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Despite recent extensive genomic and genetic studies on behavioral responses to

ethanol, relatively few new therapeutic targets for the treatment of alcohol use

disorder have been validated. Here, we describe a cross-species genomic approach

focused on identifying gene networks associated with chronic ethanol consumption. To

identify brain mechanisms underlying a chronic ethanol consumption phenotype highly

relevant to human alcohol use disorder, and to elucidate potential future therapeutic

targets, we conducted a genomic study in a non-human primate model of chronic

open-access ethanol consumption. Microarray analysis of RNA expression in anterior

cingulate and subgenual cortices from rhesus macaques was performed across multiple

cohorts of animals. Gene networks correlating with ethanol consumption or showing

enrichment for ethanol-regulated genes were identified, as were major ethanol-related

hub genes within these networks. A subsequent consensus module analysis was

used to co-analyze monkey data with expression data from a chronic intermittent

ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related

gene networks conserved between primates and rodents were enriched for genes

involved in discrete biological functions, including; myelination, synaptic transmission,

chromatin modification, Golgi apparatus function, translation, cellular respiration, and

RNA processing. The myelin-related network, in particular, showed strong correlations

with ethanol consumption behavior and displayed marked network reorganization

between control and ethanol-drinking animals. Further bioinformatics analysis revealed

that these networks also showed highly significant overlap with other ethanol-regulated

gene sets. Altogether, these studies provide robust primate and rodent cross-species

validation of gene networks associated with chronic ethanol consumption. Our results

also suggest potential novel focal points for future therapeutic interventions in alcohol

use disorder.
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INTRODUCTION

Alcohol abuse and dependence, clinically defined as “alcohol
use disorder (AUD),” represents a serious public health
problem in the United States and worldwide. Almost 90,000
Americans die each year from alcohol-related causes, which
makes it the third leading preventable cause of death in
the United States (Stahre et al., 2014). Approximately
17 million Americans, comprising 7.2% of the national
population, had an AUD, according to a 2012 survey
(Substance_Abuse_and_Mental_Health_Services_Administration,
2012). Despite the prevalence and severity of the disorder, few
effective treatments for alcohol abuse exist today. Advancing our
knowledge of the biological underpinnings of alcohol abuse will
aid in the development of new, more-effective treatments.

Alcohol use disorder (AUD) is strongly influenced by genetic
factors, and recent findings suggest that many genes of small
effect size likely contribute to alcohol-related phenotypes (Kerns
et al., 2005; Mulligan et al., 2006; Tabakoff et al., 2008; Wolen
et al., 2012). Unfortunately, human genome-wide association
studies have only identified a handful of genes that are
significantly associated with alcoholism, mostly genes involved in
alcohol metabolism (Zuo et al., 2014; Hart and Kranzler, 2015).
Identifying, validating, and characterizing more of the genes that
influence alcohol-related behaviors is vital to our understanding
of the molecular mechanisms underlying AUD development
and susceptibility.

Ethanol has multiple direct molecular targets, producing
alterations in neuronal function and signal transduction
(Spanagel, 2009; Ron and Barak, 2016). Moreover, acute and
chronic ethanol exposure has prominent actions on gene
expression in multiple brain regions, representing a potential
underlying mechanism for neuronal plasticity and behavioral
sequelae seen with AUD (Kerns et al., 2005; Zhou et al., 2011;
Osterndorff-Kahanek et al., 2015; Smith et al., 2016). Such
genomic evidence has shown that many genes are expressed as
networks with a hierarchical organization (Oldham et al., 2008),
whereby the expression of one gene influences the expression
of others (Jordan et al., 2004; Snel et al., 2004; Chen et al.,
2008). Rather than just identifying lists of single genes, genome-
wide expression studies allow application of network-based
approaches to functionally organize ethanol responses (Wolen
et al., 2012; Smith et al., 2016). Perturbations such as alcohol
abuse can alter not only the expression of individual genes but can
change the relationship between genes within a network, which
could have widespread consequences in animal physiology and
behavior (Zhou et al., 2011; Iancu et al., 2013; Smith et al., 2016).
Furthermore, network analysis allows the identification of highly
connected “hub genes” that may influence the network as a whole
and serve as potential targets for therapeutic treatments (Farris
et al., 2010; Wolen and Miles, 2012).

To more closely assess brain gene network alterations relevant
to the neurobiology of AUD in humans, our studies here have
utilized a robust primate model of chronic alcohol consumption
in rhesus macaques. Grant et al. (2008) have shown through
numerous studies that a schedule-induced polydipsia model
can be used to produce reliable high levels of voluntary

chronic ethanol consumption, mimicking many aspects of AUD
(Baker et al., 2014; Allen et al., 2018). Following a 1-year
exposure to ethanol consumption, we identified brain genome-
wide expression changes using microarray analysis of anterior
cingulate and subgenual cortex. These areas were selected
because of their involvement in addiction-related processes, such
as reward-based learning, emotion, and motivation (Bush et al.,
2000; Allman et al., 2001; Drevets et al., 2008); they have strong
connections with other addiction-related brain areas, such as
the nucleus accumbens, ventral tegmental area, amygdala, and
hippocampus (Freedman et al., 2000; Ongür et al., 2003; Onn
and Wang, 2005; Fillinger et al., 2017); and they are dysregulated
in addicted states (Goldstein and Volkow, 2002; Volkow et al.,
2003; Contreras-Rodríguez et al., 2015). To further validate our
results for gene networks related to ethanol consumption, we
performed a cross-species analysis of the rhesus data with a
chronic exposure model in mice (Becker and Lopez, 2004; Smith
et al., 2016; van der Vaart et al., 2017). Such an analysis could
provide independent confirmation of networks identified in a
single species and prioritize targets for futuremechanistic studies.

Our results identify several novel gene expression networks
correlating with chronic ethanol consumption in rhesus
macaques. Furthermore, we identify several networks conserved
across rhesus and mouse chronic ethanol consumption models.
These studies identify a novel divergence of networks relating
to ethanol consumption vs. being over-represented for ethanol-
regulated genes per se. Thus, our experiments provide a robust
cross-species validation of gene networks relating to ethanol
consumption, increasing the probability of translational impact
on AUD in humans.

MATERIALS AND METHODS

Further details on materials and methods are available in the
Supplementary Methods, including about the animal subjects,
bioinformatics, cell type enrichment analysis, and collation of
homologous genes for the cross-species analysis. No actual
animal experiments were conducted during these studies. Tissue
samples from rhesus macaques were obtained from the Monkey
Alcohol Tissue Research Resource1 (MATRR).Mousemicroarray
data was obtained from experiments to be reported elsewhere
(Smith et al.; preprint available at https://www.biorxiv.org, MS
ID#: BIORXIV/2019/688267).

Animals and Ethanol Treatments
All primate procedures were conducted in accordance with
the NIH and the Guide for the Care and Use of Laboratory
Animals and approved by the Oregon National Primate Research
Center IACUC. Tissue from 46 adult male rhesus macaques
(Macaca mulatta), aged 5 to 11 years, was used in this study.
These animals, individually housed at the Oregon National
Primate Research Center, were induced to drink ethanol by
schedule-induced polydipsia per previously published methods
(Grant et al., 2008; Helms et al., 2014), and were then
allowed 22 h per day of ad libitum access to water and

1http://matrr.com
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4% (w/v) ethanol in water for a period of 1 year. Control
animals were age-matched within cohorts, were given daily
maltose dextran solution (calorically matched to an ethanol
drinker) and had access to water during all portions of the
experiment. Drinking data was used to calculate a number of
drinking phenotypes, which were examined for correlation to
gene expression data (see Table S1 for detailed explanation of
phenotypes as well as phenotype data). Blood samples were taken
approximately every 5 days for measurement of blood ethanol
concentrations by gas chromatography (see Grant et al., 2008
for details). Additional blood samples were collected weekly
for measurement of the hormones cortisol, adrenocorticotropic
hormone (ACTH), testosterone, deoxycorticosterone (DOC),
aldosterone, and dehydroepiandrosterone sulfate (DHEA-S) (see
Helms et al., 2014 for details of hormone assays). Control animals
were treated identically to ethanol consuming animals over the
same time period, except that blood draws were less frequent
due to lack of blood ethanol determinations. After 1 year of
open access to ethanol, necropsy was performed within 4 h of
last access to ethanol, and tissue deposited into the MATRR.
The animals used for these studies comprised MATRR rhesus
cohorts 4, 5, 7a, and 7b. Additional details on primate studies are
available in Supplementary Methods and are also detailed on the
MATRR website.

Mouse animal studies with chronic intermittent ethanol
exposure (CIE) by vapor chamber treatment were conducted at
theMedical University of South Carolina (MUSC) and full details
of the behavioral and genomic analyses of those studies are being
reported separately (Smith et al.; preprint available at https://
www.biorxiv.org, MS ID#: BIORXIV/2019/688267). Additional
methods are described in Supplementary Methods. Briefly, 47
adult male C57BL/6 mice (Jackson Laboratories; Bar Harbor,
ME, USA) were acclimated to the animal facility at MUSC
for 2 weeks before undergoing experiments. Mice were aged 7
weeks at commencement of CIE, and 21 weeks at the time of
sacrifice. All animals were kept under a 12 h light/dark cycle and
given free access to food and water. All studies were conducted
in an AALAC-accredited animal facility and approved by the
Institutional Animal Care and Use Committee of MUSC. All
experimental and animal care proceduresmet guidelines outlined
in the NIH Guide for the Care and Use of Laboratory Animals.
For chronic intermittent ethanol exposure (CIE), C57BL/6J male
mice were divided into 4 groups: CIE Drinking group (n = 12)
received inhaled ethanol in the vapor chambers followed by 2-
bottle choice drinking (15% ethanol v/v in water; 2 h/d), Air
Drinking group (n= 11) received only air in the vapor chambers,
and 2-bottle choice drinking, CIE Non-Drinking group (n =

12) received inhaled ethanol in the vapor chambers but did not
drink between CIE cycles, and Air Non-Drinking group (n= 12)
remained completely ethanol naïve (Becker and Lopez, 2004; van
der Vaart et al., 2017).

In this study, we use the two robust models of chronic ethanol
exposure described above to examine transcriptome responses
in addiction-related brain areas. While some of these responses
likely do represent gene expression changes associated with
alcohol addiction, our experimental animals cannot necessarily
be considered to be addicted to alcohol.

Sample Preparation and Microarray
Analysis
Samples of monkey medial PFC (anterior cingulate and
subgenual cortex; Brodmann areas 24, 25, and 32) were obtained
from the MATRR. See Supplementary Methods for additional
info on sample collection. RNA was extracted from brain tissue
using either RNeasy Mini Kit (Qiagen, Valencia, CA; cohorts 4
and 5) or All Prep DNA/RNA/miRNA Universal Kit (Qiagen;
cohorts 7a and 7b) following themanufacturer’s protocol, and the
RNAs from the three brain areas for each animal were pooled to
give a broader assay of addiction-related prefrontal limbic areas.
RNA samples were tested for degradation using an Experion
Automated Electrophoresis System (BIO-RAD, Hercules, CA;
cohorts 4 and 5) or a 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA; cohorts 7a and 7b). The RNA Quality Indices
(RQI) of all samples had a mean value of 8.04.

Mice were decapitated on the final drinking day of the
fourth CIE cycle, before alcohol was available (following 22 h of
abstinence). Brains were immediately removed and dissected as
previously described (Melendez et al., 2012) to obtain medial
PFC samples. Coronal slices (1mm) were punch dissected
(1.25mm dia) in medial PFC area and included tissue from
prelimbic, infralimbic, and anterior cingulate cortex. Tissues
were immediately frozen in liquid nitrogen and stored at −80◦C
until RNA isolation. Total RNA was extracted using the RNeasy
Mini Kit (Qiagen).

Affymetrix GeneChip R© Rhesus Macaque Genome Arrays
were used to measure monkey gene expression. Monkey RNA
samples were processed for microarray analysis in two groups
(cohorts 4 and 5, followed by cohorts 7a and 7b) consisting of
eight batches processed in a supervised randomization scheme
to minimize batch effects, as described previously by our
laboratories (Kerns et al., 2005; Wolen and Miles, 2012; Smith
et al., 2016). Microarrays for two animals failed quality control
standards, and one animal was deemed an outlier by hierarchical
clustering of RMA data (see below), leaving 43 animals/arrays (32
ethanol drinking, 11 control).

Affymetrix GeneChip R© Mouse Genome 430, type 2
arrays were used to measure mouse gene expression. Sample
preparation, hybridization, and array scanning were performed
at the MUSC ProteoGenomics Core Facility according to
Affymetrix protocols. Batches of samples were processed with
treatment groups randomized to minimize batch effects. Array
data was transferred to Virginia Commonwealth University in
.CEL file format for further analysis.

Data Normalization
Data analysis was largely performed using The R Project for
Statistical Computing2, or “R.” Raw microarray expression data
from monkeys underwent background correction and quantile
normalization in a single group by the Robust Multi-array
Average (RMA) method within the affy package for R (Gautier
et al., 2004). RMA data was examined for batch effects by
principal component analysis. Batch effects were evident for
two factors with similar patterns of segregation: microarray

2http://www.r-project.org
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processing batch and MATRR cohort. To remove batch effects,
RMA data was adjusted using the ComBat method in R (Johnson
et al., 2007), with microarray processing batch as the batch
factor. Principal component analysis confirmed that ComBat
removed the batch effects for both microarray processing
batch and MATRR cohort (Figure S1). Rhesus probesets were
annotated using data made available by Dr. Robert Norgren3

(Spindel et al., 2005).
Affymetrix GeneChip R© Mouse Genome 430, type 2 arrays

were also analyzed with R. Microarray quality was assessed
by RNA degradation, average background, percent present
probesets, and multi-dimensional scale plots (first principal
component by second principal component). Arrays showing low
quality measures, or that were outliers by hierarchical clustering
analysis, were removed from the dataset. Background correction
and ComBat batch correction were done as with primate arrays.

Weighted Gene Correlation Network
Analysis (WGCNA)
Weighted gene correlation network analysis (WGCNA) was
performed on monkey data in this study using the WGCNA
package for R (Langfelder and Horvath, 2008). Microarray
probesets selected for WGCNA had to pass multiple filters.
GeneChip control probesets were excluded. Probesets for which
there was no annotation were also excluded from analysis. Very
low expression probesets with RMA values <3.5 in ≥80% of
samples were excluded. Finally, probesets with a median absolute
deviation in RMA value of <0.065 across all samples were
excluded from the analysis. This left 31,479 probesets that passed
all filters and were used for WGCNA.

Weighted gene correlation network analysis (WGCNA)
parameters were left at default except as noted. The soft-
thresholding power was set at 6, based on dataset properties
described in Langfelder and Horvath (2008). Minimum module
size was set to 30. The deep-split value was also chosen based on
suggestions in Langfelder andHorvath (2008). In short,WGCNA
was run with deep-split values of 0–3, and the results were
compared in multi-dimensional scaling (MDS) plots (Figure S2).
A deep-split value of 3 was selected, as it provided several
modules, most of which were well-segregated on the MDS plot.
Hierarchical clustering dendrograms of all probesets and their
assignments to modules under deep-split values 0–3 are shown
in Figure S3.

Modules created by WGCNA were examined for correlation
(Pearson) of the module eigengene (first principal component
of expression data) to phenotypic data described in Table S1.
For ethanol-related phenotypes and hormone measures, control
animals were not considered in the correlations, as no
measurements were taken (i.e., control animals were not entered
as zero values).

Ethanol-Responsive Genes
In a separate analysis, monkey microarray RMA expression data
was analyzed for ethanol-responsive probesets by the Linear
Models for Microarray Analysis (LIMMA) method (Smyth,

3http://www.unmc.edu/rhesusgenechip

2004), using theMulti Experiment Viewer (MeV) software (Saeed
et al., 2003). A two-class design was used with treatment group
as the factor analyzed and alpha set to 0.01. The probesets used
for this analysis were similar to the list of probesets used for
WGCNA, except that no median absolute deviation filter was
applied (36,243 probesets).

Candidate Gene Selection
To determine which genes from each ethanol-related module
represented the major regulators of ethanol responses, we
derived a ranking metric called the ethanol-related hub score
(ERHS). This metric was designed to simultaneously capture
each probeset’s intramodular connectivity and relevance to
ethanol consumption or regulation. The ERHS was generated
from three values for each probeset: the scaled intramodular
connectivity (intramodular connectivity scaled by the gene’s
maximum possible connectivity in its module; calculated by
the WGCNA package), the p-value for correlation to the
ethanol intake phenotype, and the LIMMA p-value for ethanol
regulation. The latter two values were subtracted from 1 to
preserve directionality, thus:

ERHS = scaled intramodular connectivity+
(

1− EtOH intake

pvalue
)

+ (1− LIMMA pvalue)

Scaled connectivity values allowed ERHS to be compared across
large and small modules. All three terms range from 0 to 1, with
1 being the most relevant to our goal. The ERHS values of all
probesets in the analysis show a near Gaussian distribution that
ranges from 0 to 3 (Figure S4).

Monkey-Mouse Co-analysis
Expression data from the rhesus macaque chronic ethanol
consumption and mouse CIE experiments were combined using
procedures described in Supplementary Methods. A list of
10,990 homologous gene pairs was compiled for the co-analysis.
A highly significant positive correlation was seen between
ranked expression in monkey and mouse for homologous gene
pairs (Figure S5).

Expression data from 43 monkeys (32 ethanol drinkers, 11
controls) and 47 mice (23 drinkers, 24 non-drinkers) underwent
consensus module analysis (Langfelder and Horvath, 2007) using
the WGCNA package for R. To avoid bias in consensus module
construction and to ensure the two datasets were on a similar
scale, the mouse topological overlap matrix was scaled to the
monkey data using the built-in scaling function (Figure S6).
The consensus module analysis constructs topological overlap
matrices for each species separately (similar to normalWGCNA),
and after scaling, these matrices are merged by taking the
parallel minimum topological overlap value between the two
datasets for each gene-gene comparison. All parameters for
module construction were left at default, except for the following,
based on the same decision-making process described above
for WGCNA. Soft thresholding power was set to 8, deep split
value to 3, and minimum module size to 30. Modules underwent
hierarchical clustering, and similar modules were merged at a cut
height of 0.2, using the merge function in the WGCNA package.
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Data Sharing
Rhesus gene expression data has been uploaded to the Gene
Expression Omnibus4 (accession number GSE134546) and
modules andmeta-modules have been uploaded to GeneWeaver5

Tables S3–S5, S10 contain all of the data calculated for
each rhesus microarray probeset, including annotations,
module assignments, RMA values, connectivity data, module
membership data, phenotypic correlations, LIMMA results, and
ERHS. Table S10 also contains mouse microarray expression
data (RMA) for genes matched across mouse and primate arrays.

RESULTS

Weighted Gene Correlation Network
Analysis
To identify scale-free networks of highly correlated gene
expression across rhesus macaque frontal cortex microarray
data, we used WGCNA analysis. WGCNA of rhesus macaque
expression data produced 30 modules of highly correlated
genes (excluding the gray module, which contained uncorrelated
probesets not placed into other modules) varying in size from
31 to 3,985 probesets (Table S6). The validity of our module
construction method was confirmed by permutation analysis
comparing the topological overlap of each module to the
mean topological overlap of 100 randomly generated modules
of equal size (Table S7). All modules formed by WGCNA
had significantly higher topological overlap than the randomly
generated modules.

Multiple WGCNA module eigengenes (Langfelder and
Horvath, 2007) showed significant correlations to ethanol-related
phenotypes (Figure 1). Sevenmodules correlated to average daily
ethanol intake with a p ≤ 0.05: red, darkgray, saddlebrown,
orange, royalblue, steelblue, and lightyellow. All RMA data and
LIMMA results for each probeset can be found in Table S3,
all connectivity and module membership data can be found in
Table S4, and all probeset to phenotype correlation data can
be found in Table S5. As expected, many phenotypes showed
strong correlations among each other. For example, blood
ethanol concentrations, ethanol intake, and the percentage of
days with high doses of ethanol consumed all had strong positive
correlations with one another (Figure S7).

Ethanol-Responsive Genes and Modules
Linear models for microarray analysis (LIMMA) analysis was
used to identify ethanol-responsive genes across ethanol-
consuming animals vs. water-only controls. From 36,243
probesets, 2,294 were significantly ethanol-responsive (FDR ≤

0.01). Hypergeometric overlap analysis showed that six WGCNA
modules contained more ethanol-responsive probesets than
expected by chance: blue, darkorange, green, grey60, pink, and
turquoise (Table S6). Intriguingly, no ethanol-responsive genes
were found within the modules correlating with ethanol intake.

4https://www.ncbi.nlm.nih.gov/geo
5https://www.geneweaver.org

Ethanol-Related Monkey Modules
Six modules are highlighted below, based on their eigengene
correlations to ethanol phenotypes (see Table S1 for more
detailed descriptions of phenotypes), enrichments with ethanol-
responsive probesets, functional enrichments, and relationships
to meta-modules discovered in the co-analysis with mouse
data. Full ToppGene functional enrichment data for all
modules are found in Table S2. The validity of module
construction and relevance to ethanol consumption were
confirmed throughmultiple bioinformatics approaches. Modules
were independently examined for densely interconnected
network structure using external data from multiple sources via
GeneMania6 analysis. Additionally, modules were examined for
a significant positive correlation between their genes’ module
membership scores and either their correlations to the ethanol
intake phenotype or their significance of ethanol-regulation.
Finally, modules were examined for overlap with gene sets
identified in other publicly available ethanol-related genomic
studies (Table S8), using the GeneWeaver web-based resource7.

Red Module–Myelination
The eigengene of the red module (353 probesets) had significant
positive correlation (Pearson R = 0.39, p = 0.01) to ethanol
intake (Figure 2). The validity of this relationship was confirmed
by highly significant relationship between the correlation of red
module genes to ethanol intake and their module membership
scores (R = 0.36, p = 3.1E-12; Figure 2D); i.e., genes in the red
module most strongly correlated with ethanol intake were those
showing the strongest similarity to expression of the module as
a whole (module eigengene). The red module eigengene also
correlated with BEC, days over 4 g/kg, and ethanol preference
(Figure 1). Functional enrichment analysis showed that the most
significant enrichment was for genes pertaining to myelination
(Figure 2A). Other functions enriched in this module included
lipid synthesis, extracellular matrix remodeling, cell migration,
and cell morphogenesis: all processes that are peripherally
involved in myelination. Massively increased connectivity was
observed among myelin genes in the ethanol-drinking animals,
as compared to controls (Figure 2B). In particular, NDRG1 and
ERBB3 showed little connectivity among red module myelin
genes in control animals, but these genes became major network
hubs in ethanol-drinking animals.

Data from the literature support the construction of the
red module, as shown by the highly interconnected network
produced by GeneMania (Figure 2C). Additionally, the red
module had statistically significant overlap with multiple gene
sets from genomic studies of the PFC from acute or chronic
ethanol-treated mice (Kerns et al., 2005; Farris and Miles, 2013;
Smith et al., 2016; van der Vaart et al., 2017), ethanol-treated
mouse liver (Osterndorff-Kahanek et al., 2013), as well as frontal
cortex (Lewohl et al., 2000; Liu et al., 2006) and hippocampus
(McClintick et al., 2013; Farris et al., 2015) of human alcoholics,
as found on GeneWeaver (Table S8).

6www.GeneMania.org
7www.geneweaver.org
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FIGURE 1 | Heatmap showing correlations of each module to each phenotype. The heatmap color scheme is shown at right, with positive correlations being red and

negative correlations being green. At each intersection, the top number represents the Pearson correlation R value, and the bottom number in parentheses is the

p-value. Detailed descriptions of phenotypes on the X-axis are found in Table S1.

Green Module—Synaptic Transmission
The green module (Figure 3, Figure S8) was highly enriched
for ethanol-responsive genes (hypergeometric test, p = 2.53E-
82), with 283 out of 1,131 probesets differentially expressed in
ethanol-treated vs. control animals, as shown by LIMMA. A
highly significant positive correlation between the negative logs
of LIMMA p-value and module membership p-value confirmed
the relationship of this module with ethanol; the probesets that
were most significantly regulated by ethanol were also the most
interconnected probesets within the green module (R= 0.63, p=
1.95E-127; Figure 3D). The green module eigengene correlated
significantly to treatment group, drinking category, ethanol
intake during the second 6 months, change in ethanol intake,
change in BEC, rate of intake, ACTH levels, and testosterone
levels (Figure 1). Functional enrichment analysis of this module
showed significant enrichment for genes involved in synaptic
transmission and neuronal projection structure and development
(Figure 3A). Data from the literature validate this gene network,
as shown by the highly interconnected GeneMania network
(Figure 3C). A subset of genes from the “synaptic transmission”

ontology that were significantly ethanol-responsive showed a
substantial reduction in connectivity in ethanol-treated animals,
as compared to controls (Figure 3B). CAMK2B and GABRB1
were among the most connected in this subset of genes in
control animals, but were only sparsely connected in ethanol-
treated animals. A number of receptors and receptor subunits
were found in this module, including neurotransmitter receptors
such as GABA-A and B receptors (GABBR1, GABRB1, GABRD),
NMDA receptors (GRIN1, GRIN2C, GRINA), histamine receptor
(HRH3), and neuropeptide Y receptor (NPY1R); as well as
insulin-like growth factor receptors (IGF1R, IGF2R), platelet-
derived growth factor receptor (PDGF), and neurotrophin
receptor (NTRK3); in addition to cell adhesion/growth receptors
such as ephrin receptors (EPHB1, EPHB6) and flamingo-type
cadherins (CELSR2, CELSR3).

The green module contained several other significant
functional enrichments, including chromatin modification
(Figure S8A), cell adhesion, intracellular transport, post-
translational modification, and GTP catabolism and metabolism.
Like the synaptic transmission genes, ethanol-responsive
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FIGURE 2 | Red module characteristics. (A) The top 10 functional enrichments from the REVIGO summary of ToppFun analysis are shown. Almost all pertain to

myelination. (B) Circle plot showing clear differences in connectivity among the myelin genes within the red module. Note how the gene NDRG1 has little connectivity

in the control animals but is a major hub gene in the ethanol animals. (C) A network diagram from GeneMania supports the finding that the myelin genes within the red

module are highly interconnected, using data from the literature. This network contains several potential hub genes. The arrangement of nodes was modified to better

display the number of connections to each query gene (black). Genes added to the network based on connections from the literature are shown in gray. (D)

Scatterplot of red module membership vs. correlation to the ethanol intake phenotype (gene significance) for each probeset in the red module. Note the highly

significant positive correlation.

chromatin modification genes showed an overall decrease in
connectivity in ethanol-treated animals, as compared to controls
(Figure S8B). As a whole, the green module showed significant

overlap with gene sets on GeneWeaver from multiple genomic
studies of the PFC in acute and chronic ethanol-treated mice
(Kerns et al., 2005; Melendez et al., 2012; Wolen et al., 2012;
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FIGURE 3 | Green module characteristics: synaptic transmission. (A) The top 10 functional enrichments from the REVIGO summary of ToppFun analysis are shown.

Most pertain to synaptic transmission. (B) Circle plot of genes from the “synaptic transmission” ontology hits that were also ethanol-regulated by LIMMA (p < 0.01)

showed a clear decrease in connectivity in the ethanol-treated animals. (C) A network diagram from GeneMania supports the finding that the synaptic transmission

genes in (B) are highly interconnected, using data from the literature. This network contains several potential hub genes. The arrangement of nodes was modified to

better display the number of connections to each query gene (black). Genes added to the network based on connections from the literature are shown in gray.

(D) Scatterplot of the negative log of green module membership p-value vs. negative log of LIMMA p-value for each probeset in the green module. Note the highly

significant positive correlation.

Farris and Miles, 2013; Osterndorff-Kahanek et al., 2013; Smith
et al., 2016), as well as from studies of the human alcoholic frontal
cortex, hippocampus, and amygdala (Lewohl et al., 2000; Liu
et al., 2006; Ponomarev et al., 2012; McClintick et al., 2013; Farris
et al., 2015), which lends support to our findings (Table S8).

Steelblue Module—Circadian Rhythms
The steelblue module (31 probesets) eigengene correlated
significantly with ethanol intake (R = 0.3, p = 0.05). It also

correlated with age, BEC, change in BEC, ethanol preference,
rate of intake, intake after the last food pellet, ACTH
levels, and testosterone levels. Functional enrichment analysis
showed this module was enriched with genes involved in
circadian rhythms (Figure S9A). The steelblue module showed
decreased connectivity in ethanol-treated animals, as compared
to controls (Figure S9B), especially among genes that are
components of the circadian molecular clock (CRY2, PER1,
PER2). These three genes represented major hubs in the
steelblue module among control animals and in the GeneMania
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network (Figure S9C). Significant correlation between module
membership and probeset correlation to BEC confirms the
association of the steelblue module with ethanol effects (R
= 0.39, p = 0.03; Figure S9D). Functional enrichments
for glucocorticoid signaling, synaptic transmission, chromatin
modification, ion transport, and vascular processes were also
found. GeneWeaver analysis (Table S8) showed significant
overlap between the steelblue module and gene sets derived
from the PFC of acute and chronic ethanol-treated mice (Kerns
et al., 2005; Melendez et al., 2012; Wolen et al., 2012; Farris and
Miles, 2013), and from the liver of chronic ethanol-treated mice
(Osterndorff-Kahanek et al., 2013).

Blue Module—Nuclear Processes
The blue module (Figure S10; 3,172 probesets) was strikingly
enriched with ethanol-responsive probesets (1,027; p ≈ 0). The
blue module eigengene correlated significantly with treatment
group, drinking category, and cortisol levels. Functional
enrichment analysis revealed a variety of enriched ontologies
(likely owing to the large number of genes), including nuclear
processes such as DNA repair, chromatin modification, and cell
cycle regulation, as well as ubiquitination and calcium regulation
(Figure S10A). Functional enrichment analysis on just the 1,027
ethanol-responsive probesets in the blue module revealed strong
enrichment for processes involved in RNA processing and
transport (Figure S10B). The relevance of this module to ethanol
is supported by the highly significant positive correlation between
significance of ethanol responsiveness and significance of blue
module membership (R = 0.73, p = 7.62E-135; Figure S10C).
The blue module also overlapped significantly (Table S8) with
gene sets derived from acute and chronic ethanol-treated mouse
PFC (Melendez et al., 2012; Farris and Miles, 2013; Osterndorff-
Kahanek et al., 2013; Smith et al., 2016; van der Vaart et al., 2017)
and the frontal cortex, hippocampus, and amygdala of human
alcoholics (Liu et al., 2006; Ponomarev et al., 2012; McClintick
et al., 2013; Farris et al., 2015).

Turquoise Module—Protein Synthesis
Like the blue module, the turquoise module (Figure S11) was
large (3,985 probesets) and was highly enriched for ethanol-
responsive probesets (558; p = 3.92E-61). The turquoise module
eigengene correlated to treatment group, BEC, days over 4
g/kg, and ethanol preference. Functional enrichment analysis
of turquoise module showed highly significant enrichment
for genes involved in translation, cellular respiration, and
intracellular transport (Figure S11A); all processes that are
involved in protein synthesis. Functional enrichment analysis
of just the 558 ethanol-responsive probesets showed similar
results to the turquoise module as a whole (Figure S11B).
Turquoise module genes showed highly significant correlation
between significance of ethanol-responsiveness and significance
of module membership (R = 0.32, p ≈ 0; Figure S11C).
Additionally, significant overlap was found between the
turquoise module and gene sets from genomic studies of acute
and chronic ethanol-treated mouse PFC (Kerns et al., 2005;
Melendez et al., 2012; Farris and Miles, 2013; Osterndorff-
Kahanek et al., 2013; Smith et al., 2016; van der Vaart et al., 2017)

and liver (Osterndorff-Kahanek et al., 2013), as well as from the
human alcoholic frontal cortex (Lewohl et al., 2000; Liu et al.,
2006), hippocampus (McClintick et al., 2013; Farris et al., 2015),
and amygdala (Ponomarev et al., 2012).

Pink Module—Various Enrichments
The pink module (Figure S12; 291 probesets) was significantly
enriched with ethanol-responsive probesets (59; p = 1.19E-
13). A significant positive correlation was observed between
significance of ethanol-responsiveness and significance of pink
module membership (R = 0.42, p = 9.68E-12; Figure S12D).
The eigengene correlated significantly with treatment group,
drinking category, ethanol intake during the second 6 months,
and testosterone levels (Figure 1). Functional enrichment
analysis showed that the pink module harbored various
enrichments, including Golgi apparatus function, protein
synthesis, chromatin modification, and synaptic transmission
(Figure S12A). Connectivity analysis of the top 50 genes in the
pink module by ERHS showed a reorganization of connectivity
with ethanol treatment (Figure S12B). A densely connected
network was generated by GeneMania for these 50 genes
(Figure S12C). The pink module was also particularly rife with
genes having high ERHS; five of the top 25 genes by ERHS
from the whole study were in this module (Table 1), including
the highest-scoring gene in the study, SEC23A, a gene essential
for COPII-coated vesicular transport of proteins from the
endoplasmic reticulum to the Golgi apparatus. Sec23 regulates
the trafficking of GluA1 vs. GluA2 AMPA receptor subunits
in rodent striatal medium spiny neurons (Pick et al., 2017), a
process important in alcohol and cocaine addiction (Woodward
Hopf and Mangieri, 2018). The pink module also overlapped
significantly with gene sets derived from acute and chronic
ethanol-treated mouse PFC (Wolen et al., 2012; van der Vaart
et al., 2017) and the frontal cortex, hippocampus, and amygdala
of human alcoholics (Liu et al., 2006; Ponomarev et al., 2012;
McClintick et al., 2013; Farris et al., 2015).

Cell Type Enrichment Analysis
Cell type enrichment analysis was performed to find modules
that were enriched for genes with selective expression in various
brain cell types. Fourteen out of thirty modules showed such
an enrichment (Table S9). Eight modules were enriched for
neuronal markers (purple, green, salmon, cyan, yellow, white,
brown, and darkred), four were enriched for glial markers
(red, tan, magenta, and greenyellow), and two were enriched
for vascular markers (darkgray and darkturquoise). Among
these modules, red (enriched for oligodendrocytic markers) and
darkgray (enriched for vascular mural cell markers) correlated
with ethanol intake, and the greenmodule (enriched for neuronal
markers) was enriched with ethanol-responsive genes, suggesting
that chronic ethanol exposure alters gene expression in these cell
types. Previous studies have shown that coexpression networks
from brain samples are often enriched for markers of a particular
cell type (Oldham et al., 2008; Miller et al., 2010). Thus, these
findings validate our module construction method. Additionally,
the cell type enrichment results largely agree with the functional
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TABLE 1 | Top 25 genes by ethanol-related hub score (ERHS) from select ethanol-related monkey modules, and from the entire study (far right).

Red Green Blue Turquoise Pink Steelblue All modules

Gene ERHS Gene ERHS Gene ERHS Gene ERHS Gene ERHS Gene ERHS Gene Module ERHS

ENPP2 2.56 PHYHIP 2.85 GRIA3 2.82 ARL1 2.73 SEC23A 2.93 LRTM2 2.54 SEC23A Pink 2.93

EVI2A 2.55 SYN1 2.79 ZNF483 2.78 WTAP 2.71 UBA2 2.91 SLC25A25 2.44 SSR4 Lightyellow 2.92

MOG 2.52 WBP2 2.78 IL28RA 2.77 HMGN4 2.67 ACTR6 2.90 RCC2 2.31 AMY1B Lightcyan 2.92

ERMN 2.50 LPHN1 2.76 TRIOBP 2.74 ARL1 2.66 ARMCX1 2.85 NAB2 2.30 UBA2 Pink 2.91

MOBP 2.47 FASN 2.74 RBM48 2.74 THAP11 2.65 STRN3 2.78 IER5L 2.26 ACTR6 Pink 2.90

EVI2A 2.45 CDC42BPB 2.73 BMP7 2.73 RBM7 2.63 THAP5 2.71 IER5L 2.25 TNFSF10 Darkturquoise 2.87

MAL 2.45 MAPT 2.69 CTSC 2.72 CDC42 2.60 TANK 2.71 ERF 2.20 GIMAP4 Darkturquoise 2.85

UGT8 2.44 KIAA0427 2.68 PCDH11Y 2.72 MFF 2.60 C5orf44 2.68 CRY2 2.19 ARMCX1 Pink 2.85

TNFAIP6 2.42 MLL 2.68 NUAK2 2.71 EIF5 2.59 ACYP2 2.66 CECR6 2.19 PHYHIP Green 2.85

GOLGA7 2.39 IQSEC2 2.68 MACC1 2.71 TMED10 2.58 VAMP4 2.66 RTN4R 2.13 MLLT10 Lightcyan 2.83

ENPP2 2.37 HUWE1 2.65 SRSF1 2.71 LYSMD2 2.58 PPARGC1B 2.66 USP2 2.13 GRIA3 blue 2.82

MOBP 2.36 RANGAP1 2.65 SH3BP2 2.68 GLRX3 2.57 MRPL36 2.65 RHOBTB2 2.03 ARGLU1 lightcyan 2.82

LAMP2 2.32 C6orf106 2.64 SFRS11 2.68 PSMD14 2.54 SLC4A10 2.64 ADORA1 1.96 HNRNPC Brown 2.81

CLDN11 2.32 SEZ6L2 2.64 CYP4V2 2.68 SLC4A10 2.52 NNT 2.63 BRPF1 1.96 RPL13 Lightyellow 2.80

CLDND1 2.31 EPN1 2.61 ZNF713 2.68 NDUFS3 2.52 POMP 2.59 EGR1 1.94 SYN1 Green 2.79

ERMN 2.28 SV2A 2.61 SFRS11 2.67 MRPL47 2.51 RCHY1 2.58 PER1 1.75 MYL9 Darkgrey 2.79

MOG 2.28 AGPAT1 2.60 RINL 2.65 WTAP 2.50 PNPLA8 2.58 DGAT2 1.61 STRN3 Pink 2.78

TNFAIP6 2.27 POLR2A 2.60 TCTA 2.64 SMIM8 2.49 TCEA1 2.57 EGR1 1.61 ZNF483 Blue 2.78

CNP 2.25 CD99L2 2.58 MXRA7 2.64 UQCRC2 2.49 CACYBP 2.55 SETD1B 1.54 WBP2 Green 2.78

ENPP2 2.23 C9orf86 2.57 XIAP 2.64 TOMM22 2.49 TMED7 2.55 ADRB1 1.46 IL28RA Blue 2.77

PPP1R14A 2.23 MICAL3 2.57 PGAP1 2.63 PSMC6 2.48 SLMO2 2.55 DBP 1.44 LPHN1 Green 2.76

C21orf91 2.22 ATP1A3 2.56 FOXK1 2.63 PSMB6 2.48 DPY30 2.55 CNNM2 1.37 ZFR Brown 2.75

PLLP 2.21 SRRM3 2.55 SUGT1 2.62 RNF138 2.48 EFHA2 2.54 MXRA5 1.32 FASN Green 2.74

GPR37 2.21 SLC17A7 2.55 HBS1L 2.62 DRG1 2.46 ARL6IP5 2.52 SERPINE2 1.31 TRIOBP Blue 2.74

CLMN 2.21 GDI1 2.54 OR7D2 2.61 UBE2N 2.46 SRP9L1 2.51 FAM160A2 1.30 RBM48 Blue 2.74

Retracted hypothetical genes and pseudogenes have been removed from the table. Repeated gene symbols indicate separate probesets for the same gene.

enrichment results from ToppGene, validating our compiled cell
type enrichment dataset.

Monkey-Mouse Co-analysis
In order to enhance the translational potential of our study,
a cross-species co-analysis was performed using rhesus
expression data and microarray data collected from studies
on C57BL/6J mice exposed to chronic ethanol vapor exposure
and consumption (Smith et al.; preprint available at https://
www.biorxiv.org, MS ID#: BIORXIV/2019/688267). Such an
analysis could identify ethanol-related gene networks conserved
across model systems, with increased relevance to AUD.
Modules discovered in this co-analysis have been termed
“meta-modules” to avoid confusion with monkey-only modules.
Consensus module analysis found 15 meta-modules of genes
with highly correlated expression patterns across both species.
A spreadsheet with meta-module assignments, RMA values, and
meta-module membership values is found in Table S10. These
meta-modules were examined for correlation to ethanol-related
phenotypes in both monkeys and mice (Figures S13, S14).
Complete functional enrichment results for meta-modules are
found in Table S11. Cross-tabulation of monkey modules with
meta-modules showed that 14 out of 30 monkey modules had
a correlate meta-module, as shown by significant overlap in

a hypergeometric test (Figure S15), indicating their validity
in more than one model system. Every meta-module showed
significant overlap with at least one monkey module discovered
in this study (Figure S15, Table S12). Five of the ethanol-related
monkey modules had correlates in the co-analysis: blue, green,
pink, red, and turquoise. Details of the five meta-modules
most strongly overlapping with these monkey modules are
described below.

The most significant overlap was between the meta-black
module (114 genes) and the red monkey module, with 88
genes in common (p = 1.91E-152, hypergeometric test). Like
the red module, the meta-black module contained significant
enrichment for genes involved in myelination (Table S11). While
the meta-black module eigengene did not correlate with ethanol
intake in monkeys (as did the red monkey module), it did
correlate with treatment group, drinking category, average BEC,
average bout volume, and testosterone levels (Figure S13). The
meta-black module eigengene positively correlated with baseline
drinking in mice but not to drinking after chronic ethanol vapor
exposure (Figure S14).

The meta-green module (124 genes) shared 60 genes with
the green monkey module (p = 7.6E-46). Meta-green was
enriched for genes involved in cell projection assembly, ion
channel function, synapses, immune function, and cytoskeleton
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assembly (Table S11), processes that are important for neuronal
development and synaptic transmission. The meta-green module
eigengene correlated with treatment group, drinking category,
and testosterone levels in monkeys (Figure S13), as well as with
drinking at baseline and after CIE in mice (Figure S14).

The meta-turquoise module (594 genes) bore resemblance
to the turquoise monkey module, with 280 genes in common
(p = 7.18E-111), as well as to the blue monkey module, with
109 genes in common (p = 9.8E-16). Meta-turquoise was most
enriched for genes involved in RNA processing, ubiquitination,
ribosomes, and transcription factor activity (Table S11). This
meta-module’s eigengene correlated to the change in ethanol
intake, change in BEC, and days of heavy drinking in monkeys
(Figure S13), as well as to drinking after the fourth cycle of CIE
in mice (Figure S14).

The meta-yellow module and the blue monkey module shared
80 genes (p = 3.23E-49). Meta-yellow harbored enrichment for
genes involved in RNA splicing, helicase activity, translation
regulator activity, and protein kinase activity (Table S11). The
meta-yellow eigengene correlated significantly with treatment
group, drinking category, change in ethanol intake, and
testosterone levels in monkeys (Figure S13), as well as with
treatment group, baseline drinking, and drinking after CIE in
mice (Figure S14).

Forty-four genes were shared between the meta-blue
module (216 genes) and the pink monkey module (p =

1.05E-43). Functional enrichment analysis showed that meta-
blue was enriched for genes involved in vesicular transport,
Golgi function, post-translational modification, and synapse
components (Table S11). The meta-blue module eigengene
correlated significantly with baseline and post-CIE drinking in
mice (Figure S14), as well as with drinking category and the
change in drinking from the first to the second 6 months in
monkeys (Figure S13).

Finally, the meta-pink module shared 29 genes with
the purple monkey module (p = 2.01E-35). Although that
monkey module did not show over-representation for ethanol-
regulated genes or significant eigengene correlation with
12-month ethanol consumption, the purple module did
show a significant positive correlation with the change in
drinking from the first 6 months vs. the second 6 months
of consumption. Further, the meta-pink module showed a
significant correlation with the change in ethanol consumption
for the last cycle of CIE (CIE4% change baseline). This
suggests that this meta-module/monkey module pair may be
related to the escalation of ethanol consumption. This is of
interest given the significant functional over-representation
of the pink meta-module for genes relating to synaptic
transmission, nervous system development and neuronal
projection morphogenesis (Table S11).

DISCUSSION

In this study, we have performed network analysis of genome-
wide expression data from an addiction-related brain area
of chronically ethanol-drinking primates. Furthermore, we

have co-analyzed this monkey data with similar data from
another robust animal model of chronic ethanol exposure
and consumption, CIE-treated mice. We have identified
several functional categories of genes whose response to
ethanol is conserved across species and ethanol treatment
paradigms, including myelination, neuronal development,
synaptic transmission, Golgi apparatus function, and several
aspects of gene expression, to name a few. Additionally,
we have created a novel multifactorial method for ranking
genes that our data suggest to have the best potential for
further mechanistic investigation and possible identification of
therapeutic targets for AUD (Table 1). Our findings have been
validated by several methods, both intrinsic and extrinsic to our
own analysis. Altogether, these studies provide significant new
information about prefrontal cortex adaptations associated with
ethanol consumption.

Correlation to Ethanol Intake vs.
Enrichment With Ethanol-Responsive
Probesets
We used two different criteria to characterize WGCNA module
relationships to ethanol: correlation of the module eigengene
to ethanol intake, and enrichment of the module with ethanol-
responsive probesets. Intriguingly, we found very little overlap
between these two criteria. This may be due to differences in the
data that are considered when calculating the two parameters. For
the calculation of correlation to ethanol intake, data from control
animals was not available (control animals were not entered
as zero values), reducing the number of animals contained
in the phenotypic correlations to 32. Thus, module eigengene
correlations to drinking phenotypes identified genes that vary
expression with how much ethanol-drinking animals consumed.
On the other hand, the LIMMA analysis examined differences
in gene expression between the control and ethanol-drinking
groups. As such, these ethanol-responsive modules highlight
genes that vary expression with whether the animal had the
opportunity to drink ethanol.

Alternatively, modules with expression correlated to ethanol
intake could represent gene networks that regulate drinking
behavior, whereas modules that are enriched with ethanol-
responsive genes are regulated by drinking. This interpretation is
supported by findings from the cross-species co-analysis. Similar
to segregation of monkey modules correlated to ethanol intake
vs. enriched with ethanol-regulated genes, it was evident that
most meta-modules correlated with either baseline drinking or
drinking after CIE in mice, not both (Table S13). For example,
the meta-black module was enriched for myelin genes, and
its eigengene correlated to baseline drinking in mice. This
observation is in agreement with previous findings that, across
the BXD recombinant inbred panel of mice, basal myelin gene
expression correlated to initial sensitivity to ethanol (Kerns
et al., 2005; Farris and Miles, 2013), which would influence the
propensity to drink. In a similar manner, the red monkey module
was also enriched for myelin genes, and its eigengene correlated
to ethanol intake, suggesting an influence of this module on the
propensity of monkeys to drink ethanol, if the role of myelin gene
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expression in initial sensitivity to ethanol is conserved between
mice and monkeys.

There was also a dichotomous relationship between the
measure of ethanol-relatedness and the type of functional
enrichments observed. Monkey modules that correlated to
ethanol intake behavior were often functionally enriched for
ontologies of emergent cellular processes like myelination,
synaptic transmission, circadian rhythms, steroid signaling, and
vascular processes, suggesting that expression of these genes
is dependent upon the amount of ethanol consumed, or that
they influence the organism’s propensity to drink ethanol. This
is in contrast to modules enriched with ethanol-responsive
genes, which contained functional enrichments related to core
cellular processes, such as translation, cellular respiration,
intracellular transport, cell cycle, chromatin modification,
Golgi function, and RNA processing, which suggests these
processes could be regulated by the presence or absence
of ethanol.

Finally, it is possible that withdrawal from ethanol had some
influence upon our detection of ethanol-regulated genes and thus
might skew the relationship with gene expression correlating
with consumption. All monkeys underwent necropsy within
4 h of their last access to ethanol and thus could have been
undergoing mild withdrawal.

Biological Functions Related to Chronic
Ethanol Drinking
Perhaps the most clear-cut and consistent finding across our
various analyses is the association of a network of myelin genes
with ethanol intake. Elucidating ethanol’s effects on myelin
has been an active area of research for some time. In fact,
a recent MRI study showed white matter reductions in the
same four cohorts of monkeys used in this study (Kroenke
et al., 2014). Postmortem studies of human alcoholic brains
have shown sizeable reductions in white matter (de la Monte,
1988; Harper, 2009), diffusion tensor imaging has been used to
show microstructural disruptions in myelin integrity in vivo in
human alcoholics (Pfefferbaum et al., 2000), and these white
matter defects have been associated with neurological deficits
in alcoholics (Sullivan and Pfefferbaum, 2005; Colrain et al.,
2011). Furthermore, studies in mice show correlations between
basal myelin gene expression and behavioral sensitivity to ethanol
(Kerns et al., 2005; Farris and Miles, 2013) and adolescent
binge exposure decreased myelin gene expression in adolescent
mice (Wolstenholme et al., 2017). Additionally, adolescent binge
drinking or adult alcohol dependence induction in rats caused a
reduction in the white matter of the anterior corpus callosum, as
well as degradation of myelin basic protein in the PFC (Vargas
et al., 2014). Pertinently, previous genomic studies of ethanol
have found functional enrichment for myelin among their lists
of ethanol-regulated genes (Lewohl et al., 2000; Kerns et al., 2005;
Liu et al., 2006; McClintick et al., 2013). It has been suggested that
in addition to likely toxic effects of ethanol on myelin expression,
underlying differences (e.g., genetic) in basal myelin expression
might be a risk factor for ethanol consumption, possibly by
altering acute sensitivity to ethanol (Farris and Miles, 2013).

In agreement with these previous findings, we found that
chronic ethanol has profound effects on a network of myelin
genes in primates and rodents. The red monkey module was
enriched for genes involved in myelination, and its eigengene
correlated significantly to ethanol intake. Several findings
support and confirm the construction of this module and its
association with ethanol. The red module had significant overlap
with multiple alcohol-related gene sets discovered in studies by
other researchers using different species and alcohol treatment
paradigms. Also, co-analysis of monkey and mouse expression
data led to construction of a cross-species meta-module that
was also enriched for myelin genes and correlated to ethanol-
related phenotypes in both species. Several of the top 25 genes by
ERHS in the red module were canonical myelin genes, including
ENPP2, MOG, ERMN, MOBP, MAL, UGT8, CLDN11, CNP, and
PLLP (Table 1). Perhaps somewhat unexpectedly, myelin gene
expression was not significantly up- or down-regulated in our
rhesus data. However, chronic ethanol drinking was associated
with profoundly increased connectivity among myelin genes
in the red module (Figure 2B), suggesting ethanol might have
altered a common regulator of these genes. In addition, ethanol
induced the emergence of new hub genes in the red module (see
NDRG1, ERBB3, and CNTN2). It is possible that these changes
in myelin network connectivity are a compensatory response to a
toxic effect of ethanol on myelin, as has been suggested by some
prior studies.

These ethanol-induced hub genes in the red module
could represent targets for pharmacological treatments for
alcohol abuse, given their ethanol-responsive major change
in connectivity with myelin genes. The gene NDRG1 had an
ERHS of 1.71, and showed a striking difference in connectivity
between ethanol and control animals. NDRG1 encodes a
cytoplasmic signaling protein that plays a role in development
and maintenance of myelin (King et al., 2011), and mutations
in this gene cause demyelinating disorders (Kalaydjieva et al.,
2000; Hunter et al., 2003). Our previous studies have shown that
acute and chronic ethanol treatment increase NDRG1 expression
in mice (Kerns et al., 2005; Farris and Miles, 2013; Smith et al.,
2016). Acute ethanol treatment also increases phosphorylation of
NDRG1 (Costin et al., 2013). Similar to NDRG1, ERBB3 was a
major hub among myelin genes in the ethanol-treated monkeys
and had an ERHS of 1.98 in the redmodule. This gene encodes an
epidermal growth factor receptor important in the development
of myelin. While ERBB3 has not yet been directly implicated in
ethanol behaviors, it interacts with ethanol in the development of
tumors in vitro (Luo and Miller, 2000).

Another striking finding from our analyses is that a large
network of genes involved in neurodevelopment and synaptic
transmission was regulated by chronic ethanol, and many
chromatin modification genes were organized into the same
module. It has been known for some time that ethanol alters
neuronal function, interacting with and altering properties of
several neurotransmitter receptors and ion channels (Spanagel,
2009). The green module was heavily enriched for neuron-
specific functional categories, particularly those involved in
neuronal process development, such as “neuron projection” (120
genes, p = 2.43E-19), and “dendrite” (70 genes, p = 4.03E-15),
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as well as synaptic development and function, such as “synapse”
(98 genes, p= 2.64E-21) and “synaptic transmission” (108 genes,
p = 2.55E-19). Among the top 25 green module genes by ERHS
were several involved in neuronal process development/structure
and cytoskeletal/extracellular matrix reorganization, including
SYN1, LPHN1, CDC42BPB, MAPT, IQSEC2, C6orf106, SEZ6L2,
CD99L2, and ATP1A3 (Table 1). SYN1 (synapsin I) encodes
a vesicular phosphoprotein involved in synaptogenesis and
neurotransmitter release that is a known target of Protein Kinase
A (PKA) and is phosphorylated in response to ethanol treatment
(Conti et al., 2009). PRKAR1B, a regulatory subunit of PKA, is
also found within the greenmodule with high ERHS (2.21), along
with two A kinase anchor proteins: AKAP1 and AKAP8L (ERHS
1.99 and 2.03, respectively). An extensive body of evidence links
PKA activity to ethanol behaviors (see Ron and Barak, 2016 for
review). Also within the top 25 genes by ERHS in the green
module were three genes involved in lipid synthesis/metabolism
(another process important for developing neurons): PHYHIP,
FASN, and AGPAT1. Several more of the top genes in the
green module by ERHS were involved in vesicular processes,
which are important for neuronal function and synaptic
transmission, including EPN1, SV2A, MICAL3, SLC17A7,
and GDI1.

The green module also harbored significant enrichment for
chromatin modification genes (62 probesets, p = 1.97E-8).
WBP2, MLL, POLR2A, SRRM3, and BRD3 all had ERHS above
2.5 (Table 1). The organization of these genes in an expression
module with synaptic transmission genes suggests a possible
reciprocal relationship between ethanol regulation of synaptic
transmission and chromatin modification. This is consistent with
a growing body of literature suggesting epigenetic regulation of
gene expression by ethanol in brain (Wolstenholme et al., 2011,
2017; Kyzar et al., 2017).

RNA processing and regulation of transcription were
functions enriched within the highly ethanol-responsive blue
module. Ethanol-induced alterations of gene transcription have
been observed previously (Saba et al., 2006; Ponomarev et al.,
2012). Three genes involved in RNA splicing/processing were
among the top 25 blue module genes by ERHS (RBM48,
SRSF1, and SFRS11), and five were involved in regulation of
transcription (ZNF483,MACC1, SH3BP2, ZNF713, and FOXK1).
A recent RNA-seq expression network study in area 32 and
central nucleus of the amygdala (CeA) of chronically drinking
monkeys, from the same cohorts used in the analysis here, found
functional enrichment for genes involved in RNA splicing in
CeA (and other forms of transcriptional regulation) as seen with
our analysis in PFC (Iancu et al., 2017). However, there was
surprisingly no significant degree of overlap between the gene set
from area 32 correlating with ethanol consumption in that study
(see Supplementary Table 7 in Iancu et al., 2017) with our current
analysis (Table S3). Furthermore, Iancu et al. found minimal
significant functional over-representation in the genes from area
32 correlating with consumption. Methodological differences
likely explain these differences, with our analysis pooling RNA
from three anatomically similar areas of medial PFC and using
microarrays, compared to focus on area 32 and use of RNAseq
by Iancu et al.

Also having high ERHS in the blue module were four genes
involved in neuronal development/function: GRIA3, TRIOBP,
BMP7, and PCDH11Y. GRIA3, which had the highest ERHS
in the blue module (2.82), encodes the glutamate ionotropic
receptor AMPA type subunit 3. Growing evidence supports a
role for the AMPA receptor in the rewarding properties of
alcohol (Cannady et al., 2016; Salling et al., 2016), and expression
levels of GRIA3 splice variants (which differ in several ion
channel properties) correlate to ethanol intake and BEC in
chronic alcohol-drinking monkeys (Acosta et al., 2011). BMP7
interacts with ethanol in cell culture experiments. Hepatocytes
cultured on a printed array of BMP7 protein are protected from
ethanol-induced apoptosis (Wilkemeyer et al., 1999), and ethanol
inhibits the morphological changes and cell adhesion induced
by BMP7 exposure in cultured neuroblastoma/glioblastoma cells
(Jones et al., 2010).

Many genes involved in protein translation and cellular
respiration were found together in the ethanol-responsive
turquoise module. Protein synthesis accounts for a large
portion of the typical cellular energy expenditure (Lane and
Martin, 2010). Multiple turquoise module genes involved in
either protein translation (EIF5 and MRPL47) or cellular
respiration/mitochondrial function (MFF, GLRX3, NDUFS3,
MRPL47, UQCRC2, and TOMM22) had highly ranked ERHS
values. Ethanol alters mitochondrial size and morphology
in neurons (Tavares and Paula-Barbosa, 1983), possibly by
disruption of mitochondrial fission. The gene MFF encodes
a protein involved in mitochondrial fission which recruits
dynamin-1-like protein (DNM1L; a GTPase that participates in
fission), which is also found within the turquoise module.GLRX3
encodes glutaredoxin 3, an oxidoreductase enzyme that reduces
many substrates by a glutathione-dependent mechanism. This
gene may be of particular interest, as oxidative stress, especially
with ethanol-induced oxidative mitochondrial damage, has been
proposed as a major contributor to the neurotoxic effects of the
drug (Hoek et al., 2002; Hernández et al., 2016).

The turquoise module also was enriched for genes involved
in the ubiquitin/proteasome system. Within the top 25
turquoise genes by ERHS were three components of the
26S proteasome (PSMD14, PSMC6, and PSMB6), a ubiquitin-
conjugating enzyme (UBE2N), and a ubiquitin ligase (RNF138).
Ethanol treatment alters proteasome gene expression and activity
in neuroblastoma cells (Caputi et al., 2016). Furthermore,
induction of P450 cytochrome 2E1 in the rat liver by chronic
ethanol feeding is associated with attenuation of proteasome
activity, likely by inhibition of proteasome assembly (Bardag-
Gorce et al., 2005), and chronic ethanol-induced inhibition of
the proteasome and the resulting epigenetic effects have been
proposed as a mechanism contributing to liver cell damage
(Bardag-Gorce, 2009).

Common Themes Across Modules
Analysis of genomic data herein was primarily module-based,
but some gene functions appeared across multiple modules, often
represented by genes with high ERHS. REVIGO-summarized
(see Supplementary Methods) functional enrichment analysis
of the top 250 genes by ERHS from the entire study showed
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TABLE 2 | Top 10 functional enrichment categories within the top 250 genes by ERHS from the entire study, as summarized by REVIGO from the ToppFun results.

Ontology ID Ontology type Description p-value Dispensability Frequency Uniqueness

GO:0043209 Cellular component Myelin sheath 4.80E-06 0 0.01% 0.929

GO:0048193 Biological process Golgi vesicle transport 5.56E-05 0 0.04% 0.736

GO:2001025 Biological process Positive regulation of response to drug 4.14E-04 0 0.00% 0.75

GO:0016556 Biological process mRNA modification 8.13E-04 0 0.02% 0.817

GO:0004971 Molecular function AMPA selective glutamate receptor activity 8.17E-04 0 0.00% 0.939

GO:0031267 Molecular function Small GTPase binding 9.25E-04 0 0.03% 0.854

GO:0018660 Molecular function 4-Hydroxyphenylacetate, NADH: oxygen

oxidoreductase (3-hydroxylating) activity

2.79E-03 0 0.00% 0.335

GO:0002474 Biological process Antigen processing and presentation of peptide

antigen via MHC class I

5.15E-03 0 0.06% 0.971

GO:0048475 Cellular component Coated membrane 5.18E-03 0 0.10% 0.942

GO:0060076 Cellular component Excitatory synapse 9.83E-03 0 0.00% 0.854

enrichment for genes involved in myelination, Golgi vesicle
transport, response to drug, mRNA modification, AMPA
receptor signaling, GTPase activity, oxidoreductase activity,
antigen processing, coated membranes, and excitatory synapses
(Table 2, full results in Table S14). While genes involved in
myelination, oxidoreductase activity, and glutamate signaling
were each enriched in a single module, other gene ontologies
such as Golgi vesicle transport/coated membranes, GTPase
activity, and mRNA modification were enriched across multiple
modules. It has been known that ethanol exposure results in
disorganization of the Golgi apparatus (Renau-Piqueras et al.,
1985; Romero et al., 2015), a process that likely involves GTPase
activity and COPII-mediated vesicular transport (Petrosyan
et al., 2015) and can lead to altered lipid metabolism and
neurite development (Powrozek and Olson, 2012); all processes
strongly implicated by our study in the biological effects of
chronic ethanol.

When looking at functional enrichments across all ethanol-
related modules, it is easy to see how ethanol can alter
the expression of thousands of genes in the brain. Ethanol-
related modules were enriched for chromatin modification,
transcription factors, helicases, RNA polymerases, RNA splicing,
translation regulators, ribosomal proteins, Golgi apparatus
function, and ubiquitin/proteasome function. This suggests that
chronic ethanol may alter gene expression at any point from pre-
transcriptional regulation to protein degradation, in agreement
with previous findings in ethanol-treated neuroprogenitor cells
(Garic et al., 2014).

Ethanol-Related Modules Conserved
Between Primates and Rodents
Cross-species analysis of expression data resulted in the discovery
of several ethanol-related gene networks that were conserved
between primates and rodents. Not only does this discovery help
to focus on genes and networks that are central to ethanol’s
biological effects in mammals (and thus have high therapeutic
potential), but it also speaks to the translational nature of
genetic/genomic studies of alcohol abuse in rodents.

For the most part, gene functions enriched within meta-
modules mirrored those of modules discovered in the

monkey-alone analysis. Indeed, every meta-module had a
correlate monkey module. Looking in the other direction, only
half of the monkey modules had a correlate meta-module; the
other half of the monkey modules were presumably constructed
based on gene-gene correlations that were strong in the monkey
but not in the mouse. Within the overlap of monkey modules
with meta-modules, several functional enrichments that were
strong in the monkey-alone analysis were present, including
myelination, synaptic transmission, RNA processing, translation,
and cellular respiration. However, several other functional
categories emerged within the overlaps that were less evident in
the monkey-alone analysis, such as antigen processing, circadian
rhythms, steroid receptor binding, kinase inhibitors, and protein
localization to nucleus.

The cross-species analysis is remarkable given that exact
functional anatomical correlates between rodent and primate
cortex are not without controversy in the literature (Uylings et al.,
2003). We did make an effort to restrict our genomic studies to
highly related areas of medial PFC in the monkey and mouse
brain, but admit that evolutionary differences and technical
limitations on dissections may have affected our cross-species
analysis to a degree.

Monkey Module Overlap With Gene Sets
From Other Ethanol Genomic Studies
Several monkey modules showed significant overlap with
ethanol-related gene sets from genomic studies by different
investigators that have been deposited in the GeneWeaver
bioinformatics resource. For simplicity, Table S8 shows overlaps
with gene sets from a selection of studies that illustrates the
cross-species relevance of our findings. These gene sets include:
acute ethanol-regulated genes in the PFC of mice (Wolen et al.,
2012), chronic ethanol-regulated genes in the PFC of mice (van
der Vaart et al., 2017), and genes differentially expressed in the
frontal cortex (Lewohl et al., 2000; Liu et al., 2006), hippocampus
(McClintick et al., 2013; Farris et al., 2015), and amygdala
(Ponomarev et al., 2012) of human alcoholics vs. control subjects.

The degree of overlap of our monkey modules with data
from these other studies was quite striking (Figure S16). For
the most part, functions enriched within the overlapping genes
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mirrored those found within the monkey modules themselves:
myelination, synaptic transmission, chromatin modification,
Golgi function, translation, respiration, RNA processing.
However, the GeneWeaver analysis highlighted some ontologies
less-significantly enriched in the monkey modules, including
cell cycle, kinase activity, transcription factor activity, calcium
regulation, and G-protein signaling. Finding significant overlap
with such a variety of ethanol-related gene sets validates aspects
of our findings not only across species, but also across brain areas,
investigators, array platforms, and ethanol treatment paradigms.

CONCLUSION

Our extensive genomic analysis of expression networks in medial
prefrontal cortex of rhesus macaques has identified networks
strongly over-represented for coherent biological functions
relevant to brain plasticity and toxicity that might occur with
chronic ethanol consumption. Many of our findings appear
robust in that they replicate aspects of prior genomic or
molecular studies on ethanol in macaques or other species.
Furthermore, our cross-species analysis with a chronic ethanol
exposure model in mice also shows extensive replication of
networks. In particular, we identify a myelin-related gene
network as having striking connectivity changes following
ethanol consumption in rhesus and a similar network is also
seen in the mouse. Hub genes in these and other networks
identified here may represent key nodes for understanding
mechanisms of brain adaptation to ethanol and could possibly
lead to new therapeutic targets for AUD. Additionally, our
studies suggest a dichotomy between gene networks involved
in ethanol consumption and those enriched in genes actually
regulated by ethanol exposure. This finding may be of
fundamental importance in understanding the overall role
of brain gene expression in the neurobiology of ethanol
consumption vs. toxicity.
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