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Mutational analysis on predicting 
the impact of high‑risk SNPs 
in human secretary phospholipase 
A2 receptor (PLA2R1)
Zoya Khalid1* & Omar Almaghrabi2

PLA2R1 is a transmembrane glycoprotein that acts as an endogenous ligand which stimulates the 
processes including cell proliferation and cell migration. The SNPs in PLA2R1 is associated with 
idiopathic membranous nephropathy which is an autoimmune kidney disorder. The present study 
aimed to explore the structure–function analysis of high risk SNPs in PLA2R1 by using 12 different 
computational tools. First the functional annotation of SNPs were carried out by sequence based tools 
which were further subjected to evolutionary conservation analysis. Those SNPs which were predicted 
as deleterious in both categories were further considered for structure based analysis. The resultant 
SNPs were C1096S, C545S, C664S, F1257L, F734S, I1174T, I1114T, P177S, P384S, W1198G, W1328G, 
W692C, W692L, W962R, Y499H. One functional domain of PLA2R1 is already modelled in PDB (6JLI), 
the full 3D structure of the protein was predicted using I-TASSER homology modelling tool. The 
stability analysis, structure superimposition, RMSD calculation and docking studies were carried out. 
The structural analysis predicted four mutations F734S, F1246L, I1174T, W1198G as damaging to 
the structure of the protein. All these mutations are occurring at the conserved region of CTL domain 
hence are more likely to abolish the function of the protein. Up to the best of our knowledge, this is 
the first study that provides in-depth and in-silico analysis of deleterious mutations on structure and 
function of PLA2R1.

Phospholipases play a vital role in many cellular processes including phospholipids digestion and metabolism. 
Phospholipases has four major types secretory phospholipase (sPLA2), cytosolic cPLA2, calcium independent 
iPLA2 and platelet activating factor (Lp) PLA2, are involved in lipid metabolism. In humans PLA2R1 encodes 
secretory phospholipases sPLA2 that acts as a receptor to bind various secretory phospholipases. Knockdown 
of PLA2R1 prevents senescence1.

PLA2R1 located on chromosome 2q23-q24 and is 180 kDa in weight is a transmembrane glycoprotein that 
acts as an endogenous ligand which stimulates the processes including cell proliferation and cell migration2,3. 
Phospholipases belongs to a group of enzymes that hydrolyzes the sn-2 ester of glycerol phospholipids that 
produces a fatty acid and a lysophospholipid. They are the enzymes that controls the release of lipid intervened 
precursors4. These phospholipases plays a key role in structure and cell signaling. Phospholipases which are 
activated by G-protein coupled receptors PLA2R1 results in releasing biologically active metabolite which further 
acts as first or second messengers to auxiliary modify or intensify the cell signals. Furthermore, it is also involved 
in many patho-physical situations varying from acute inflammatory conditions ending to cancer5,6. The PLA2 
can provoke carcinogenesis, as the metabolite released which includes arachidonic acid is further metabolized 
into those molecules which induce cancer cell growth and proliferation. Cell cycle arrest is the permanent pro-
liferative arrest and is activated by various stimuli including stress. This is on the whole is a tumor suppression 
mechanism that prevents from tumor progression. Failing the senescence will escort to tumor formation. PLA2R1 
is a type I transmembrane glycoprotein receptor which acts as a regulator of senescence involving P53 pathway.

Current challenge for medical research is to associate the genetic risk factors with complex diseases. The 
most popular technique used so far is the genome wide association studies (GWAS) that associates variants with 
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phenotypic traits. This involves the analysis of single nucleotide polymorphism (SNPs) refers to as single base 
change that is present in 1% of the whole population. One of the major relevance of studying SNPs is to compre-
hend the disease development associated with them. The major difficulty faced by the researchers is to develop 
a cost effective strategy to mine those functional SNPs from the millions of SNPs in a database7. SNPs are more 
frequently observed in the non-coding regions of the genome including 5′UTR and 3′UTR and introns. Those 
occurring at 5′UTR are involved in transcriptional activity while 3′UTR SNPs usually affects gene expression. 
The polymorphism occurring at intronic regions will affect the mRNA processing8. Coding SNPs in particular is 
getting attention among the researchers because the non-synonymous SNPs occurring in the coding regions of 
the genome are introducing the mutation at the amino acid level which in turn can be damaging to the structure 
or function of the protein. Damaging effects includes protein stability changes, protein–protein interactions and 
protein folding hence making them involved in various complex diseases8,9.

Several studies have shown the impact of missense mutations on the function of PLA2R1 and how it is 
associated with disease progression. The authors10 have reported the SNPs rs3749119, rs3749117, rs35771982, 
rs3828323, and rs4664308 as crucial for causing Nephropathy. Further11, have identified the two SNPs rs3749117 
and rs35771982 that are causing protein level changes to the protein hence effecting its function. The experi-
mental analysis carried out by12 showed that rs6757188 and rs3577198 are highly associated with idiopathic 
membranous nephropathy (IMN) and that’s maybe the underlying cause of IMN.

Numerous studies in the past have conducted various analysis particularly in-silico analysis that combines 
bioinformatics tool to predict the structural and functional consequences of nsSNPs occurring at the coding 
region of the genome. One study conducted SNP analysis in TAL1 gene which is a proto-oncogene hence is 
found associated with various hematological diseases13. Another study performed computational analysis on 
glycoprotein M6A that identified nsSNPs which are damaging to the structure and function of the protein14. The 
authors in15 identified the missense variants N391K and C414S in B-cell lymphoma leukemia 11A protein. A 
comprehensive study was carries out by16 to analyze the substitutions in TAGAP protein that combines compu-
tational tools of sequence, structure based. Additionally, the authors have added post translational modification 
analysis to more validate the findings17. One more study identified the SNPs in interleukin-8 (IL-8) gene for this 
purpose the study combines the structural functional analysis along with the docking studies to identify the 
effect of potential variants on protein–protein interactions18. Taking this into consideration, the present study 
aimed to explore the structural and functional impact of missense coding SNPs of PLA2R1 by using various 
computational tools. So far, no extensive in silico study has been reported on PLA2R1 that identifies the effect of 
SNPs exploring both sequence and structural features. To this end, this study conducted an in-depth analysis of 
PLA2R1 and its role and pathogenesis in complex diseases particularly cancer. In particular, the functions like 
protein stability and protein–protein interactions were explored in missense SNPs.

Materials and methods
Dataset retrieval.  The dbSNP of NCBI was queried to obtain the human PLA2R1 SNPs hat has catego-
rized the SNPs into 9 broad classes based on their location in the genome namely frameshift, inframe deletion, 
inframe indel, inframe insertion, initiator codon variant, intron, missense, non-coding transcript variant and 
synonymous (https​://www.ncbi.nlm.nih.gov/snp/). The protein sequence of PLA2R1 was obtained from Uni-
prot (https​://www.unipr​ot.org/) (UniProtKB—Q13018 (PLA2R_HUMAN)) and the protein structure file was 
obtained from RCSB PDB (PDB ID: 6JLI). Total of 29,537 SNPs were present out of which we have filtered 974 
coding nonsynonymous/ missense SNPs for further analysis.

Functional annotation of SNPs.  All the retrieved SNPs were functionally annotated in order to find the 
most deleterious SNPs using 6 different tools. The first category of tools are sequence homology based which 
includes SNPNexus (https​://www.snp-nexus​.org/v4/) that has in-built SIFT and PolyPhen19, PROVEAN (https​
://prove​an.jcvi.org/index​.php)20, and Mutation Accessor (https​://mutat​ionas​sesso​r.org/r3/)21. PolyPhen and 
SIFT categorizes the SNPs as damaging probably damaging or benign. Both the tools has different cut off thresh-
olds and SNPnexus takes the average voting for categorizing a SNP as damaging or neutral. PROVEAN (Protein 
Variation Effect Analyzer) is a freely accessible webserver that takes in sequence of a protein and the list of vari-
ants to predict whether the mutations are affecting the function of the protein. The algorithm runs the homology 
search via blast and generates PROVEAN scores. The cutoff threshold is -2.5 as default which categorizes the 
mutations as neutral or deleterious. The mutation Accessor takes the variants in a particular format and predicts 
the functionally important ones by identifying the evolutionary conserved amino acid changes. The second cat-
egory of the tools are consensus based methods which includes Meta-SNP (https​://snps.biofo​ld.org/meta-snp/
index​.html)22, SNPs&Go (https​://snps.biofo​ld.org/snps-and-go/index​.html)23, and Predict-SNP (https​://losch​
midt.chemi​.muni.cz/predi​ctsnp​/)24 webservers. The SNPs should be predicted deleterious from at least 4 out of 
6 tools in order to be labelled as high risk SNP to avoid biasness in results.

Identification of evolutionary conserved residues and motifs.  The UniProt protein sequence of 
PLA2R1 was submitted to protein BLAST to run a homology search https​://blast​.ncbi.nlm.nih.gov/Blast​.cgi. 
The 100 templates with a cutoff E-value below 1.00exp-20 and similarity threshold of > 30% were selected and 
submitted to CLUSTAL Omega (https​://www.ebi.ac.uk/Tools​/msa/clust​alo/) for multiple sequence alignment. 
Further, the ConSurf25 webserver was utilized in order to analyze the SNPs occurring at conserved sites. The tool 
uses the Bayesian algorithm to calculate the conservation score by performing phylogenetics analysis between 
the homologous sequences. The MSA file generated from Clustal Omega26 was submitted as input to CONSURF 
and it generates the conservation profile labeled by coloring scheme and scores. The scores ranges from 1–4 as 
variable, 5–6 as intermediate and 7–9 as conserved. Further, the tool also predicts if the particular residue is 
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buried or exposed which can further reveal the structural and functional importance of that residue. The tool is 
available at https​://consu​rf.tau.ac.il/.

Analyzing protein stability.  To analyze the stability of the target protein we have I-Mutant server (https​
://gpcr2​.bioco​mp.unibo​.it/cgi/predi​ctors​/I-Mutan​t3.0/I-Mutan​t3.0.cgi)27 that is a support vector machine based 
approach that predicts the stability change of the protein upon mutation. It generates the reliability index rang-
ing from 0 to 10 with 10 being the highest reliability. The PDB structure of PLA2R1 with position of variants 
were submitted as input with conditions of temperature 25 °C and pH 7.0. The tool provides the difference of 
Gibbs Free energy DDG value to determine the stability and de-stability of the protein structure upon mutation.

Predicting disease related mutations using MutPred.  To predict if the mutations are disease associ-
ated we have utilized two tools. MutPred (https​://mutpr​ed.mutdb​.org/)28 classifies a variant as disease associated 
(pathogenic) or neutral by using three different in built tools namely Psi-BLAST, SIFT and PFAM which covers 
protein structure, function and evolution. It also includes structural disorder algorithms like TMHMM, MAR-
COIL, and DisProt hence, combining all these algorithms will bring a high confidence prediction score.

3D Structure modeling and effect of variants.  The 3D structure of wild type PLA2R1 was obtained 
from PDB while the tertiary structure of mutant models were generated from I-TASSER homology modeling 
tool (https​://zhang​lab.ccmb.med.umich​.edu/I-TASSE​R/)29. It combines sequence alignment with threading 
and ab-initio modelling and predicts the 3D structure in less time with no manual effort required. The result-
ant structures were further viewed by Chimera 1.11 which is an interactive visualization tool for molecular 
structures. The quality of the 3D model generated was also verified by ERRAT (https​://servi​cesn.mbi.ucla.edu/
ERRAT​/?job=7462) which is a program used for validating the protein structures generated. Subsequently, TM-
Align server (https​://zhang​lab.ccmb.med.umich​.edu/TM-align​/)30 was used to compare wild type and mutant 
structures which computes RMSD to analyze the deviation of mutants from the wild type.

Pathway enrichment and molecular docking analysis.  The STRING31 database (https​://strin​g-db.
org/) was utilized to find the functional interacting partners of PLA2R1. Upon query it was observed that the 
closest binding partner was Mannose receptor 1 (MRC1). A high threshold of 0.7 was selected for generating 
this network. Next, the two proteins were docked by using ClusPro webserver32 https​://clusp​ro.org/login​.php 
by using default settings. The wildtype protein PLA2R1 with MRC1was docked along with the mutant models 
of PLA2R1-MRC1. For each experiment ClusPro predicts 10 different docked poses with the model scores that 
specifies the binding energy of the docked molecules.

Results
Dataset.  From dbSNP the total 974 missense SNPs were picked up for further analysis. These SNPs were 
selected based on the criteria that they should be sequenced in 1,000 Genomes Project and the SNPs should have 
minor allele frequency (MAF) data. The frequency distribution of the SNPs on synonymous, missense and non-
coding genomes has been figured in Fig. 1. From the total 974 SNPs, SIFT and PolyPhen filtered 374 SNPs as 
damaging. These SNPs were further subjected to PROVEAN tool which further filters 220 SNPs as deleterious. 
Further, these SNPs were passed through 4 different tools namely Mutation Accessor, Meta-SNP, SNPs&Go, and 
Predict-SNP. We have labelled the SNPs as high risk only if they are predicted as damaging from at least 4 tools 
out of 6. The shortlisted high risk SNPs are tabulated in supplementary Table S1. A flowchart depicting the steps 
taken for carrying the analysis of current study is figured in Fig. 2.
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Figure 1.   The frequency distribution of SNPs on different regions of the gnome.
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Conservation profile of SNPs.  For determining the conservation profile of the selected SNPs we first 
have performed multiple sequence alignment using Clustal Omega. The output MSA has sent to CONSURF 
webserver to predict whether the SNPs are disrupting the conserved residues or are occurring at the variable 
regions. The variants occurring at positions 64, 73–77, 81, 83, 89–91, 106–107, 148, 159, 171–172, 267–269, 527, 
531, 535, 577, 582, 701, 734, 838, 1,450, 1,174, 1,198, 1,455 are conserved residues present on core and surface of 
the protein hence, are more likely to effect the structure and function of PLA2R1. ConSurf uses the evolution-
ary conserved information along with the solvent accessibility data to explore the structurally and functionally 
important residues. The detailed results are tabulated in Table S2. The multiple sequence alignment is shown in 
Fig. 3 which is viewed in Jalview version1.8.3-1.1.8 and can be downloaded from https​://www.jalvi​ew.org/getdo​
wn/relea​se/.
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Figure 2.   The overview of the workflow for identifying nsSNPs.

Figure 3.   Multiple sequence alignment of PLA2R1 protein viewed in Jalview. The residues are colored using 
clustalW coloring scheme.
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Validating disease associated SNPs using MutPred.  The high confidence SNPs were further sub-
jected to MutPred to analyze if these SNPs are associated with disease. MutPred predicts the molecular mecha-
nisms associated with the SNPs along with that it also predicts if the mutations are creating any gain or loss of 
catalytic style, solvent accessibility, and posttranslational modifications. MutPred scores g value > 0.75 and the 
p-value < 0.05 are observed as confident hypothesis hence, we selected high risk SNPs based on this cutoff. The 
results are tabulated in Table S3. The high scored mutations are W1198G, I774T, F734S, and W692C. These SNPs 
were also predicted as damaging from the tools SNPNexus, PROVEAN, Meta-SNP, PHDSNP and SNPs&GO 
(Table 1). 

Protein stability change prediction.  Protein stability alterations were predicted using I-Mutant, the 
shortlisted high risk SNPs were submitted to predict the change in Gibbs free energy. The results revealed that out 
of all, there are 15 mutants C1096S, C545S, C664S, F1257L, F734S, I1174T, P177S, P384S, W1198G, W1328G, 
W692C, W692L, W962R, Y499H that were predicted as highly destabilizing hence are expected to cause maxi-
mum damage to the protein by affecting its stability. The results are tabulated in supplementary Table S1.

3D modelling of wild type PLA2R1 and its mutants with functional characterization using 
pathway analysis.  The 3D crystal structure of CTLD domain of PLA2R1 was already present in RCSB 
PDB which have residues modelled from 1,108 to 1,234. We have determined the full tertiary structure by using 
homology modelling server I-TASSER. Further, to determine the structural effect of the high risk SNPs, the 
mutant models were also generated using I-TASSER. Moreover, these structures were subjected to TM-Align 

Table 1.   High risk mutants predicted from 8 tools.

Mutation Score Effect

C1096S  − 2.083 Highly destabilizing

C545S  − 2.176 Highly destabilizing

C664S  − 2.32 Highly destabilizing

F1257L  − 2.121 Highly destabilizing

F734S  − 3.067 Highly destabilizing

I1174T  − 2.213 Highly Destabilizing

P1114T  − 2.364 Highly destabilizing

P177S  − 2.295 Highly destabilizing

P384S  − 2.376 Highly destabilizing

W1198G  − 3.492 Highly destabilizing

W1328G  − 2.999 Highly destabilizing

keggW692C  − 2.061 Highly destabilizing

W692L  − 2.825 Highly destabilizing

W962R  − 2.228 Highly destabilizing

Y499H  − 2.323 Highly destabilizing

Figure 4.   The crystal structure of CTLD domain of PLA2R1 (1,108–1,234) with NAG Inhibitor with 
superimposed mutant models of W1198G and I1174T.
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for computing RMSD to analyze the variation of wild type and mutants. The higher RMSD indicates the higher 
deviation of mutant from its wild type. Based on the RMSD values obtained, from the crystal structure of CTLD 
domain of PLA2R the mutants W1198G and I1174T showed the deviation of 8.25 and 7.36 while the mutant 
models of F1257L and F734S in fully modeled 3D structure showed the maximum RMSD of 10 and 10.2 hence, 
we have selected only these mutants to remodel them using I-TASSER in order to generate the reliable struc-
tures. Further, these mutants were also superimposed with the wild type protein structure. The quality of the 
predicted models were also verified by using ERRAT which showed the quality factor of 73.25 for the wild type 
I-TASSER generated model, 79.577 for F1257L and 79.63 for F734S. The mutations are figured in Figs. 4 and 5.

The protein–protein interaction network was generated using STRINGS database that predicts the interactions 
based on co-gene expression, physical interactions, binding etc. The PPI enrichment value was < 1.0e−16 with 
average clustering coefficient is 0.689. The KEGG pathways33 reported are tabulated in Table 2 and the pathway is 
figured in Fig. 6. Further, the highly interacting partner of PLA2R1 was MRC1 and the interacting type is binding 
hence, we first predicted the 3D structure of MRC1 using I-TASSER and then used ClusPro to conduct docking 
studies on PLA2R1 and MRC1. The crystal structure of MRC1 was present in PDB (5XTS) with few residues 
modelled from 29–629 however, the sequence length of MRC1 is 1,455 amino acids. We used both structures 
for molecular docking. Phospholipase A2 is a receptor for secretary lipases which by binding regulates the acti-
vation of the mitogen-activated protein kinase (MAPK) cascade to induce cell proliferation. Mannose receptor 
1 on the other hand, mediates the endocytosis of glycoproteins by macrophages and it binds both sulfated and 
non-sulfated polysaccharide chains34. We carried out docking with wildtype PLA2R1-MRC1 and also with the 

Figure 5.   Comparison of wild type with its mutant (A) is 3D model of PLA2R1 and (B) shows the 
superimposed model of wildtype PLA2R1 with F734S and F1257L mutants.
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mutants PLA2R1-MRC1 to check if the mutations are affecting the molecular interactions between the two 
proteins. ClusPro is a webserver for direct docking of two interacting proteins. On providing the two interacting 
proteins as input the server rotates the ligand with 70,000 rotations first and then picked 1,000 rotations with 
the lowest score. After that, using greedy approach 1,000 ligand positions were clustered with a 9oA C-alpha 
RMSD radius hence generating its neighbors. The Fig. 7 shows the docked poses of wild type and mutants PLA2R 
computationally predicted structure with MRC1 and also the crystal structure of CTL domain of PLA2R with 
crystal structure of MRC1. There are four modes of docking namely Electrostatic favored, hydrophobic favored, 
vanderwals + electrostatic and balanced. We have selected balanced mode. The models are ranked based on their 
lowest energy. The mutation is occurring at the conserved region and is located in a domain. In addition to that 
, in order to measure the strength of interaction between the two proteins we have used another measure i-e 
buried surface area (BSA) of the wildtype docked complex and the mutant docked complex of the two proteins. 
Higher value indicates the more stable structure so, the computed BSA of the wildtype docked molecules shows 
that it is more stable as compared to the mutant models. The computed BSA is tabulated in Table 3.

For the mutations I1174T and F1257L HOPE webserver (https​://www3.cmbi.umcn.nl/hope/) predicted that 
these two mutations are occurring at domain c-type lectin 7. The wild type residues are highly conserved and 
more hydrophobic in nature then the mutant residues which eventually leads to loss of protein–protein interac-
tions. The mutation F734S is also occurring in the conserved region as the previous two mutations. Further, 
the wild-type residue Phenylalanine is involved in cysteine bridge formation as annotated in UniProt, which is 
important for stability of the protein. The mutation occurring at this position will cause loss of interaction and 
ultimately disrupt the structure of the protein. Altogether, the loss of the cysteine bridge formation and the dif-
ference of wild type and mutant protein causes protein destabilization. The mutation W1198G is also occurring 
at CTL domain, the mutation replaces Tryptophan with Glycine at this position. Glycine are very flexible amino 
acid hence can disturb the rigidity of the protein required at this particular position35.

Discussion
Single nucleotide polymorphisms (SNPs) are referred as the most common genetic variants that are associated 
with various complex diseases. The SNPs occurring at the coding regions of the genome tend to be more damag-
ing to the structure and function of the protein hence, are the most studied in the current research. Currently, 
medical research is more focused in analyzing the impact of these deleterious non-synonymous SNPs that also 
have implications in various complex diseases. The studies focused on determining the functional consequences 

Table 2.   List of KEGG pathways.

Pathway Description Count in gene set

Hsa04975 Fat digestion and absorption 3 of 39

Hsa04145 Phagosome 4 of 145

Hsa00592 Alpha-Linolenic acid metabolism 3 of 25

Hsa05152 Tuberculosis 4 of 172

Figure 6.   The pathway enrichment analysis carried out by STRING database that determines the interacting 
partners of PLA2R1 categorized on the basis of interacting type.
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of these SNPs by predicting if the particular SNP has neutral effect or is disease causing by exploiting both 
sequence and structural features.

In this study, the comprehensive analysis of nsSNPs in PLA2R were explored. To improve the prediction 
accuracy we have combined tools from different categories namely sequence based, homology based, consensus 

Figure 7.   (A) shows the wildtype PLA2R1 interaction with MRC1. (B, C) shows the mutations affected 
interaction of the two proteins. (D–F) shows the docked poses of 6JLI-5XTS PDB proteins and mutations of 
PLA2R1 W1198 and I1174T.
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based and structure based. This approach will provides high confidence in selecting potentially damaging SNPs 
by avoiding the biasness in the results. The SNPs were first annotated with 6 different bioinformatics tools 
namely SNPNexus (SIFT- POLYPHEN), PROVEAN, MetaSNP, PHDSNP and SNPs&Go that categorizes the 
disease associated SNPs with the neutral ones. The pre-filtered SNPs were further subjected to structure–function 
analysis. The evolutionary conservation analysis carried out by CONSURF predicted few structurally conserved 
residues that were further evaluated for protein stability analysis. The 3D structure of one of the domains CTLD 
in PLA2R is already deposited in PDB. For the rest of the structure we have utilized I-TASSER homology mod-
elling tool and further refined and energy minimized by TM-Align. The structural impact of these mutations 
were checked by mapping the mutations onto the 3D structure of the protein in other words the wild type and 
mutant models were superimposed using PyMOL. Structural changes can be viewed by analyzing either the 
stability change in the protein or by analyzing the conformational change which further effects the binding of the 
protein. The high risk SNPs after protein stability analysis were C1096S, C545S, C664S, F1257L, F734S, I1174T, 
I1114T, P177S, P384S, W1198G, W1328G, W692C, W692L, W962R, Y499H as predicted the destabilizers. Next 
step was to check if they are changing the conformation of the protein, we first run minimization to the mutant 
structures and visualized the RMSD for them. The RMSD scores generated showed that the W1198G, I1174T, 
F1257L and F734S in I-TASSER generated model were highly deviated as these mutants were also predicted as 
high destabilizers hence, we picked these mutants for carrying out the docking analysis.

From the docking analysis carried out by ClusPro, showed that the mutations are affecting the interaction of 
PLA2R and MRC1 which was necessary for initiating cell proliferation. PLA2R protein structure has extracellular 
domains, a transmembrane domain and a short cytoplasmic tail34. It has a functional c-type lectin domain which 
is involved in various cellular process like receptor binding, immunity and angiogenesis. All the high risk muta-
tions are occurring at c-type lectin domain, C-type stands for calcium binding, proteins that have these domains 
are involved in variety of cellular processes including cell–cell adhesion, immune response and apoptosis. This 
conserved domain functions as carbohydrate binding domain usually its 110–130 residues long also there are four 
cysteines that are conserved also involved in forming disulfide bridges. The structure of CTLD contains a double 
loop also called as loop in a loop which is stabilized by these disulfide bridges. This structural loop is very flexible 
in nature and also involved in carbohydrate binding. Hence, mutation in this domain can abolish the function 
of the protein. The four high risk SNPs are occurring at CTL domain and out of them the F1257S is involved in 
disulfide bridge formation thus, this mutation might be more damaging to the function of the protein hence leads 
to loss of interactions. The interacting energy for the wild type PLA2R1-MRC1 interaction was − 241 and 671.9 
for the docked PDB structures of both proteins. Upon calculating their mutants docked structures with MRC1, 
a huge decrease of binding energy found which was − 1,268.2 for F1257L and F734S and for W1198G − 839.4, 
I1174T was 870.9. These scores were calculated by combining all the energy values from Vanderwal, Electostatic 
and Hydrophobic. Thus the difference in docking energies upon mutation is disrupting the normal activity of 
the protein. Also, the buried surface area showed that the wildtype docked complex is more stable as compared 
to the mutant models, hence mutations are effectively disrupting the interaction between the two proteins.

In this study, we have determined high risk SNPs in PLA2R1 by using combination of different bioinformatics 
tools. The results have determined W1198G, I1174T, F1257L and F734S as the most damaging nsSNPs having 
both sequential and structural consequences. Our study provides an in-depth analysis of missense variants in 
PLA2R1which can further be verified by experiential analysis to determine its role more precisely. The mutations 
caused by these SNPs have functional consequences as predicted above hence, they are more likely to initiate 
disease formation.
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