection and the determination of gait cycle
phases is often based on the analysis of the sagittal angular
velocity features [13,14,23,26,27] or, less frequently, of the
acceleration features [15,17,19,20], applying approaches
such as empirically determined thresholds [13,26,27], fre-
quency analysis [24] and machine learning algorithms [23].
Methods for the determination of stride length from

MIMU signals have also been proposed either using ab-
straction models, human gait models or signal integra-
tion [44]. Methods based on abstraction models perform
poorly since the accuracy of the spatial parameters estima-
tion depends on the completeness of training data; diffi-
culties in controlling the performance across subjects have
been also reported. The use of predefined human gait
models requires subject specific anthropometric measure-
ments. Since such models are based on the observation of
physiological gait, accuracy issues in applying them to
pathological gait patterns have been reported [44]. The
signal integration methods consist of obtaining linear
displacements by double integrating the MIMU gravity-



Figure 1 Subject wearing two MIMUs attached above the ankles
and walking on the instrumented mat used as gold standard for
MIMU based estimates of gait spatio-temporal parameters.
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compensated linear acceleration in the global reference
frame [31,37]. However, due to the presence of drift in
acceleration signals [45], the inaccuracy related to the esti-
mation of the MIMU orientation [46] and the value of the
constant of integration of the relevant signals (initial
condition) [47], the estimate of gait spatial parameters is
extremely poor unless some countermeasures are imple-
mented. The cyclical nature of gait is typically used to re-
duce the detrimental effects of the drift by restricting the
interval of integration time to the duration of a single gait
cycle [47]. This requires the identification within the cycle
of an instant of known velocity to be used as the initial
value in the integration of the acceleration. The zero vel-
ocity update (ZUPT) is generally applied for this purpose
to foot mounted MIMUs at the instant of flat foot
[26,28,48]; when the MIMU is mounted on the shank, an
inverted pendulum model is often used to estimate the
initial integration value [30]. In addition, some de-drifting
functions have been proposed [25,26,28]. The above men-
tioned expedients rely heavily on the quality of GE esti-
mates. In fact, errors in determining the gait cycle and the
instants of minimum velocity, as well as the chosen de-
drifting function could compromise the estimate of gait
spatial parameters.
Most of the studies mentioned above validated the

proposed GE detection methods on healthy subjects
[13,14,16,19,23,26]. The validity of MIMU based methods
for the estimation of gait spatio-temporal parameters in
clinical applications is still an open issue. Some studies ap-
plied the proposed method to the gait of elderly [24,28],
spinal cord injuried [17], Parkinsonian [15,27,32], amputee
[22] or patient’s with prostheses [49]. Spatial parameters
in pathologic gait have been estimated mostly as average
values and only in a few studies on a step-by-step basis
[24,26-29,32,50]. Only a few of the above mentioned stud-
ies have been validated against a gold standard. In a recent
study, Yang et al. [24] reported that methods for the deter-
mination of the gait cycle phases failed when the devia-
tions of the angular velocity patterns from those typical of
normal gait are not negligible. Such deviations are often
due to impairments and consequent compensatory strat-
egies. For example, hemiparetic gait is often characterized
by an increased lateral displacement of the foot during
swing in the paretic limb, consistently with limb vaulting
to further assist limb clearance [5]. Other gait abnormal-
ities, such as choreiform gait, also known as "drunken
gait", are characterized by staggering from side to side,
with lateral swaying, and stride-by-stride lateral devia-
tions from forward direction during walking [51], while
Parkinsonian gait is generally characterized by small
shuffling steps and a general slowness of movement [3].
Each of the abnormal gait patterns reported above
affects the MIMU signal patterns. Therefore a highly re-
liable method for the step-by-step estimation of spatio-
temporal parameters should be validated for both healthy
and heavily impaired gait.
The aim of this study was to propose and validate a

method, based on the use of two MIMUs attached above
the malleoli, for the determination of both temporal and
spatial parameters that could reliably be applied to both
healthy and heavily compromised gait. The above men-
tioned invariant characteristics of the lower limb kine-
matics characterizing human walking were exploited in
developing the algorithm for the detection of the GEs in-
stances, with the aim of enhancing its robustness across
a variety of walking patterns by limiting the risk of ex-
periencing extra and missed GEs. The GEs are detected
by first identifying time intervals in which they cannot
occur due to the intrinsic kinematic constraints, and
then searching for GEs in the remaining portions of the
gait cycle. The spatial parameters are determined by ap-
plying a modified version of a method originally developed
for a waist-mounted MIMU [37]. Spatial and temporal pa-
rameters estimates were validated against those obtained
using an instrumented mat.
Methods
Instrumentation
Two MIMUs (Opal, APDM) featuring a tri-axial acceler-
ometer, a tri-axial gyroscope and a tri-axial magnetometer
(unit weight 22 g, unit size 48.5 mm× 36.5 mm× 13.5 mm)
were used. Sampling frequency was set at 128 Hz and ac-
celerometer range at ±6 g. MIMUs were attached to the
subject ankles (about 20 mm above the malleolus) with X,
Y and Z axes pointing downward, forward and to the right,
respectively (Figure 1). The physical quantities (proper ac-
celerations, angular velocities and magnetic field vector) are
measured with respect to the axes of a local frame aligned
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to the edges of the unit housing. An estimate of the MIMU
local coordinate system (LCS) orientation with respect to
the global coordinate system (GCS) was provided by the
APDM proprietary software. A spot check of the MIMU
performance was performed according to the guidelines
proposed by [46].
A gait pressure mat (GAITRite Electronic Walkway,

CIR System Inc) acquiring at 120 Hz (spatial resolution
accuracy: ±12.7 mm; temporal accuracy: ±1 sample) was
used for validation purposes (Figure 1). The instrumented
mat returned all GEs, temporal and spatial parameters
under analysis. The MIMUs and the instrumented mat
were synchronized (±1 sample).
Subjects
Ten hemiparetic subjects (H), ten subjects with a choreic
movement disorder (C), ten subjects with Parkinson’s
disease (P) and ten healthy elderly (E) were enrolled
from the out-patient Movement Disorders Clinic of the
University of Genoa. Disease severity was determined by
means of the Functional Ambulatory Category (FAC)
[52] for the H subjects, the Unified Huntington’s Disease
Rating Scale (UHDRS) [53] for the C subjects and the
Unified Parkinson’s Disease Rating Scale (UPDRS) [54]
for the P subjects. Demographic and clinical characteris-
tics of the groups are summarized in Table 1. The Dec-
laration of Helsinki was respected, all subjects provided
informed written consent, and local ethic committee ap-
proval was obtained.
Acquisition protocol
Subjects were asked to walk back and forth for about
one minute along a 12-meter walkway with the instru-
mented mat placed two meters from the starting line
where they stood with their feet together for a few sec-
onds after the beginning of the MIMU acquisition. Sub-
jects walked both at self-selected, comfortable speed
(V1) and higher speed (V2). Subjects wore their own
shoes and walking aids such as canes or tripods were
Table 1 Summary of demographic characteristics and the clin
(healthy elderly – E, hemiparetic – H, Parkinson’s disease – P

Subjects group Gender Age

E
6 females 69.7 ± 5.8

4 males

H
2 females 58.6 ± 12.1

8 males

P
5 females 73.8 ± 5.7

5 males

C
5 females 50.3 ± 13.3

5 males

The clinical scores reported are: (a) FAC; (b) UPDRS; (c) UHDRS.
allowed if used in daily life. Subjects could rest in be-
tween acquisitions if requested.

Gait temporal and spatial parameter estimation
The algorithm implemented for detecting GEs required
as first step the identification of time intervals in which
no GE can occur (intervals of trusted swing - TSW).
Their identification is based on the angular velocity sig-
nals in the sagittal plane (ωz) obtained from the gyro-
scopes. In fact, in both normal [26] and Parkinson’s
disease gait [27], the ωz recorded from either the shank
or the foot shows the largest values at mid-swing and a
TSW can be defined as the time interval with ωz larger
than a set threshold (20%) of its local maximum value
Mp. If the ωz crossed the threshold multiple times within
a fraction of a second, as it occurs in some pathologic
gait patterns, the TSW was defined as the interval be-
tween the first and last threshold crossings including
ML angular velocity local maxima (see Figure 2a). The
following additional conditions also had to be satisfied:
i. the minimum TSW duration was set at 100 ms; ii. two
consecutive TSW of the same foot were separated by a
minimum of 200 ms.
Since the two lower limbs alternate their swing phase

while the opposite foot is in contact with the ground,
the TSW of a lower limb can be used as interval of
trusted stance (TST) of the other limb. Therefore, when
coupled, the two TSW allow for the identification of both
TST and TSW for each lower limb, reducing considerably
the size of the time intervals in which ICs (TIC) and FCs
(TFC) have to be searched, and consequently the risk of
detecting extra GEs (see Figure 2b for details). The IC
was identified as the minimum value of the ML angular
velocity [26,27] occurring in TIC before the instant of
maximum AP acceleration. The FC was identified as the
instant of minimum AP acceleration in the TFC, since it
is expected to occur at the time of a sudden motion of
the shank preceding the instant of the last maximum AP
acceleration value in TFC (Figure 2b). Missed GEs could
therefore occur only if TSW were missed, which could
ical scores of the groups participating in the study
and choreic – C)

Height Weight Clinical score

161.8 ± 7.7 63.6 ± 5.7 -

172.6 ± 5.8 82.5 ± 15.9 3.3 ± 1.5(a)

166.1 ± 9.7 67.7 ± 9.3 62.7 ± 19.1(b)

162.8 ± 5.1 60.6 ± 12.2 34.9 ± 16.9(c)



(a) 

(b) 

Figure 2 Gait events detection from MIMU signals. (a) Angular velocities in the sagittal plane (ωz) for a hemiparetic subject are reported
(black line: affected side). Rectangular frames represent trusted swing (dotted line) and trusted stance (solid line) intervals for the affected limb.
(b) ML angular velocity (black line) and AP acceleration (gray line) for the affected side of a hemiparetic subject. Colored boxes represent time
intervals for the IC (light gray) and FC (intense gray) search; dotted vertical lines represent the GEs timings.
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happen only if the subject’s feet progressed without swing-
ing. Once the IC and FC were determined for each gait
cycle, stride, step, swing and stance times were computed
for both sides.
The stride length was estimated as the distance tra-

versed by the MIMU between two consecutive ICs of
the same foot. To estimate it, the proper acceleration
signals were first expressed in the GCS, then gravity was
removed. For each gait cycle analyzed, a specific motor
task coordinate system (MTCS) was defined [55]; the
vertical axis (V) was made to coincide with the gravity
direction whereas the anterior-posterior (AP) axis was
made to coincide with the direction of progression, which
was determined as the direction of maximum average vel-
ocity obtained by integrating the horizontal acceleration
components using the Optimally Filtered Direct and Re-
verse Integration (OFDRI) technique [56], while the ML
axis was defined as the direction orthogonal to the AP
axis. The latter MTCS has the advantage to do not be af-
fected by errors in the heading estimates [46]. For each
gait cycle, the AP acceleration component expressed in
the MTCS was integrated using the OFDRI [37] from the
40% of the stance phase when at least a selected point of
the foot (the calcaneous) can be considered fixed with re-
spect to the ground [47]. The OFDRI technique requires
the knowledge of the final value of the integral to set a cut
off frequency for the high pass filter employed to reduce
the effect of the drift in the accelerometer signals. The
resulting cut-off frequency was then applied for filtering
the acceleration signals in the MTCS, one gait cycle at a
time. The initial integration value for the linear AP vel-
ocity of the MIMU was determined as the product of ML
angular velocity and the MIMU distance from the calca-
neous. The velocity values found for the final instant of
the gait cycle were used as initial velocity values for the in-
tegration of the following gait cycle. Finally, the stride
length was obtained as the AP displacement resulting
from a further simple integration of the AP velocity previ-
ously obtained. Both temporal and spatial parameters
were estimated for left and right sides.
A flowchart describing the algorithm used for estimat-

ing the spatio-temporal parameters of gait is reported in
(Additional file 1).

Statistical analysis
Spatio-temporal parameters estimation errors
For each gait cycle, the difference between the estimated
gait parameter (IC, FC, stride, step, stance, swing dura-
tions and stride length) and the reference value provided
by the gold standard (instrumented mat) was determined



Table 2 Number of gait cycles and mean (sd) of gait velocities, stride time, step time, stance time, swing time and stride length for all groups (healthy
elderly – E, hemiparetic – H, Parkinson’s disease – P and choreic – C) at both comfortable (V1) and higher (V2) speed

Group Comfortable speed Higher speed

(V1) (V2)

Gait cycles Gait velocity
[m/s]

Stride
time [s]

Step
time [s]

Stance
time [s]

Swing
time [s]

Stride
length [m]

Gait cycles Gait velocity
[m/s]

Stride
time [s]

Step
time [s]

Stance
time [s]

Swing
time [s]

Stride
length [m]

E 578 1.17 (0.16) 1.05 (0.10) 0.53 (0.05) 0.68 (0.07) 0.38 (0.03) 1.23 (0.15) 610 1.49 (0.22) 0.92 (0.10) 0.46 (0.05) 0.58 (0.08) 0.34 (0.02) 1.35 (0.19)

H 576 0.61 (0.24) 1.35 (0.24) 0.67 (0.12) 0.94 (0.17) 0.41 (0.10) 0. 81 (0.30) 516 0.79 (0.30) 1.22 (0.21) 0.60 (0.10) 0.83 (0.17) 0.39 (0.07) 0.86 (0.30)

P 532 0.85 (0.14) 1.14 (0.09) 0.57 (0.05) 0.76 (0.07) 0.38 (0.03) 0.97 (0.15) 560 1.02 (0.14) 1.04 (0.10) 0.52 (0.05) 0.68 (0.07) 0.36 (0.04) 1.06 (0.15)

C 567 1.08 (0.30) 1.11 (0.14) 0.56 (0.07) 0.71 (0.10) 0.40 (0.05) 1.16 (0.21) 575 1.28 (0.26) 1.00 (0.11) 0.50 (0.05) 0.64 (0.08) 0.36 (0.03) 1.27 (0.23)
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Table 3 Values for the group mean errors (me), mean
standard deviation of the subject errors (sde), mean
absolute errors (mae) and the percent of it (%mae) in
estimating gait events (IC and FC) and temporal
parameters (stride, step, stance and swing time) for the
four groups (healthy elderly – E, hemiparetic – H,
Parkinson’s disease – P and choreic – C)

p Group me (sde) [ms] mae [ms] %mae

V1 V2 V1 V2 V1 V2

IC E 2 (10) 9 (10) 10 12 - -

H 0 (17) 3 (15) 17 15 - -

P 11 (11) 22 (9) 15 22 - -

C 7 (13) 7 (11) 12 13 - -

FC E 7 (15) 16 (9) 20 19 - -

H 11 (18) 13 (17) 21 21 - -

P 5 (18) 0 (15) 22 19 - -

C 2 (14) 6 (13) 18 16 - -

Stride time E 0 (14) 0 (13) 10 10 1% 1%

H 0 (17) 0 (16) 13 12 1% 1%

P 1 (15) 0 (13) 12 10 1% 1%

C 0 (17) 0 (15) 13 12 1% 1%

Step time E 0 (15) 0 (14) 12 12 2% 3%

H 1 (26) 0 (22) 22 22 3% 4%

P 0 (15) 0 (14) 12 11 2% 2%

C 0 (18) 0 (16) 14 13 3% 3%

Stance time E 10 (19) 25 (13) 22 28 3% 5%

H 11 (11) 11 (22) 25 25 3% 3%

P 15 (20) 21 (18) 26 27 3% 4%

C 5 (18) 1 (17) 22 19 3% 3%

Swing time E 9 (19) 25 (13) 22 27 6% 8%

H 11 (23) 10 (22) 25 25 6% 6%

P 16 (21) 21 (18) 24 27 7% 8%

C 5 (19) 0 (17) 22 19 6% 5%
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and referred to as the error (e). Its absolute value and
the relevant percent value were also computed.
For each subject, descriptive statistics for the error

(mean and standard deviation values) and for the abso-
lute and percent errors (mean values) were determined
for both left and right feet. A Wilcoxon signed rank test
was also performed to reveal differences between the
absolute errors values obtained for the affected and un-
affected side at both comfortable and higher speed in the
H subjects. For each subject, left and right errors were
then averaged. The resulting group averages were finally
computed (me, sde, mae, %mae).

Comparison of errors between comfortable and higher
walking speed for each group
Given the limited sample size of the four groups, a five
number summary statistics (i.e. the minimum, the max-
imum, the median, the first quartile and the third quartile)
was used to represent the errors in estimating each gait
parameter for each subject group and for both the com-
fortable and higher walking speed conditions. A Wilcoxon
signed rank test was used to compare each subject’s mean
values of the absolute errors obtained for the two walking
conditions to evaluate if there were statistical differences
between them. Differences were considered significant if
the p-value was less than 0.05.

Comparison of errors between healthy elderly and
pathologic groups
A Wilcoxon rank sum test was performed between the
subject mean values of the absolute errors obtained for
the E group and those obtained for each of the patho-
logic groups. Differences were considered significant if
the p-value was less than 0.05.

Results
Over 4,514 gait cycles were obtained with the instru-
mented mat and used for the comparative analysis. The
total number of gait cycles analyzed for each subject group
at the two different gait speeds along with the mean (me)
and standard deviation (sde) values of the analyzed spatio-
temporal parameters (gait velocity, stride time, step time,
stance time, swing time and stride length) for both walk-
ing speed conditions as determined by the instrumented
mat are reported in Table 2.

Spatio-temporal parameters estimation errors
Gait events and temporal parameters
Neither missed nor extra GEs generated by the proposed
method were observed. Therefore, all 4,514 gait cycles ob-
tained with the instrumented mat were used for the ana-
lysis. The values of me, sde, mae and %mae of each group
at both walking speeds, are presented in Table 3 for IC,
FC, stride time, step time, stance time and swing time.
Gait spatial parameters
The me, sde, mae, %mae of the stride length are presented
in Table 4 for each group and at both walking speeds.
The agreement in estimating gait spatio-temporal pa-

rameters between the proposed MIMU based approach
and the reference method is also reported using Bland-
Altman plots (see Additional file 2).
No statistically significant differences were found for all

the gait parameters at both comfortable and higher speed
between the subject mean values of the absolute errors ob-
tained for the affected and unaffected side of H subjects.

Comparison of errors between comfortable and higher
walking speed for each group
All mae values were not significantly different between
walking speeds except for the mae of the IC of the P



(a) 

(b) 

Figure 3 Minimum, first quartile (q1), median, third quartile (q3) and
and (b) stride time for all groups (healthy elderly – E, hemiparetic – H
comfortable (V1) and higher (V2) speed. Errors larger than q1 + 1.5(q3 +
represented with red marks (+).

Table 4 Values for the group mean error (me), mean
standard deviation of the subject error (sde), mean
absolute error (mae) and the percent of it (%mae) in
estimating stride length for the four (healthy elderly – E,
hemiparetic – H, Parkinson’s disease – P and choreic – C)

Group me (sde) [mm] mae [mm] %mae

V1 V2 V1 V2 V1 V2

E 2 (19) 0 (19) 18 15 1% 1%

H −6 (27) −11 (22) 21 20 3% 3%

P 4 (21) 1 (19) 18 16 2% 2%

C −8 (29) −7 (31) 26 24 2% 2%
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group. The stride time mae estimated for the C group was
borderline statistically significant (p = 0.05). In Figure 3
the five-number summary plots for the above mentioned
parameters are reported.
Comparison of errors between healthy elderly and
pathologic groups
None of the mae were significantly different between
elderly and any of the pathologic groups except for the
IC of the E and the P groups as well as that of the E and
the H groups. The step time mae of the H group and
the stride length mae of the C group were significantly
different from those of the E group. In Figure 4, the
five-numbers plots for the above mentioned parameters
are reported.
maximum values of mean absolute errors (mae) relative to: (a) IC
, Parkinson’s disease – P and choreic – C) and for both
q1) or smaller than q1–1.5(q3–q1) are considered outliers and



(a) 

(b) 

 (c) 

Figure 4 Minimum, first quartile (q1), median, third quartile (q3) and maximum values of mean absolute errors (mae) relative to: (a) IC,
(b) step time and (c) stride length for all groups (healthy elderly – E, hemiparetic – H, Parkinson’s disease – P and choreic – C).
Errors larger than q1 + 1.5(q3 + q1) or smaller than q1–1.5(q3–q1) are considered outliers and represented with red marks (+).
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Discussion
In this study, we proposed a methodology based on the
use of two magneto-inertial units attached above
the ankles for the bilateral estimation of gait spatio-
temporal parameters. The method exploits some invari-
ant kinematic constraints characterizing both healthy
and compromised gait to reduce the time intervals in
which the initial and final contacts are sought. The
method also includes an optimal integration technique
to reduce the errors caused by the drift affecting the ac-
celeration signals.
In this study we also validated the method on the gait

of healthy (elderly) and pathological groups (hemiparetic,
Parkinson’s disease and choreic). No missed or extra GEs
were detected for any of the groups. For the elderly, hemi-
paretic and choreic groups, the error in identifying IC at
comfortable speed were the lowest errors ever reported in
the literature. For the Parkinson disease group, the average
error was slightly higher than that found in one study [27]
(11 ms vs. 8.7 ms), although the authors reported some
false positive events.
Similarly, in detecting the FC timing, our method

outperformed most of those found in the literature.
For the elderly and Parkinson’s disease groups, the
errors were larger (2–3 ms) than those obtained by
[27]. As far as we know, no study in the literature showed
lower errors than those found for the hemiparetic and
choreic groups.
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The stride and step time estimations exhibited, for all
groups, higher accuracy than that found in any previ-
ously published method.
Stance and swing time estimation errors were one

order of magnitude larger than those found for the
stride time. The error found for the stance time esti-
mate of the elderly group was larger only than that
found by [29] (about 9 ms), although they did not re-
port standard deviation values. When the method was
applied to the Parkinson’s disease group, the error af-
fecting the stance time estimate was larger only than
that found in [27] (11 ms vs. 5.9 ms), but with a much
lower standard deviation (11 ms vs. 29.6) at comfort-
able speed. No previous studies reporting stance time
estimation errors in choreic and hemiplegic populations
were found in the literature.
Swing time determination errors could be compared

only to those obtained for healthy elderly subjects by [29],
which were higher than those we found (16.5 vs. 9 ms) at
comfortable speed.
For the elderly group, stride length estimation errors

were negligible and comparable to those found in [49]. The
errors found for all pathological groups were about one
order of magnitude lower than those reported in [27,32].
A thorough comparison of the performance of the dif-

ferent methods published so far could not be performed
since most of the existing studies did not provide the
mean absolute error which provides a better picture of
the extent of estimation errors than the mean error.
As opposed to other methods [14], the present method

is not influenced by walking speeds.
In conclusion, the proposed method appeared to be

extremely robust since: a) it did not present neither
missed nor extra GEs; b) gait speed did not substantially
affect the performance of the method. Moreover, the gait
spatio-temporal parameters estimates showed a similar
level of precision and accuracy for both healthy and vari-
ous pathologic gait patterns. The combination of robust-
ness, precision and accuracy and makes the proposed
method suitable for a routine clinical use.
As expected, the stride length estimation error was lar-

ger for the C group, most probably due to the intrinsic
difficulties associated with the determination of the dir-
ection of progression from the choreic gait patterns
characterized by jerky lower limb movements.
Some aspects of the proposed method may be further

improved. The proposed method performs well when
applied to straight line walking, however, the results can-
not be extended to the analysis of gait including turns.
The ZUPT was applied at 40% of the stance phase,
which was shown to be the most appropriate instant
when analyzing normal gait. However, there are not indi-
cations that the latter assumption is optimal for any the
pathologic groups examined in this study.
Additional files

Additional file 1: Flowchart of the algorithm. Flowchart detailing
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