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In this study, an internet of things (IoT)-enabled fuzzy intelligent system is introduced for the 
remote monitoring, diagnosis, and prescription of treatment for patients with COVID-19. The 
main objective of the present study is to develop an integrated tool that combines IoT and fuzzy 
logic to provide timely healthcare and diagnosis within a smart framework. This system tracks 
patients’ health by utilizing an Arduino microcontroller, a small and affordable computer that 
reads data from various sensors, to gather data. Once collected, the data are processed, analyzed, 
and transmitted to a web page for remote access via an IoT-compatible Wi-Fi module. In cases 
of emergencies, such as abnormal blood pressure, cardiac issues, glucose levels, or temperature, 
immediate action can be taken to monitor the health of critical COVID-19 patients in isolation. 
The system employs fuzzy logic to recommend medical treatments for patients. Sudden changes 
in these medical conditions are remotely reported through a web page to healthcare providers, 
relatives, or friends. This intelligent system assists healthcare professionals in making informed 
decisions based on the patient’s condition.

1. Introduction

The advent of modern technology has greatly enhanced communication worldwide. One of the most revolutionary technological 
advancements is the Internet of Things (IoT), a network of interconnected devices that can exchange data without the need for human 
interaction [1]. IoT technology has found applications in various fields, including business, domotics (home automation), education, 
healthcare, and transportation [2,3]. In the healthcare sector, timely and accurate medical diagnosis and treatment are essential for 
saving lives. However, daily check-ups in healthcare facilities can be costly and inconvenient for patients [4].
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In this context, the IoT has emerged as a transformative solution that allows continuous remote monitoring of patients’ health. 
IoT-enabled systems can connect patients with healthcare professionals, permitting the transmission of real-time health data over the 
internet, and reducing the need for in-person check-ups. This can be particularly beneficial for patients who are located in remote 
areas where access to healthcare facilities is limited. The IoT has not only enhanced patient care and remote monitoring but it has 
also presented new challenges and opportunities in fields such as blockchain and data privacy [5,6].

Telemetry and data analytics are critical technologies of IoT-enabled healthcare systems. These technologies facilitate continuous 
monitoring of patients, which can be invaluable in providing timely medical interventions. In such systems, various sensors can be 
integrated with microcontrollers to monitor patients’ vital signs, and the collected data can be transmitted to healthcare professionals 
for further analysis. For example, a system equipped with sensors and a microcontroller can monitor heart rate, blood pressure (BP), 
and temperature, sending these data to a doctor via protocols such as Raspberry Pi with an ESP8266 Wi-Fi module. The medical 
doctor can then view the results remotely through platforms like LabVIEW [7].

As the IoT continues to advance, its applications in healthcare are becoming increasingly diverse. For instance, when patients 
enter a hospital, radio-frequency identification sensors can be attached to them to record biomedical data such as BP, temperature, 
and weight. These data may then be transmitted to doctors via a Zigbee protocol. Doctors can monitor patients’ conditions and 
provide appropriate treatments based on the received data [8]. Other monitoring systems that measure heartbeats, saline levels, and 
temperature have been developed using sensors interfaced with a PIC16F877A controller. The data collected by these systems can 
be transmitted to the IoT Gecko webpage, where doctors can access it by entering their username and password [9].

The convergence of IoT technology and fuzzy logic has the potential to revolutionize patient monitoring and healthcare delivery. 
Fuzzy logic employs linguistic variables to build rules and truths, allowing for more nuanced and probabilistic decision-making 
compared to traditional binary logic [10–13]. In the medical field, fuzzy logic has been applied to decision-making in intensive 
care units, patient monitoring during anesthesia, and diagnostic systems for detecting lung cancer [14–16]. Despite the significant 
advancements in IoT-based health monitoring systems, the existing literature still presents several challenges and limitations. The 
majority of these systems offer a narrow focus on specific vital signs or lack comprehensive real-time monitoring of multiple health 
indicators. Additionally, data privacy and security concerns have not been comprehensively addressed, especially in the context of 
varying noise levels in health data. Moreover, most systems do not provide flexible room control features or global positioning system 
(GPS) integration, indicating gaps that must be covered.

Motivated by these gaps, the main objective of our study is to design a versatile health monitoring system that combines compre-

hensive monitoring of vital signs such as heart rate, blood oxygen saturation (SpO2), and electrocardiogram (ECG) with advanced 
room control features, GPS integration, and robust data privacy measures. In particular, our designed system leverages the novel 
approach to data differential privacy based on regression models under heteroscedasticity, as introduced in [17], to handle varying 
levels of noise in data more effectively. By providing a holistic solution for patient monitoring, we aim to enhance patient care, enable 
timely interventions by healthcare providers, and improve the overall quality of life for patients with chronic conditions. However, 
despite the advantages of IoT-enabled healthcare systems and the potential of fuzzy logic, there is a gap in the current literature 
regarding the integration of these technologies for remote health monitoring, diagnosis, and treatment, especially for COVID-19 
patients in remote areas [18]. Our research aims to fill this gap by proposing an intelligent health monitoring system that combines 
IoT technology with fuzzy logic to provide prompt diagnosis and medical treatment. This system can help reduce costs, eliminate 
human errors, and improve access to healthcare for patients in remote areas.

In summary, in this article, we present a comprehensive IoT-based health monitoring system that incorporates fuzzy logic for 
intelligent decision-making. Our system is designed to capture data from various sensors related to BP, ECG, and temperature. These 
data are then transmitted to doctors via an online platform, allowing them to view the information obtained from the data and provide 
feedback to patients. The proposed system offers a cost-effective and accurate solution for remote health monitoring and diagnosis, 
especially for COVID-19 patients [19–21]. By harnessing the power of fuzzy logic, our approach aims to account for the inherent 
uncertainty and vagueness in human health conditions, allowing for more nuanced and adaptable recommendations. Furthermore, 
our methodology stands out for its potential to be tailored to the specific needs and preferences of individual patients, offering a 
more holistic approach to healthcare management. Therefore, the novelty of our work lies in the integration of an automated health 
monitoring system with fuzzy logic-based algorithms to provide personalized health recommendations.

The remainder of the article is organized as follows. Section 2 presents related work on health monitoring systems and the 
application of fuzzy logic in the medical field. In Section 3, we build the proposed methodology and presents an algorithm that 
summarizes this methodology. In Section 4, the numerical aspects of the present investigation and their discussion are provided. 
Lastly, Section 5 states conclusions, limitations of our study, and ideas for further research.

2. Related work

Several techniques have been employed to provide continuous monitoring of patients [22–24]. Systems can be designed with 
various sensors interfaced with microcontrollers to monitor patients. The data generated by this system can be sent to a doctor using 
a protocol such as Raspberry Pi with an ESP8266 Wi-Fi module. Consequently, the doctor can view the results through LabVIEW [7].

When patients enter the hospital, radio-frequency identification sensors can be attached to them to record biomedical data, such 
as BP, temperature, and weight. Subsequently, these data can be sent to the doctor through a Zigbee protocol. If the patient is normal, 
the doctor can record the patient’s data using a local server. However, if the patient is unwell, the doctor can prescribe treatments 
2

and monitor their condition accordingly [8].
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Table 1

Functionality comparison of various health monitoring systems in the literature.

Reference NET System Heart rate App ECG GSM LCD Email alert Room control GPS

Our proposal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Krishnan, 2018 [28] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Guk, 2019 [29] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Manas, 2019 [30] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Misran, 2019 [31] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Queralta, 2019 [32] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Dampage, 2021 [33] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Khan, 2021 [34] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Taloba, 2021 [35] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Bhardwaj, 2022 [36] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Other monitoring systems can measure variables such as heartbeats, saline levels, and temperature using sensors. These sensors 
can be interfaced with a PIC16F877A controller, and the data can be transmitted through ESP8266 to the IoT Gecko webpage. 
Doctors would need to enter a username and password to access the data [9]. Devices may be designed based on BP, ECG, and 
temperature sensors that interact with an Arduino microcontroller. Consequently, the data can be sent to a server where both doctor 
and patient can access the observed data using a digital mobile application (app). Another system may be designed employing a 
ZigBee technology [25], which is cost-effective and preferred over Bluetooth, as it supports infrared wireless communication [26]. 
ECG, finger flip, and temperature sensors can be used, and their data sent to a server where a doctor may access it by entering digital 
credentials. A device based on biomedical sensors related to BP, heart rate, and temperature can be utilized to measure and transmit 
data through a wireless network [27].

Fuzzy logic uses linguistic variables to build rules and truths by working with probabilities ranging from zero to one, as opposed 
to a straightforward yes-or-no range [10–13]. Intelligent fuzzy logic finds numerous real-time applications, particularly in the field of 
medicine. For instance, it is employed in medical decision-making for intensive care units [14], implementing patient monitoring and 
diagnostic alert systems in the case of a serious occurrence during anesthesia administration [15], and creating diagnostic systems 
for detecting lung cancer [16].

Existing literature [28,30,31,34,36] showcases several health monitoring systems that utilize IoT-based procedures, as shown in 
Table 1. Furthermore, other studies [29,32,33,35,37] have expanded IoT-based health monitoring by incorporating remote diagnosis 
using artificial intelligence (AI). Recent advancements in data privacy approaches have also been explored in the context of health 
monitoring systems. In [17], a novel approach was introduced to data differential privacy based on regression models under het-

eroscedasticity, offering a promising solution for handling varying levels of noise in data. In addition, recent studies have employed 
machine learning and deep learning techniques for the analysis of heart disease [38–40].

Our literature review reveals that several health monitoring systems have been developed. However, these systems often employ 
either IoT or fuzzy logic, but not both simultaneously. The integration of both technologies could potentially offer improved function-

ality and more sophisticated health monitoring capabilities. The reviewed health monitoring systems encompass diverse approaches, 
including IoT, AI, and data privacy techniques. Table 1 summarizes and compares the functionalities of various health monitoring 
systems from the literature. As technology advances, health monitoring systems are expected to become more sophisticated, with 
enhanced functionality and security features to better serve patients and healthcare professionals. Table 1 shows a wide range of 
functionality available in current health monitoring systems. Nevertheless, many of these systems lack certain features, such as real-

time data analysis and comprehensive health monitoring, which could be beneficial for both patients and healthcare providers. In 
the next section, we outline our proposed health monitoring system, designed to address these gaps and offer a more robust solution.

3. Methodology, inputs, and outputs

3.1. Fuzzy logic

Fuzzy logic offers a valuable approach for dealing with the inherent uncertainties and complexities of health monitoring data. 
By employing fuzzy sets and their corresponding membership functions, fuzzy logic allows us to express commonly understood 
information, particularly of a qualitative linguistic nature, in a mathematical framework [10]. Fuzzy logic, unlike crisp and single-

valued classical logic, is a non-crisp and multi-valued paraconsistent logic that allows linguistic variables assigning real numerical 
values between zero and one using probabilities. This assignment permits for the handling of partial truths, where truth values can 
range from completely true to completely false. The Boolean logic (classical or crisp), however, restricts truth values to either zero or 
one for variables. Fuzzy logic recognizes that human reasoning often relies on imprecise and non-numerical information. It enables 
decision-making based on varying degrees of agreement with a premise, which aligns well with the relative nature of our opinions 
and the complexities of the real world we inhabit.

Fuzzy models or fuzzy sets are mathematical tools used to handle imprecise and ambiguous information, often present in health 
3

monitoring data. These models are particularly well-suited for representing, understanding, and capitalizing on uncertain and vague 
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Fig. 1. Block diagram representation of the fuzzy logic.

data. Fuzzy set theory involves various operations on fuzzy sets, such as complement, difference, union, negation, and intersection, 
among others. Each fuzzy set is associated with a membership function that indicates the degree to which an element belongs to that 
set. These membership functions can take various shapes, including curved, linear, triangular, and trapezoidal [41].

Fuzzy logic relies on heuristic principles, using antecedents (IF) and consequents (THEN), both of which are fuzzy sets, either in 
their original form or as a result of operations on them. Heuristic norms such as “very much”, “drastically”, “a bit”, and “slightly” can 
be incorporated into fuzzy logic. The inferential method for such a rule should be adaptable and efficient, often resulting in an area 
that corresponds to overlapping regions, each representing the outcome of an inference rule. The centroid method, which utilizes the 
center of gravity of the final overlapping area as the output, is typically employed to select a specific output from multiple premises. 
Experts may establish the rules for the fuzzy system’s inferential engine, and sensors typically collect the input data for the system’s 
input variables.

In our study, we used multiple sensors to gather health data from patients. These sensors were strategically placed to measure 
variables such as BP, heart rate, and SpO2 accurately. The sensors wirelessly transmitted the collected data to an Arduino micro-

controller, which processed the data and fed it into our fuzzy logic approach for further analysis. For example, a patient’s heart rate 
can be represented as a fuzzy set, where the membership function determines the degree to which this rate is considered “normal” 
or “abnormal”. This approach allows for more nuanced assessments of health variables, accommodating the inherent variability in 
health data.

Fuzzy logic has found applications in various domains, including control theory [15], medicine [15], and AI. Its relevance in 
medical decision-making is particularly significant. Given the individual nature of healthcare and medical data, fuzzy logic-based 
approaches have the potential to greatly benefit applications in the health field. The application of a similar approach can be extended 
to various fields of the medical decision-making system. Nonetheles, an ongoing debate revolves around the extent to which valuable 
data can be derived through fuzzy logic. A key challenge lies in obtaining the necessary data, especially when it involves eliciting 
fuzzy data from humans. The process of eliciting fuzzy data and assessing their accuracy is still a work in progress, closely tied to the 
use of fuzzy logic. Detecting the quality of ambiguous data presents a difficult issue. Despite the promise of fuzzy logic in medical 
decision-making applications, further research is needed before it can be fully utilized. The employment of fuzzy logic when medical 
decision-making is intriguing, but fuzzy techniques still face challenges within the medical decision-making framework.

The standard methodology typically follows guiding principles: (i) converting the values of all input linguistic variables into 
fuzzy membership functions through fuzzification; (ii) applying the appropriate rules from the rule base to calculate the fuzzy output 
functions; and (iii) deconstructing these output functions to obtain precise output values. For a visual representation, see Fig. 1.

Fuzzification involves the process of transforming numerical inputs from a system into fuzzy sets, which exhibit varying degrees 
of membership denoted by values within the range between zero and one, denoted as [0, 1]. A zero value signifies no association 
with the given fuzzy set, while a one value indicates complete membership in the fuzzy set. Values between zero and one represent 
the level of uncertainty or ambiguity regarding the correspondence of the value to the set. By linking the system inputx to fuzzy 
sets, often characterized by linguistic terms, reasoning can be conducted in a linguistically appropriate manner. Fuzzy sets are 
commonly depicted utilizing triangular curves that feature an ascending slope, reaching a peak at the one value, and then the values 
go descending. These values can be defined utilizing a logistic function expressed as

𝑆(𝑥) = 1
1 + exp(−𝑥)

, (1)

as outlined in existing methodologies [41], that has the property of symmetry 1 = 𝑆(𝑥) + 𝑆(−𝑥), generated from (1).

Fuzzy logic operates in a similar manner to Boolean logic, but it requires alternative operators to replace the traditional NOT, 
AND, and OR operators. Additionally, linguistic modifiers known as hedges can be employed. Hedges are typically adverbs such 
as “extremely” or “somewhat” that modify the meaning of a set employing a mathematical formula. By combining any two of the 
operators AND, OR, and NOT, a new operator may be created. In cases where an output variable appears in multiple THEN sections, 
the values from the corresponding IF parts are combined using the OR operator.

Defuzzification involves converting fuzzy truth values into continuous variables. This process would be straightforward if the 
4

output truth values aligned perfectly with a specific set of integers obtained during fuzzification. However, since the output truth 
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Table 2

Rules for minimum fuzzy inference with a generalized 
structure.

Rule Input(𝑥) Input(𝑦) Output(𝑧)

1 if 𝑥 = low if 𝑦 = high then 𝑧 = low
2 if 𝑥 = low if 𝑦 = low then 𝑧 = low
3 if 𝑥 = high if 𝑦 = high then 𝑧 = high
4 if 𝑥 = high if 𝑦 = low then 𝑧 = low

values are independently calculated, they often do not precisely correspond to a defined set of integers. Therefore, it is necessary to 
select the number that best represents the “intention” conveyed by the truth value. Algorithm 1 provides a standardized explanation 
of the defuzzification process.

Algorithm 1 Defuzzification method.

1: Cut the membership function at each truth value.

2: Combine the derived curves by applying the OR logic operator.

3: Calculate the region beneath the curve’s center of mass.

4: Decide the final result as a centroid based on the x-position of this center.

Fuzzy logic systems can effectively handle situations where input values are unavailable or unreliable because their output is 
based on the overall agreement of the inputs and rules [42]. In the rule base, each individual rule can be assigned a weighting factor 
that determines its influence on the output values. The use of weightings can impose limitations on the influence of a particular 
rule on the ultimate output. These weightings take into account factors such as the consistency, reliability, or significance of each 
rule. The weightings may be either static or dynamic, depending on whether they are fixed or adjusted based on the outcomes of 
other rules. By incorporating the rule weightings, fuzzy logic systems offer flexibility in capturing the importance and reliability of 
individual rules within the decision-making process.

3.2. Fuzzy intelligent system

Our fuzzy intelligent medical prescription system evaluates the output in real-time by analyzing the data inputs acquired from 
a sensor. The proposed system utilizes four input linguistic variables and two fuzzy output variables. This system was implemented 
using the MATLAB software, leveraging the intelligent fuzzy toolbox [43]. In this logic, linguistic variables are employed to define facts 
and rules, using probabilities within the range [0, 1] instead of a binary yes-or-no approach [10]. Unlike traditional binary systems 
that operate solely on true (1) or false (0) conditions, fuzzy logic allows for multiple truth values within [0, 1]. The adaptability 
of intelligent fuzzy systems grants them an edge over traditional binary logic systems. As mentioned earlier, triangular membership 
functions are extensively employed in real-time fuzzy system applications [41]. The methodology under consideration also embraces 
triangular membership functions, which can be mathematically expressed as

𝑢𝐴(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑥− 𝑎

𝑚− 𝑎
, 𝑎 < 𝑥 ≤𝑚;

𝑏− 𝑥

𝑏−𝑚
, 𝑚 < 𝑥 < 𝑏;

0, 𝑥 ≤ 𝑎 ∨ 𝑥 ≥ 𝑏;

(2)

where 𝑎, 𝑚, and 𝑏 define minimum, medium, and maximum values, respectively.

The fuzzifier component establishes the membership functions for the linguistic variables used as inputs in this intelligent system. 
These membership functions are defined by the values 𝑎, 𝑚, and 𝑏 stated in (2). These functions are then applied based on the truth 
values of the linguistic input variables. In the subsequent step, the truth values are determined through the application of fuzzy 
inference rules. Table 2 provides a general description of fuzzy inference, considering a minimal rule with input variables 𝑥 and 
𝑦, and an output variable 𝑧 within [0, 1]. Each fuzzy rule maps a single output variable to a specific fuzzy subset. In the system’s 
final stage, defuzzification takes place to transform fuzzy outputs into crisp outputs. The CENTROID method is typically employed 
for defuzzification in this context. The proposed system consists of four input variables and two output variables. Fig. 2 provides a 
visual depiction of the methodology of the designed intelligent system, which is based on fuzzy logic. The process begins with the 
collection of data, which encompasses four input variables and two output variables. The next step involves categorizing the collected 
data, whose categorization is performed through two parallel processes. First, the input data are obtained from sensors that measure 
specific variables relevant to the study. Second, the output data are defined based on the knowledge of prescription strategies. Both 
input and output data are then utilized to develop a system based on consensus. In our desing, ‘consensus’ refers to the harmonization 
of system components, which may involve combining inputs from multiple sensors or aligning multiple data sources. This designed 
system is evaluated in real-time, producing a prescription as the output. The prescription represents the recommended treatment 
5

strategy based on the analyzed data. The process concludes with the implementation of the prescribed treatment.
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Fig. 2. Proposed methodology using an intelligent fuzzy system.

3.3. Methodology

Next, we describe how data are collected using sensors:

∙ Step 1. Sensors are physically connected to the patients in a strategic way.

∙ Step 2. Patient’s data collected by these sensors are then transferred to microcontroller.

Fig. 3 depicts the proposed system, which combines fuzzy logic and the IoT to provide an intelligent medical prescription solution. 
The system incorporates multiple sensors: a BP sensor, an AD8232 ECG sensor [37], a heart rate sensor, a pulse oximetry sensor, 
and a temperature sensor. These sensors collect data that are then relayed to an Arduino microcontroller. The system uses the 
Bylink/Thingspeak IoT platform to enable online data transmission and monitoring, which is accessible through both a mobile app 
and a webpage. Doctors are given unique login IDs and passwords, enabling them to access patient data and prescribe medication 
based on the data presented. In situations where a doctor is unavailable or does not have the time to review the data, the intelligent 
system can recommend appropriate medication utilizing fuzzy logic, particularly in emergency situations. The sequence of steps 
followed by the system to administer the appropriate medication is presented in Algorithm 2. Additionally, Fig. 4 provides a graphical 
representation of the steps involved in the proposed methodology.

Algorithm 2 System steps to generate the patient’s medication.

1: Collect data using sensors and transmit them to the Arduino microcontroller.

2: Process the data with the Arduino microcontroller and transfer them to a cloud-based database.

3: Access the data via a web application, allowing a doctor to prescribe medication based on the patient’s condition.

4: Suggest the patient’s prescription with the intelligent fuzzy system and the aid of medical staff, if the doctor does not respond within a predetermined time.

Further enhancement of Algorithm 2 can be achieved by incorporating a database sensor component. This software component, 
operating within the database, may respond to new data inputs via triggers, which are code sections that are executed when the 
sensor sends the command. These triggers are stored in the database alongside the data. Some algorithms utilizing database sensors 
are discussed in [44–46]. With our methodology, the patient data can be stored in any database regardless of its location. It also 
maintains a record of the patient’s medical history, which can be accessed by healthcare professionals through the online application.

Note that the system may also employ communication tools like email and WhatsApp [47] to keep the doctor and other registered 
individuals informed about the patient’s condition and the intelligent system’s medication recommendations. Algorithm 3 details how 
6

the proposed system generates the patient’s medication, incorporating a database sensor and communication tools.
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Fig. 3. Block diagram of the patient’s monitoring system.

Fig. 4. Steps of the proposed methodology to generate the patient’s medication.

3.4. Inputs

Four inputs constitute the proposed system. All membership values assigned to the inputs are derived from sensor data. Further-

more, the system suggests and administers the appropriate medication dosage based on the patient’s condition. Consider factors that 
are influenced by inputs such as systolic/diastolic BP, temperature, and glucose level as follows:

∙ Systolic BP: This input is associated with six membership functions. Table 3 reports the variety of systolic BP membership 
7

functions, and Fig. 5 displays a graphical representation of them.
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Algorithm 3 System steps to generate the patient’s medication with a database sensor and communication tools.

1: Collect data using sensors and transmit them to the Arduino microcontroller.

2: Process the data with the Arduino microcontroller and transfer them to a database.

3: Perform the following actions with the trigger when new data are entered in the database:

3.1 Timestamp the patient’s data.

3.2 Store the patient’s history in a repository.

3.3 Send the data via email and/or WhatsApp to the attending physician and a second registered individual.

4: Access the data through a web application, have a doctor to prescribe medication based on the patient’s condition, and store the prescription details in the patient’s 
medical record.

5: Recommend medication based on fuzzy logic with the intelligent syste and the help of a medical staff, if the maximum waiting time has passed without a response 
from the doctor, sending this recommendation via email and WhatsApp to the patient’s doctor and the second registered individual.

Table 3

Membership function for systolic BP ranges.

Membership function Systolic range (in mmHg)

Low 70-90

Normal 90-130

Tension 130-140

Hypertension 140-160

High 160-190

Dangerous 190-220

Fig. 5. Membership functions of systolic BP.

Table 4

Membership function for diastolic BP ranges.

Membership function Diastolic range (in mmHg)

Low 40–70

Normal 70–90

High 90–100

Dangerous 100–115

∙ Diastolic BP: This input is connected to four membership functions. Table 4 presents the variety of diastolic BP membership 
functions, and Fig. 6 shows their graphical depiction.
8
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Fig. 6. Membership functions of diastolic BP.

Table 5

Membership functions for glucose level ranges.

Membership function Glucose level range (in milli mols/liter)

Low 50–65

Normal 65–180

High level 1 180–250

High level 2 250–310

High level 3 310–350

Dangerous 350–390

Table 6

Membership function and ranges for temperature.

Membership function Temperature range (in °F)

Normal temperature 40–70

High temperature 70–90

∙ Glucose level: Table 5 provides information on the spectrum of membership functions related to blood glucose levels, and Fig. 7

illustrates their graphical representation.

∙ Temperature: Table 6 displays the spectrum of temperature-related membership functions, and their graphical representation is 
presented in Fig. 8.
9
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Fig. 7. Membership functions of glucose level.

Fig. 8. Membership functions of temperature.

The proposed system depends critically on the precision of the data collected from the sensors. Inaccurate or erroneous sensor 
readings can lead to suboptimal or even harmful medication recommendations. The collected data undergo a pre-processing phase 
where outliers and erroneous readings are filtered out. Advanced algorithms, such as Kalman filters, are employed to ensure the data 
are as accurate and noise-free as possible. The pre-processed data are then fed into the fuzzy logic system and IoT platform. It is 
worth noting that the reliability of the proposed system hinges on the quality of the sensor data, which underscores the importance 
of proper sensor calibration.

Each sensor was properly calibrated before its inclusion in the proposed system. Calibration was done using appropriate reference 
equipment. For instance, the BP sensor was calibrated using a standard sphygmomanometer and stethoscope. Calibration ensures 
10

that the values obtained from the sensors accurately reflect the patient’s condition.
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Table 7

Prescribed medicine for the treatment of BP.

Inputs Membership function Prescribed medicine

Systolic Diastolic Range

70–90 40–70 0–10 Normal-saline

90–130 70–90 10–20 No medicine

130–140 90–100 20–30 NM-salt restriction

140–160 90–100 30–40 Amiodiphine-5mg+saltR

160–190 100–115 40–50 Extra amlodipine + thiazide-diozene

190–220 100–115 50–60 Extra amlodipine + thiazide-diozene

3.5. Dataset collection and consent

Data for this study were collected from a total of 100 patients over a period of 12 months. Patients were equipped with two types 
of sensors for the purpose of this study -the MAX30100 sensor for BP measurements, and the Glucose Sensor –M01 for glucose level 
measurements. These sensors were carefully calibrated prior to data collection to ensure accuracy.

The data collection process was straightforward. Patients were instructed to wear the sensors as per the guidelines provided 
by the researchers. The MAX30100 sensor measures both systolic and diastolic BP by using photoplethysmography to detect blood 
volume changes in the microvascular bed of tissue. The glucose sensor -M01 measures the glucose level through a minimally invasive 
procedure that draws a tiny amount of blood. The data from these sensors were collected at a sampling rate of 10 times per minute 
and transmitted to an Arduino microcontroller, which then processes the data into a usable format. The data transmission is achieved 
utilizing the Bylink communication protocol and the data are stored in one-dimensional arrays format for further analysis.

Each data point in the dataset consists of three features: diastolic and systolic BPs, and glucose level. This dataset was used to 
train and validate the proposed fuzzy logic-based system for the treatment of BP and glucose levels.

Consent was obtained from all patients involved in this study. All patients were informed on the purpose and procedure of the 
study and provided written consent, allowing their data to be collected and employed for research purposes. The collected data were 
anonymized to ensure patient privacy and confidentiality. No personal identification data were included in the dataset.

Due to privacy concerns, the dataset is not publicly available. However, it can be provided upon request for research purposes. 
Researchers interested in accessing the dataset can contact the corresponding author.

3.6. Outputs

The system generates two primary outputs: treatment protocols for BP and glucose level management. These outputs are obtained 
from the input variables, which include systolic and diastolic BPs, as well as glucose level. Depending on the input values, the system 
prescribes a range of treatments delineated as follows:

∙ Treatment of BP: The proposed system recommends different treatments for BP based on the patient’s systolic and diastolic BP 
levels. The prescribed treatments for BP, along with the associated membership function ranges, are reported in Table 7. Each 
membership function corresponds to a specific range of systolic and diastolic BP values, and the recommended treatment is 
assigned based on the patient’s BP levels falling within these ranges. The membership functions for the prescribed treatments 
are shown in Fig. 9.

Table 7 categorizes systolic and diastolic BP readings into various ranges. Corresponding therapeutic recommendations are delin-

eated for each categorized range according to BP management protocols. Fig. 9 shows the membership functions for the prescribed 
medicine in the BP treatment. Each membership function corresponds to a specific range of systolic and diastolic BP values, as 
described in Table 7.

∙ Treatment of glucose level: The system prescribes specific treatments for varying blood glucose conditions based on the glucose 
level input. The medications intended to manage blood glucose levels are detailed in Table 8. Fig. 10 delineates the membership 
functions for these treatments.

Table 8 presents a stratification of glucose readings into defined ranges. Appropriate pharmacological responses are detailed for 
each stratified glucose interval. Fig. 10 illustrates the dosing profiles for medications, mapping them to the corresponding glucose 
level ranges outlined in Table 8.

4. Discussion and results

The system presented in this investigation collects data from the human body using ECG and temperature sensors. These data are 
then transmitted through the IoT to a Blynk/Thingspeak webpage, where a doctor can access and analyze the data by logging into a 
11

private Thingspeak account, as depicted in Fig. 11.



Heliyon 10 (2024) e22454M.Z.U. Rahman, M.A. Akbar, V. Leiva et al.

Fig. 9. Functional profiles for medication dosing in the BP management.

Table 8

Medications prescribed for the treatment of blood glucose level.

Input Output Prescribed medicine

Glucose level Range

50–65 0–10 Intravenous-glucose

65–180 10–20 No medicine

180–250 20–30 Metformin-500mg

250–310 30–40 Sitagliptin-metformin-50/500mg

310–350 40–50 Stigliptin-metformin/diamacron_MR_60mg

350–390 50–60 M-insulin_5_unit/kg

The integration with Blynk/Thingspeak enables real-time access to the health data, facilitating prompt medical decisions and 
reducing the time required for consultations. As mentioned, our intelligent health monitoring system is implemented in the MATLAB 
software using the fuzzy designer toolbox. It can smartly recommend medicine for patients based on their medical condition, as 
demonstrated in Fig. 12.

Our system decodes the numeric output from the fuzzy logic to suggest a particular medicine. The fuzzy logic engine processes 
the inputs and calculates a membership degree for each rule. The corresponding medication is then recommended based on the rule 
with the highest membership degree. If a patient’s BP suddenly exceeds a level of 170 in systolic BP and of 100 in diastolic BP, the 
device administers a pre-filled dose through an injection linked to the patient’s hand via a pipe that serves as a gateway for dose 
intake. Fig. 12 illustrates the success of this fuzzy logic-based approach.

Our system prescribes medicine in numerical format for specific BP, glucose, and temperature values. After decoding these 
numbers, the corresponding medicine is identified, as described in Tables 7 and 8 (Subsection 3.6). In Fig. 12, the systolic and 
diastolic BP inputs are 145 mmHg and 93.3 mmHg, respectively, resulting in an output of BP = 35.6. By decoding this output, we 
prescribed “Amiodiphine-5mg+SaltR” for the patient. Similar decoding is applied for glucose and temperature. For example, given 
inputs of glucose = 225 millimoles per liter and temperature = 100 °F, the output values of 26.5 and 26.3 predict “Metformin-

500mg” and “Paracetamol” prescriptions, respectively.

For real-time validation of our intelligent health monitoring system using the Blynk platform, we utilized a locally available 
Max30100 sensor to measure heart rate and SpO2 levels, which were interfaced with a microcontroller, as presented in Fig. 13. 
These data were sent to the Blynk IoT platform via a Wi-Fi module ESP8266.

The data were taken at our University Campus, and the app operates from a distance of 34 kilometers. These data are continuously 
available on the cloud for remote health monitoring, as shown in Fig. 14. The data are also displayed on an LCD for the patient’s 
12

reference, ensuring that the patient and caregivers have immediate access to essential health information.
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Fig. 10. Dosing profiles for pharmacological interventions in blood glucose control.

Fig. 11. Temperature sensor data on a webpage.

For continuous ECG monitoring and diagnosis purposes, we performed an experiment and generated new ECG data on the 
webpage using an AD8232 ECG sensor [48]. We delivered 50 ECG data samples to a ThingSpeak webpage and exported the same 
data samples (representing a complex of QRS curves) from the ThingSpeak online data cloud to MATLAB at another location. Then, 
data samples were plotted in MATLAB to represent the complex QRS ECG data. We submitted one sample of the QRS complex ECG 
data for clear depiction. These data are plotted in Figs. 15, 16, and 17, which corresponds to the QRS complex [49], and it can be 
used for any diagnosis purpose. The AD8232 ECG sensor is also employed in recent research [48,37], where only health monitoring 
was provided. We propose a system that states intelligent medical prescription plus IoT-based health monitoring in the present 
investigation.

In summary, this investigation presented a novel approach to real-time health monitoring using IoT-based sensors and an intelli-

gent system implemented in MATLAB with fuzzy logic. Our system provides real-time access to patient data, allowing prompt medical 
decisions and treatment recommendations. The system’s ability to continuously collect and analyze vital health data, coupled with its 
intelligent medicine recommendation capability, makes it a versatile and practical tool for both patients and healthcare professionals. 
By providing immediate access to critical health data and prescribing medicines based on individual patient conditions, our system 
offers a significant advancement in the field of remote health monitoring and personalized medicine. As demonstrated in the results, 
the proposed system can effectively monitor, analyze, and recommend treatment for various health parameters such as BP, glucose 
13

levels, and temperature.
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Fig. 12. Fuzzy logic outputs.

Fig. 13. Data recorded at our university campus.
14
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Fig. 14. Health monitoring data, including heart rate, SpO2, and body temperature, available remotely from a distance of 34 kilometers.

Fig. 15. AD8232 ECG QRS complex on a ThingSpeak.
15
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Fig. 16. ThingSpeak ECG data samples plot for diagnosis purposes.

Fig. 17. AD8232 ECG sensor data on a webpage for continuous monitoring.

5. Conclusions and future work

This study presented an intelligent system combining fuzzy logic and IoT to remotely monitor and diagnose COVID-19 patients, 
suggesting medical prescriptions, particularly beneficial for areas with limited access to healthcare facilities. The system is portable, 
suitable for both home and hospital use. While existing systems focus mainly on IoT-based monitoring or employ AI for remote 
diagnosis, our proposed system uniquely integrates comprehensive IoT-based monitoring with intelligent diagnosis and a fuzzy 
medical prescription system. By harnessing the power of IoT, our system enables doctors or attendants to monitor patients’ health 
remotely. Moreover, the system’s intelligent prescription decisions serve as a valuable tool in situations where doctors or medical 
staff are unavailable.

We acknowledge some limitations of our system. Adding more rules can increase the processing time for suggesting appropriate 
medications in COVID-19 patients. The system is currently designed for individual COVID-19 patients, posing potential scalability 
challenges for the simultaneous monitoring of multiple patients. In addition, we recognize the need for more in-depth validation of 
the system’s performance using metrics such as accuracy, sensitivity, receiver operating characteristic (ROC) curve, or area under 
the ROC curve (AUC). Despite these limitations, our system is a promising approach to intelligent health monitoring, as it combines 
the advantages of IoT-based monitoring, fuzzy logic, and remote diagnosis. We have focused on presenting the system’s design and 
functionality in this proof-of-concept study. We intend to address these considerations in future studies and explore the integration 
16

of next-generation computing technologies. Therefore, in terms of future research directions, we suggest:
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∙ Expanding the system to simultaneously monitor multiple patients. Although this presents scalability challenges, we are confi-

dent that integrating next-generation computing technologies can help address these issues.

∙ Integrating next-generation computing technologies such as deep learning, machine learning, cloud computing, fog computing, 
edge computing, serverless computing, and quantum computing, which can significantly improve system performance [50].

∙ Exploring autonomous computing, which enables computers to function independently, and can be achieved by combining AI 
and machine learning to enhance our system [37].

∙ Implementing neural networks as part of AI, which can further improve the accuracy and efficiency of the system [51].

∙ Identifying and utilizing big data sources, which can provide valuable insights and modify the context of the proposed system 
[52].

∙ Employing fuzzy rule-based systems for fusion to enhance system accuracy and incorporating unobserved states of patients using 
fuzzy designs [53,54].

Our work aligns with other studies in the literature. In [55], fog computing is explored with IoT for real-time processing, par-

ticularly relevant for healthcare applications. Similarly, [56] emphasizes smart product-service systems in healthcare, underscoring 
the role of connected intelligent products and stakeholder communication in digital health adoption. [57] employed deep learning 
and IoT for teeth lesion detection post-COVID-19, demonstrating the applicability of intelligent systems in healthcare. Likewise, [58]

underscored the importance of IoT, cloud computing, AI, and 5G (fifth generation of mobile network technology, known for its 
higher speeds and lower latency) for self-monitoring of COVID-19. Our work complements these studies by providing an intelligent 
health monitoring and medical prescription system, particularly crucial for remote areas. The study provided in [59] on peer-to-peer 
federated learning for COVID-19 detection showcased the potential of advanced machine learning techniques for healthcare, hinting 
at an exciting direction for future work.

In conclusion, our system introduced new possibilities for comprehensive and advanced AI-based medical treatment recommen-

dations. Despite some limitations, the potential of such systems to transform healthcare, especially in remote or isolated areas, is 
immense. Ongoing research is currently exploring these areas further, and we eagerly anticipate reporting the findings in future 
articles.
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