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Abstract

Nowadays, the complexity of disease mechanisms and the inadequacy of single-target therapies in restoring the biological system have
inevitably instigated the strategy of multi-target therapeutics with the analysis of each target individually. However, it is not suitable for
dealing with the conflicts between targets or between drugs. With the release of high-precision protein structure prediction artificial
intelligence, large-scale high-precision protein structure prediction and docking have become possible. In this article, we propose a
multi-target drug discovery method by the example of therapeutic hypothermia (TH). First, we performed protein structure prediction
for all protein targets of each group by AlphaFold2 and RoseTTAFold. Then, QuickVina 2 is used for molecular docking between the
proteins and drugs. After docking, we use PageRank to rank single drugs and drug combinations of each group. The ePharmaLib was used
for predicting the side effect targets. Given the differences in the weights of different targets, the method can effectively avoid inhibiting
beneficial proteins while inhibiting harmful proteins. So it could minimize the conflicts between different doses and be friendly to
chronotherapeutics. Besides, this method also has potential in precision medicine for its high compatibility with bioinformatics and
promotes the development of pharmacogenomics and bioinfo-pharmacology.
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Introduction
At present, the common strategy of drug development is derived
from the paradigm ‘One Drug, One Disease’. Therefore, highly
selective and potent molecules are being developed for a distinct
target [1]. However, the application of this strategy, such as the
hybrid drugs or chimeric drugs, analyzes each target individually
and could not solve the problem of complex interactions between
drugs or targets [2]. Besides, this approach also has disadvantages
when dealing with time-specific proteins. These defects limit the
application of this strategy.

Take therapeutic hypothermia (TH) as an example. TH can
limit the degree of some kinds of injuries in randomized trials [3]
and animal experiments [4] and is even the only effective method
for some diseases, especially hypoxic–ischemic encephalopathy
(HIE). HIE often causes severe neurological sequelae, which is the
main reason for the poor prognosis of patients with stroke, shock,
carbon monoxide poisoning, cerebral hemorrhage and cardiac
arrest [5–7].

In the research based on TH, cold shock proteins, especially
cold-induced ribonucleic acid (RNA)-binding protein (CIRP), show
a high expression [8] and rapid response [9]. CIRP has been shown
to promote the translation of genes involved in deoxyribonucleic
acid repair [10, 11], telomerase maintenance [12] and genes asso-
ciated with the translational machinery [13].

However, if CIRP leaks to the intercellular substance with cell
swelling and rupture, it will become a proinflammatory media-
tor. Extracellular CIRP showed a strong pro-inflammatory effect
by binding to the Toll-like receptor 4-(TLR4)-MD2 complex on
the surface of macrophage, which leads to the heavier injury
of ischemic tissue [14, 15]. So, agonists applied with CIRP can
effectively promote cell protection before CIRP leaks out of the
cell. After the leakage of CIRP out of the cell, the application of
the CIRP antagonist can effectively promote cell protection.

Thus, sophisticated drug discovery approaches, such as phar-
macogenomics [16], are more appropriate for this problem. With
the development of high-precise protein prediction technologies,
especially AlphaFold2 [17] and RoseTTAFold [18], we can obtain
the structure of proteins quickly and accurately, and widespread
docking becomes possible. However, there is no report analyzing
the results of multi-target data. In this article, we provide a multi-
targeted drug discovery method and predict the side effects by
ePharmaLib.

Materials and Methods
Experiment design
As shown in Figure 1, the representative experiment is divided
into five processes: (1) protein targets were calculated by
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Figure 1. Representative workflow for bioinfo-pharmacology drug discovery.

bioinformatics analysis, (2) proteins and drugs 3D structure
acquisition and prediction, (3) proteins’ active sites prediction,
(4) drug/molecular group evaluation with target proteins and (5)
PageRank of docking results, protein logFC and messenger RNA
(mRNA) expression. The experiment of animals or cells is referred
to by authors but is not forced.

The data source of bioinformatics analysis
We retrieved the original data of mRNA expression under
hypothermia treatment from the website of the National
Center for Biotechnology Information (GSE54229). The research
was reported by Ilmjärv et al. [9]. In their research, mouse
embryonic fibroblasts were exposed to mild hypothermia (32◦C) or
normothermia (37◦C) to gain the transcription response induced
by hypothermia. After 0.5, 1, 2, 4, 8 and 18 h of hypothermia, cells
were collected for bioinformatics analysis.

Expression profile analysis
The log2 fold-change (log2FC) and P-value of each group were cal-
culated. Top 3 log2FC mRNAs with P-values <0.05 were selected
from each group to enter the next step. If there exists mRNA
with protein structure prediction failing, the mRNA would be
skipped.

In the step, R 3.6.1 was used to detect the differential expressed
compared to matched normothermia samples. The clustering of
genes was calculated by the ‘dist’ and ‘hclust’ functions of R. The
visualization of gene expression and clustering was performed by
the ‘dendextend’ package.

3D data of proteins and small molecular drugs
All proteins were first searched on PubMed to see if there
was protein clipping like cleaved caspase-3 [19]. Then, the 3D

structures of proteins were first searched from Protein Data
Bank (PDB), which is used for biological-related ligand–protein
interaction. In this article, no protein structure is listed on the PDB
website. All the protein structures were predicted by AlphaFold2
and RoseTTAFold.

AlphaFold2 was developed by Google and it is the champion
of the 14th Critical Assessment of Structure Prediction. In
August 2021, in collaboration with the EuropeanMolecular
Biology Laboratory-European Bioinformatics Institute, AlphaFold
submitted a protein structure prediction database of model
organism proteomes. RoseTTAFold is based on the Rosetta
software, which is designed for macromolecular modeling,
docking and design [20] RoseTTAFold also has good application
[21] in the research of protein structure prediction. Finally, protein
structures with fewer irregular regions will be selected for the
next step.

All the selected protein structures need to be pretreated before
they can be docked. Water molecules, ions and solvent molecules
were removed if they existed. The missing hydrogen atoms were
then filled in and the Gasteiger charge was calculated for the
protein. Lastly, the file format were changed to PDBQT-format.

The 3D structures of 8697 drugs (DrugBank, 5.1.8) were down-
loaded from DrugBank Online (https://go.drugbank.com/). Drugs
classified by the FDA as approved, experimental, nutraceutical
and investigational were included in the research. The illicit
and withdrawn drugs were excluded. Specific classification
rules refer to the FDA’s web site (https://www.accessdata.fda.
gov/). After downloading the original data from DrugBank, we
split each drug molecule into the PDBQT-format file. We added
the missing hydrogen and calculated the Gasteiger charge for
each one. Lastly, all molecules were energy-minimized before
docking.

https://go.drugbank.com/
https://www.accessdata.fda.gov/
https://www.accessdata.fda.gov/
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Table 1. The target proteins of different groups

Group Target logFC Harmful for cell Personalization

0.5 h CIART 0.46 × 0.42
CHAC1 0.43 √ 1.34
NUDT22 0.40 √ 1.32

1 h CDSN 0.52 × 0.41
NR1D1 0.50 × 0.41
CHAC1 0.50 √ 1.41

2 h CIRP 0.80 × 0.36
ARMCX5 0.66 × 0.39
CCDC122 0.49 √ 1.41

4 h CIRP 1.17 × 0.31
RAMP3 0.91 × 0.35
CEACAM1 0.87 √ 1.82

8 h CIRP 1.57 √ 2.97
RAMP3 1.33 × 0.28
NQO1 1.18 √ 2.27

18 h CIRP 1.71 √ 3.27
NQO1 1.55 √ 2.93
RAMP3 1.32 × 0.29

Visualize evolutionary conservation and active
site prediction
Visualize evolutionary conservation was performed by the
ConSurf server [22]. In a typical ConSurf application, through
BLASTed [23] against the UNIREF-90 database [24] and aligning
using MAFFT [25], the evolutionarily conserved positions are
analyzed by the Rate4Site algorithm.

Then, the consensus approach-D (COACH-D) [26] was used to
predict the active site of target proteins. The COACH-D uses five
different methods to predict the binding sites of protein ligands.
Four of these methods are COFAC-TOR [27], FINDSITE [28], TM-
SITE [29] and S-SITE [29]. These methods predict binding sites
by matching the query structure and sequence with the ligand-
binding template in BioLiP [30], which is a semi-manual functional
database [31] based on the PDB.

Virtual screening of potential compounds
To evaluate the hit compounds obtained from DrugBank and to
calculate their interaction and binding posture in the active site
of target proteins, the molecular docking method was carried out
through QuickVina 2 [32]. QuickVina 2 uses the calculation of
shape and electrostatic potential similarity of binding pockets to
select molecules, which may exhibit binding patterns like those
of binding pockets.

3D files of target proteins were dehydrated and hydrogenated.
Then, proteins were saved as PDBQT files using AutoDock.
AutoDock assisted in assigning Gasteiger charges and adding
polar hydrogen atoms to both the proteins and the compounds.

Molecular dynamics simulation
The molecular dynamics (MD) simulation was performed by GRO-
MACS [33]. First, a protein–drug complex was prepared, including
adding hydrogenation and balancing charge. Then, we added
a solvent so that the target protein and small molecules are
coated. The forcefield was Chemistry at HARvard Macromolecular
Mechanics 36. The simulation time was set as 50 ns for the speed
of calculation. The simulation temperature was 309.15 K (36◦C)
and the pressure was 1 atm. Root-mean-square deviation (RMSD)

and root-mean-square fluctuation (RMSF) were calculated based
on the first frame.

Personalization-weight-PageRank
We use personalization-weight-PageRank to rank the cross-level
data of docking scores and differences in protein expression. To
facilitate understanding, we took a simplified case in the Addi-
tional file Part 1.

PageRank is a comprehensive rank algorithm designed by
Google and named after Larry Page [34]. It is one of the most
famous ranking algorithms of network nodes based on the Markov
process. PageRank has been applied in medical domains with
success [35, 36].

Personalization and weight represent two different levels of
score data. The weight of PageRank allows all nodes to be initially
assigned with different weights/probabilities [37]. In this article,
the weights of rank were set to docking scores of proteins and
drugs. The higher the docking value, the higher is the connection
rate of the complex.

Personalization of PageRank reinforces the connection inten-
sity between the nodes, which makes the result more personalized
and realistic [38]. In this article, personalization is influenced
by protein functions. If the protein performs a negative influ-
ence, such as promoting apoptosis, the personalization will be
calculated by 2∧(fold change) to ensure they are >1. Meanwhile, if
the protein plays a positive role in the group, the personalization
will be set as 1/(fold change + 1) to <1. The personalization values
of all the drugs are set to 0 to prevent iterations of the drugs
themselves from going wrong.

The calculation process is like putting all proteins and all
drugs in the solution, then simulating the connections between
all proteins and drugs by calculation. The damping factor is set to
0.85 to simulate the metabolism of proteins and drugs.

The whole calculation is based on Python 3.8.10. The relat-
ing Python libraries include NetworkX, Pandas and NumPy. We
use Pandas and NumPy to import all the docking data into a
matrix for PageRank calculating. The protein expression value
is then imported by the PageRank personalization parameter of
NetworkX. Lastly, we can get a comprehensive ranking of drugs.



4 | Liu et al.

The rank of drug combinations
In addition to the comprehensive ranking of drugs, we also try to
generate the rank of drug combinations. Similarly, the calculation
places all drugs of combination and target proteins in a solution
to bind free.

First, all drugs will be grouped according to the docking results
of drugs in each combination. In this article, to reduce the amount
of calculation, we selected the top 20 drugs of each protein to
include in the drug combination pool. Then, all the combinations
were performed personalization-weight-PageRank against all pro-
tein targets. The sum of each score of all drugs in the combination
is the final score of the combination. Lastly, we get the rank of
combinations.

To make the distribution of combinations clear, we propose the
drug–protein expression fit score (DPEFS) to show the data distri-
bution pattern. The calculation is as follows: the PageRank values
of all proteins were summed by multiplying logFC, then divided by
the total PageRank values of drugs and were finally divided by the
PageRank values of specific proteins for standardized calculation.
It is used for standardized calculation for comparing different
combinations.

DPEFS evaluates the combination by referring to the protein
expression trend. The higher the DPEFS, the better is the fitness.
In actual drug design, DPEFS is relatively high and PageRank
score is relatively low, indicating that drugs of combination are
relatively moderate, which suggests a negative outcome. All code

Figure 2. Circular visualization of expression patterns and clustering of hypothermia treatment.
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Figure 3. The 3D structures of target proteins. (A) ARMCX5, (B) CCDC, (C) CDSN, (D) CEACAM1, (E) CHAC1, (F) CIART, (G) CIRP, (H) NQO1, (I) NR1D1, (J)
NUDT22 and (K) RAMP3.

can be found on GitHub (https://github.com/FeiLiuEM/PageRank-
weight-drug).

Pharmacophore model analysis
All the selected drugs were analyzed by ePharmaLib. ePharmaLib
[39] is an open source library of 15 148 e-pharmacophores
modeled from solved structures of pharmaceutically relevant
protein−ligand complexes of the screening PDB. It can be used
for target fishing of phenotypic hits, side effect predictions, drug
repurposing and scaffold hopping. In this article, after ranking,
we predicted drug side effects targets by comparing top-ranking
drugs with 15 148 e-pharmacophores. We then searched UniProt
and Genecard websites to obtain the potential effect of the target,
which is also equivalent to the side effects of drugs.

Results
Protein expression analysis and clustering after
hypothermia expose
Figure 2 shows the expressions of different mRNAs of different
groups after hypothermia. From the inside to the outside, the
rings were divided into hypothermia 0.5 h group, hypothermia 1 h
group, hypothermia 2 h group, hypothermia 4 h group, hypother-
mia 8 h group and hypothermia 18 h group.

As shown in Table 1, in each group, we selected the top three
expression protein targets. In the hypothermia 0.5 h group, the
target proteins are circadian-associated transcriptional repressor
(CIART), glutathione-specific gamma-glutamylcyclotransferase 1
(CHAC1) and uridine diphosphate glucose pyrophosphatase nudix
hydrolase 22 (NUDT22). The target proteins of the hypothermia 1 h
group are CHAC1, corneodesmosin (CDSN) and nuclear receptor
subfamily 1 group D member 1 (NR1D1). The target proteins of
the hypothermia 2 h group are cold-induced RNA-binding protein
(CIRP), armadillo repeat-containing X-linked protein 5 (ARMCX5)
and coiled-coil domain-containing protein 122 (CCDC122). The
target proteins of the hypothermia 4 h group are CIRP, receptor
activity-modifying protein 3 (RAMP3) and carcinoembryonic
antigen-related cell adhesion molecule 1 (CEACAM1). The

target proteins of the hypothermia 8h and 18h groups are the
same: CIRP, RAMP3 and NAD(P)H dehydrogenase [quinone] 1
(NQO1).

Within the targets, CHAC1 could enhance apoptosis [40].
NUDT22 is an Mg2+-dependent UDP-glucose and UDP-galactose
hydrolase [41], while high glucose shows a negative effect in
HIE, like stroke [42]. CCDC122 is potentially pro-inflammatory
[43]. CIRP can effectively reduce cell death in the early stage of
hypothermia therapy. However, it has a strong pro-inflammatory
effect outside the cell, leading to cell killing. There is no definitive
research on the timing of this shift. Referring to the previous
article [44], we conservatively believed that CIRP could be
identified as a negative protein from the 8H group. CEACAM1
[45] and NQO1 [46] promote apoptosis. All the other targets
are shown protective effects or do not have enough data. The
personalization values are shown in Table 1. All the structures of
target proteins were predicted by AlphaFold2 and RoseTTAFold in
the Additional file (Supplementary Figure 1 are available online at
https://academic.oup.com/bib). Eligible structures are shown in
Figure 3 and as per the rules given in the Materials and Methods
section.

Visualize evolutionary conservation and
structure–function relationship-based binding
site prediction
The conservation analysis of all the target proteins is listed in
Figure 4A–K. The redder the amino acid, the higher is the possibil-
ity of the amino acid sequence with function. Then, we identified
its structure–function relationship by the COACH-D server. The
results showed a familiar result of conservation analysis, which is
listed in Figure 4L–V. As shown in Table 2, the range around 3–5 Å
of the active site was used for the setting of the receptor pocket
of the target proteins that were used for virtual screening.

Virtual screening of target proteins’ antagonists
We utilized the virtual screening technique to identify potential
antagonists exhibiting an adequate binding affinity. We started
with a chemical database consisting of 8697 drug molecules

https://github.com/FeiLiuEM/PageRank-weight-drug
https://github.com/FeiLiuEM/PageRank-weight-drug
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac365#supplementary-data
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Figure 4. The ConSurf analysis and predicted active sites of target proteins. The upper 11 pictures are ConSurf analysis results. The darker the color, the
more conserved the amino acids and the higher the probability of active sites. The last 11 pictures are predicted active sites. The colored areas indicate
potential binding pockets of targets. (A and L) ARMCX5, (B and M) CCDC, (C and N) CDSN, (D and O) CEACAM1, (E and P) CHAC1, (F and Q) CIART, (G &
R) CIRP, (H and S) NQO1, (I and T) NR1D1, (J and U) NUDT22 and (K and V) RAMP3.

and isolated a set of compounds satisfying the threshold of a
high docking score. The results of the best match complexes
are shown in Figure 5 and all the results are listed in the
Additional file (Supplementary Table 1 are available online at
https://academic.oup.com/bib).

MD simulations and binding free energy analysis
We performed the MD simulation of 11 complexes to measure
the stability of the protein–ligand complex. RMSD profiles of the
protein are shown in Figure 6A, which indicates that all systems
were relatively stable during the entire simulation run. Moreover,

the RMSF profiles of protein are measured to evaluate the moving
of each amino acid. All proteins are available for further analysis
(Figure 6B).

The RMSD of drug atoms was also conducted to predict the
stability of the atoms in docked complexes (Figure 6C). Most
compounds exhibited a consistently low RMSD, suggesting that
these compounds formed stable complexes.

Drug rank of TH in different groups
We ranked all drugs using PageRank. First, we used PageRank
for all the drugs and the results obtained are shown in Table 3.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac365#supplementary-data
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Table 2. The docking parameters of target proteins

Protein name Protein source X Y Z LEN-X LEN-Y LEN-Z

ARMCX5 RoseTTAFold −7.06 31.20 −43.05 29.25 28.50 24.75
CDSN RoseTTAFold 51.80 53.51 31.17 39.75 20.25 21.00
CEACAM1 AlphaFold2 −41.13 3.42 5.67 39.75 22.50 22.50
CHAC1 AlphaFold2 −3.04 −0.53 0.22 23.25 25.50 35.25
CIART RoseTTAFold 36.79 −16.59 −36.23 28.50 38.25 22.50
CIRP RoseTTAFold 14.48 2.86 −9.56 17.25 15.00 19.50
NQO1 AlphaFold2 −1.86 −16.32 −9.20 29.25 29.25 28.50
NR1D1 RoseTTAFold 0.34 35.70 10.28 39.75 25.50 24.75
NUDT22 AlphaFold2 10.08 −12.04 14.09 17.25 38.25 22.50
RAMP3 AlphaFold2 0.00 −10.93 −5.29 24.00 24.00 21.00
CCDC122 RoseTTAFold 119.27 23.34 8.09 36.00 47.25 47.25

Figure 5. The best docking molecular for each protein. (A) ARMCX5, (B) CCDC, (C) CDSN, (D) CEACAM1, (E) CHAC1, (F) CIART, (G) CIRP, (H) NQO1, (I)
NR1D1, (J) NUDT22 and (K) RAMP3.

The higher the rank, the more protective the effect is in TH.
The lower the rank is, the more damaging it is in TH. From
Table 3, the recommended drugs in both H8 h and H18 h groups
may damage the neurological function. The impact should be
considered for different diseases. The prediction side effect targets
of each drug were calculated by ePharmaLib. Side effects were
referenced to the UniProt database. The original data are given
in the Additional file (Supplementary Tables 2–15 are available
online at https://academic.oup.com/bib).

The two-drug combinations are ranked in Table 4 and
three-drug combinations are ranked in the Additional file

(Supplementary Table 16 are available online at https://academic.
oup.com/bib). For comprehensive rank, the results of PageRank
were listed. For drug combination ranks, the percentages of each
drug’s value in the combination were calculated. And, DPEFS
was calculated for analyzing the distribution differences of drug
combinations.

Discussion
In this report, a chronotherapeutics-friendly multi-target drug
discovery method is proposed by taking TH as an example. This

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac365#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac365#supplementary-data
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Figure 6. The RMSD and RMSF of MD simulation. (A) The RMSD of proteins. (B) The RMSF of proteins. (C) The RMSD of each molecular of proteins.

is the first application of PageRank, the first attempt of artificial
intelligence (AI) protein prediction in the field of multi-target drug
discovery and the first application of ePharmaLib.

In this paper, we chose the mRNA expression differences. Due
to the high compatibility of PageRank, except for basic mRNA

expression differences, the analysis of Weighted Gene Coexpres-
sion Network [47] or Gene Regulatory Networks [48] will be better
because they could provide numerical results of all proteins. For
the same reason, PageRank has a good compatibility with existing
pharmacological techniques such as pharmacophore models [49]



Example of therapeutic hypothermia | 9

Table 3. The comprehensive rank of drugs and their predicted targets by pharmacophore models at different groups.

Group Drug Weighted_
personalized_
PageRank (∗10−4)

Predicted targets by
pharmacophore models

Predicted side effects

h0.5h Fluzoparib 0.81 TYRO3, ACES, NOS2 Neuron protection from excitotoxic injury, platelet aggregation,
cytoskeleton reorganization, innate immune response, inflammation

Lorecivivint 0.80 CAH4, NOS2 pH homeostasis, inflammation
Vactosertib 0.80 CAH5A, NOS2, CAH4 Mitochondrial function, pH homeostasis, inflammation

h1 h Lorecivivint 0.81 CAH4, NOS2 pH homeostasis, inflammation
AC-430 0.81 IF4E3, NOS2, CAH4 Protein synthesis, pH homeostasis, inflammation
Raltegravir 0.80 NOS2, CAH4, CAH5A Mitochondrial function, pH homeostasis, inflammation

h2 h Phthalocyanine 0.90 ACES, NOS2 Neurological function, inflammation
Vazegepant 0.87 NNRE, LGUL, NOS2 Cholesterol metabolism, osteoclastogenesis, oxidation, inflammation
Bemcentinib 0.86 CRYM, LGUL, NOS2 Thyroid function, osteoclastogenesis, oxidation, inflammation

h4 h Phthalocyanine 0.85 ACES, NOS2 Neurological function, inflammation
3-(2-AMINOQUINAZOLIN-
6-YL)-4-METHYL-N-[3-
(TRIFLUOROMETHYL)
PHENYL]BENZAMIDE

0.84 ACES, CN37, CAH5A Neurological function, mitochondrial function

Bemcentinib 0.84 CRYM, LGUL, NOS2 Thyroid function, osteoclastogenesis, oxidation, inflammation
h8 h Phthalocyanine 0.87 ACES, NOS2 Neurological function, inflammation

MK-3207 0.86 NOS2, CN37, ACES Neurological function, inflammation
Lifirafenib 0.85 EPHB2, ACES, NOS2 Development, neurological function, inflammation

h18 h Phthalocyanine 0.87 ACES, NOS2 Neurological function, inflammation
MK-3207 0.86 NOS2, CN37, ACES Neurological function, inflammation
Lifirafenib 0.85 EPHB2, ACES, NOS2 Development, neurological function, inflammation

Table 4. Rank of two drug combinations of different groups

Group Drug 1 Drug 2 PageRank
value of
drug1

Percentage PageRank
value of
drug2

Percentage Personal-
ized_weight
_PageRank

DPEFS

h0.5h Lorecivivint Fluzoparib 0.41 49.85 0.42 50.15 0.83 2.30
Vactosertib Fluzoparib 0.41 49.56 0.42 50.44 0.83 2.33
2′-deoxy-N-(naphthalen-1-
ylmethyl)guanosine
5′-(dihydrogen phosphate)

Fluzoparib 0.41 49.68 0.42 50.32 0.83 2.32

h1 h Lorecivivint AC-430 0.41 49.67 0.42 50.33 0.83 4.36
Lorecivivint Raltegravir 0.42 50.12 0.41 49.88 0.83 4.40
Lorecivivint Vactosertib 0.42 50.21 0.41 49.79 0.83 4.37

h2 h Phthalocyanine Vazegepant 0.42 51.42 0.40 48.58 0.82 4.65
Phthalocyanine Bemcentinib 0.43 51.84 0.40 48.16 0.82 4.71
Phthalocyanine Lifirafenib 0.43 52.28 0.39 47.72 0.82 4.64

h4 h 3-(2-AMINOQUINAZOLIN-6-
YL)-4-METHYL-N-[3-
(TRIFLUOROMETHYL)PHENYL]
BENZAMIDE

CD564 0.41 50.25 0.41 49.75 0.82 1.60

Adapalene 3-(2-AMINOQUINAZOLIN-6-
YL)-4-METHYL-N-[3-
(TRIFLUOROMETHYL)
PHENYL]BENZAMIDE

0.41 49.90 0.41 50.10 0.82 1.60

3-(2-AMINOQUINAZOLIN-6-
YL)-4-METHYL-N-[3-
(TRIFLUOROMETHYL)
PHENYL]BENZAMIDE

Phthalocyanine 0.42 50.52 0.41 49.48 0.82 1.60

h8 h Phthalocyanine MK-3207 0.41 49.91 0.41 50.09 0.83 3.94
Phthalocyanine Lifirafenib 0.42 50.17 0.41 49.83 0.83 3.93
Lifirafenib MK-3207 0.41 49.75 0.42 50.25 0.83 3.94

h18 h Phthalocyanine MK-3207 0.41 49.91 0.41 50.09 0.83 4.95
Lifirafenib MK-3207 0.41 49.77 0.42 50.23 0.83 4.95
Phthalocyanine Lifirafenib 0.42 50.14 0.41 49.86 0.83 4.94
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and Quantitative Structure–Activity Relationship [50]. The ability
to apply bioinformatics directly also indicates that this method
can be applied to personal precision medicine.

AlphaFold2 and RoseTTAFold were used for protein structure
prediction. And the number of selected proteins predicted by
AlphaFold2 in this research was close to that of RoseTTAFold.
During the process of protein structure prediction, we found
that for some proteins, the structures predicted by RoseTTAFold
have less irregular structure than that of AlphaFold2. This may
be due to the 2D distance map level being transformed and
integrated by RoseTTAFold during neural network training [18],
while AlphaFold2 only paired the structure database and genetic
database [17]. We also find a phenomenon that the predicted
protein structures were relatively unstable under MD simula-
tion than preview reports of other protein structures detected
by X-ray.

We use the PageRank algorithm to rank all the drugs and com-
binations. The application of PageRank is suitable. The combina-
tion of drug molecules is a memoryless stochastic process, which
meets the qualifications of the Markov process. The comprehen-
sive analysis involves the free docking of proteins with all drugs.
The process is similar to putting all proteins and drugs into a
solution and docking freely. Besides, the method has good compat-
ibility with the wide compatibility of PageRank. In theory, all the
technologies with numerical results can be ranked by the method.

In addition, due to the advantages of PageRank, we can adjust
the weights of different proteins to suppress the negative proteins
with minimal impact on the positive ones. This property is bene-
ficial for chronotherapeutics. Chronotherapeutics aim at treating
illnesses according to the endogenous biologic rhythms, which
moderate xenobiotic metabolism and cellular drug response [51].
With the new method, it is difficult for one administration to
affect the effect of the next one. So, it is suitable for drug discovery
of chronotherapeutics. Coincidentally, the CIRP mentioned in this
report is classified as rhythm protein [52]. Body temperature also
changes with circadian rhythms and regulates protein function
[53, 54]. This is one of the reasons why TH was used as an example.

In the article, we also use pharmacophore models (ePharmaLib)
to predict the side effects of drugs. For drug discovery, researchers
can get the properties of drugs more efficiently. For clinical use,
we can know the side effects of drugs much earlier. More precise
and rational procedures can be performed for different patients.
The authors were impressed by the efficient retrieval analysis of
15 148 pharmacophore models of ePharmaLib.

The new method matches the characteristics of pharmacoge-
nomics [55] and brings new ideas for clinical drug development.
For tumors, it is possible to effectively antagonize the most abnor-
mally expressed proteins while limiting the affection of nor-
mal proteins. It could effectively improve the development of
pharmacogenomics. Given this approach’s close association with
bioinformatics, bioinformatics can predict the most suitable drug
for every patient in most diseases. Referring to the correlation
between bioinformatics and genomics, we proposed to classify the
new method as bioinfo-pharmacology.

This research has some defects. (1) For the speed of calculating,
we only choose the top three mRNAs for docking and the top
one complex for MD simulation. (2) Theoretically, pharmacophore
modeling has a better improvement under PageRank. But consid-
ering lacking related copyright and the purpose of the article, we
chose to dock FBI-approved drugs with target proteins to explore
the interaction between proteins and drugs.

In summary, this paper proposes a new method through
protein structure predicting and PageRank. The results provide

medical clues for the treatment of TH. This method takes a new
attempt at drug discovery, which might make a little bit of a
difference in pharmacology.

Key Points

• A new multi-target discovery method based on high
precision AI (AlphaFold2 and RoseTTAFold) for protein
structure prediction was proposed for drug discovery.

• A highly compatible numerical analysis method was
proposed and evaluated to measure the effective effects
of drugs and minimize the harmful effects.

• It is the first application of ePharmaLib, which is the only
open source pharmacophore model tool available.
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