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When the immune system responds to tumour development, patterns of

immune infiltrates emerge, highlighted by the expression of immune check-

point-related molecules such as PDL1 on the surface of cancer cells. Such

spatial heterogeneity carries information on intrinsic characteristics of the

tumour lesion for individual patients, and thus is a potential source for

biomarkers for anti-tumour therapeutics. We developed a systems biology

multiscale agent-based model to capture the interactions between immune

cells and cancer cells, and analysed the emergent global behaviour during

tumour development and immunotherapy. Using this model, we are able to

reproduce temporal dynamics of cytotoxic T cells and cancer cells during

tumour progression, as well as three-dimensional spatial distributions

of these cells. By varying the characteristics of the neoantigen profile of individ-

ual patients, such as mutational burden and antigen strength, a spectrum

of pretreatment spatial patterns of PDL1 expression is generated in our

simulations, resembling immuno-architectures obtained via immunohisto-

chemistry from patient biopsies. By correlating these spatial characteristics

with in silico treatment results using immune checkpoint inhibitors, the model

provides a framework for use to predict treatment/biomarker combinations

in different cancer types based on cancer-specific experimental data.
1. Introduction
The immune system has been hypothesized to play an active role in detecting

constantly arising nascent tumours from normal tissues and preventing

cancer development. This hypothesis, later coined as immunosurveillance [1],

is substantiated by experimental evidence, including the identification of

tumour associated antigens [2]. Our current understanding of immunosurveil-

lance consists of three major phases: elimination, equilibrium and escape [3].

In the elimination phase, the immune system detects immunogenic tumours

via mutational or abnormally expressed genes and mounts an adaptive

immune response by mobilizing actors such as cytotoxic T lymphocytes in an

attempt to kill the nascent transformed tumour cells [4]. However, incomplete

elimination leads to survival of some tumour cells, which eventually acquire

features that can help them evade the immune detection and ultimately results

in tumour escape. One important route towards such escape is created as

tumour cells hijack the regulatory pathways of the immune system to suppress

its functionality.
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The programmed cell death protein-1 (PD1) is one of those

key factors [5]. Normally in an immune response, PD1 and its

ligand PDL1 function as an immune checkpoint pathway to

maintain tolerance to ‘self’ material and prevent excessive

immune activities. Nonetheless, under protracted immune

stress, PDL1 expression can be induced on cancer cells and

other cells in the tumour microenvironment (TME), suppres-

sing the host’s anti-tumour immunity in many cancers such

as melanoma and non-small cell lung cancer (NSCLC).

Recent research into immuno-oncology has been focusing on

modulating those regulatory factors of the immune system in

hope of unleashing the natural power of anti-tumour

immune response to treat a wide spectrum of cancers with

less adverse effects and long-lasting memory. Immune check-

point inhibitors, a new class of therapeutic agents, have been

developed or are currently under development based on this

principle [6]. These are typically monoclonal antibodies specifi-

cally targeting checkpoint proteins including PD1, PDL1,

cytotoxic T-lymphocyte-associated protein 4 and many

others. In clinical trials, therapies employing these agents

have exhibited durable responses and improved survival

of patients across a range of cancers including advanced mela-

noma, NSCLC and bladder cancer, and have thus been granted

regulatory approval from the Food and Drug Administration

for those indications [7–9].

However, unaddressed issues remain that limit a wider

and more effective application of immunotherapies. First,

although patients who respond to anti-PD1 showed significant

tumour reduction and improved progression-free survival, the

response rate is relatively low, e.g. about 30–40% in advanced

melanoma and 20% in NSCLC [10]. In order to identify

patients that will most likely benefit from such therapies, it is

important to establish reliable predictive biomarkers along

with the treatment strategy, and pathologists are trying to

further deduce the implication of spatial characteristics such

as intratumoural heterogeneity and immuno-architectures

[11,12]. Second, the immune activity is regulated by a complex

network of signalling pathways involving many more poten-

tial therapeutic targets [6]. Without better understanding

of how the network functions as a whole in a quantitative

manner, it is difficult to predict the comprehensive outcome

of targeting one of these immune checkpoint proteins, or

their combinations. In addition, other different types of

cancer treatments may be synergistic when combined with

immune checkpoint inhibitors, such as radiotherapy, che-

motherapy and other immunotherapies including chemokine

therapy, adaptive cell transfer and cancer vaccines [13,14].

However, due to the vast number of possible combinations, it

is necessary to screen for the ones that are most likely to be

effective so that limited resources can be focused on those.

Without such predicting power, development of immune

checkpoint inhibitors and their combinational therapies is lar-

gely a trial-and-error process, and findings in model animals

may be difficult to translate well to human subjects [15]. To

address the aforementioned problems and further exploit the

potential of immune checkpoint inhibitors, it is essential to

put together a knowledge base of how the immunotherapies

mechanistically modulate the complex interactions between

tumour development and anti-tumour immune response.

This knowledge base should then allow us to make quantitat-

ive predictions of the differential efficacy of an immunotherapy

in a heterogeneous population, as well as in combination with

other therapeutic agents.
A computational multiscale hybrid model suits this task.

Mechanistic dynamical systems models described by ordinary

differential equations (ODE) have been developed to under-

stand the dynamics of cancer and immune cells in various

situations, including immunotherapy [16–25] (reviewed in

[26,27]). However, these models lack the spatial resolution

that would allow one to examine intratumoural hetero-

geneity and their correlation with treatment efficacy. Recently,

intratumoural heterogeneity has become centre stage for under-

standing such important aspects of cancer treatment as drug

resistance and biomarkers [28,29]. Agent-based models (ABM)

are often employed to capture the spatial aspect of the system.

This type of model usually operates on a lattice, where cellular

‘agents’ interact locally with each other according to a defined

set of experiment-based rules reflecting their biological roles,

and collectively generates a global emergent behaviour. ABM

have been used to study many different aspects of cancer,

including tumour growth, cancer cell migration, metabolism,

evolutionary dynamics, metastasis, angiogenesis and the role

of cancer stem cells [30–39]. In particular, Castiglione et al.
extended a previously developed immune simulator to model

cancer–immune interactions, which generated insights into

cancer vaccine development [40,41]. Off-lattice ABM are often

used when forces between cells or cells and the extracellular

matrix play important roles, or change of cell size and mor-

phology need to be accounted for [42–44]. ABM can also

serve as the backbone of a hybrid multiscale model by providing

a scaffold to interface with other model types to study tumour

growth dynamics. Wang et al. combined a tumour growth

ABM with mechanistic model described by ODE capturing

intracellular signalling pathway of epidermal growth factor

and transforming growth factor-b, as well as partial differential

equation (PDE)-based models describing the diffusion of these

chemical substances along with oxygen and glucose [45]. Such

scheme is also used in cancer progression models with an

immune component, where nutrients for survival and prolifer-

ation [46] or an immune reagent [47] are captured as PDE and

coupled with the cancer growth ABM.

In this study, we present a computational multiscale agent-

based model capturing spatially explicit dynamics of tumour

development in the presence of adaptive immune response.

By varying components of patient tumour neoantigen charac-

teristics such as mutational burden and antigen strength, our

simulations reproduce a variety of spatial patterns of PDL1

expression resembling immuno-architecture found in patient

biopsies. We also demonstrate, as a proof of principle, how

the model could allow us to predict a scoring system that

takes into account not only the relative amount but also the

spatial distribution of PDL1þ cancer cells and discerns patients

that are likely to respond to anti-PDL1 treatment. The model can

be expanded to reflect specific types of cancer to enable quanti-

tative predictions of therapy–biomarkercombinations and to be

used as a platform for conducting virtual clinical trials.
2. Material and methods
2.1. Hybrid multiscale systems immuno-oncology

model
We developed a multi-compartment multiscale model to capture

dynamics of biological processes involved in tumour development

and anti-tumour immune response. In this model, we included

cytotoxic T lymphocytes (CD8þ T cells) and cancer cells, which
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Figure 1. Agent-based model. (a) Cellular and structural agents (such as tumour vasculature) are simulated on a three-dimensional grid, with their behaviour
defined by a set of rules. (b) Rules for cellular agents. T cells are recruited from tumour vasculature, and are all in an effector state upon recruitment. When
an effector T cell encounters cancer cells, they are further activated and become actively cytotoxic. Cancer cells start as PDL12 in this model. An activated
T cell can kill PDL12 cancer cell with a specified probability once they come close to each other; otherwise, this PDL12 cancer cell can convert to PDL1þ

with a specified probability. A PDL1þ cancer cell can inhibit an activated T cell on contact, and the latter will convert to suppressed state, unable to kill
cancer cells. PDL1þ cancer cells also exhibit reduced killing probability from activated T cells. Except for suppressed T cells, cells in all the other states can proliferate,
and activated T cells can secrete IL-2 which further drives T-cell proliferation. Dead cancer cells will drive immune response, which determines effector T-cell
recruitment rate. See Material and methods section for further details.
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interact in a three-dimensional space under a set of rules including

division, migration, cytotoxic killing and immune evasion. The

system includes events at cellular-tissue scale (e.g. TME heterogen-

eity and immuno-architecture) captured with ABM, as well as

molecular scale (e.g. cytokine secretion and transport) captured

with PDE. The rules regarding interactions between agents are

summarized in figure 1, with further details discussed in the

electronic supplementary material.

The ABM is implemented in Cþþ and simulations run on

Linux and Microsoft Windows Operation systems. The diffusion

equation for IL-2 is solved with an alternating direction explicit

algorithm [48]. Simulation time depends on model parameters

including lattice size, cell number and number of time steps to

simulate; a typical simulation takes approximately 1 h on a

single core of an Intel i7-920 CPU. Model visualization is

performed with Amira (FEI, Hillsboro, OR, USA).

We used Johns Hopkins-based Maryland Advanced Research

Computing Center (MARCC) for simulations involved in this

project, including for parameter sweep and sensitivity analysis.

2.2. Simulated immune checkpoint inhibitor treatment
We alter parameter values governing T-cell suppression to rep-

resent the effect of anti-PDL1 treatment. Tumour development

is simulated as ‘untreated’ initially. After reaching the time

point when immunotherapy begins, we reduce the probability

of cytotoxic T cell being suppressed by a PDL1þ cancer cell by

a factor of msupp and keep the simulation going. This is to repro-

duce the scenario when cancer cell surface PDL1 molecules are

blocked by an anti-PDL1 mAb and unable to bind to PD1 on

effector T cell and induce their exhaustion, yet the blocking is

incomplete due to other redundant ligand such as PDL2.

2.3. Tumour spatial characterization
At chosen time points during the simulation, we record the status

of each voxel, including the type of cell occupying it. If the voxel

(x, y, z) is occupied by a cancer cell of any state, we define its label

as Lraw(x, y, z) ¼ 1, and otherwise Lraw(x, y, z) ¼ 0; here x, y, z are
integers in the range of [0, N21]. We then use an unweighted

moving average algorithm to smooth the three-dimensional

image. The box edge length is set to three voxels, and the lattice

is zero-padded (Lraw(i, j, k) is set to 0 when (i, j, k) exceeds lattice

boundaries). The threshold is chosen as 0.5:

Laveðx, y, zÞ ¼ 1

27

Xxþ1, yþ1, zþ1

i¼x�1, j¼y�1, k¼z�1

Lrawði, j, kÞ

and Lsmoothðx, y, zÞ ¼ 1, if Laveðx, y, zÞ � 0:5
0, if Laveðx, y, zÞ , 0:5:

�

We then apply connected-component labelling to Lsmooth to

determine the tumour region. This is done by first finding the

non-tumour region, which is defined as the set of voxels with

Lsmooth ¼ 0 and which is connected to the edge of the lattice

through a path consisting of all non-tumour voxels. Then the

complement set is defined as tumour.

When tumour boundary is defined, three cross sections of the

tumour are taken with planes perpendicular to the x-, y- and

z-axes, respectively, and through the centre of the lattice at

(bN/2c, bN/2c, bN/2c). For each cross section, we calculate the

Euclidian distances of each point within the boundary to the sur-

face of the tumour. Features of cell spatial distribution are then

analysed based on their distance to the tumour boundary.
2.4. Parametrization and sensitivity analysis
The goal of this study is to develop a computational modelling

platform to study the spatial characteristics and spatial hetero-

geneity of tumour immuno-architecture and its response to

immunotherapy. We do not limit our model to represent any

specific cancer type at this stage, thus model calibration and

parametrization is qualitative at this stage. Values of parameters

were taken from experimental studies or adopted from previous

models if they apply to a range of cancers. For those parameters

for which we are unable to find an experimental value, or those

that differ across cancer types, we estimate a range based on best
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biological knowledge and use global sensitivity analysis to study

how biological mechanisms affect simulation outputs.

In sensitivity analysis, we determine the list of parameters

of interest and specify a range of values for each parameter

(electronic supplementary material, table S1). We use Latin hyper-

cube sampling (LHS) [49] to generate the parameter value

combinations to achieve high accuracy with a smaller number of

samples. In this study, 500 experiments are generated, with each

experiment simulated using one parameter combination from the

matrix, and replicated three times to reduce uncertainty from

inherent stochastic variations. Partial rank correlation coefficients

(PRCC) are calculated between all pairs of target model output

and parameters varied in the LHS in order to assess parameter

global sensitivity and detect monotonic relationship between

mechanisms and functionalities [50].
Interface
14:20170320
3. Results
3.1. Tumour development in the presence of adaptive

immune response
We first attempted to establish a baseline scenariowhere a cancer

cell develops into a tumour with relatively stable size while inter-

acting with T cells generated from an immune response induced

by cancer progression. Note that here we do not focus on the

effects of cancer stem and progenitor cells on tumour growth;

these issues are addressed by numerous computational studies,

e.g. [37,51]. In addition to the spatial distribution of different cell

types at a given time point (figure 2a), our model produces

output data of various forms for further evaluation and

interpretation. Global characteristics such as number of cells of

different subtypes (effector, active cytotoxic and suppressed T

cells, PDL1þ, PDL12 cancer cells) are recorded (figure 2b).

After primed in the lymph node, tumour neoantigen-specific

naive T cells differentiate into effector T cells, which can be

recruited to tumour. These effector cells begin to exert their cyto-

toxic activity upon recognizing their antigen target in the TME.

As shown in these figures, T cells start to arrive at the tumour site

around day 10, quickly accumulate while cancer cell prolifer-

ation slows down from exponential growth. This is followed

by the appearance of PDL1þ cancer cells induced by the inflam-

matory microenvironment. The number of effector T cells falls

after initial growth, leaving behind a mixture of actively cyto-

toxic and suppressed T cells, and PDL1 positive and negative

cancer cells. Molecular scale data are recorded in both space

and time. In figure 2c, the concentrations of IL-2 at specified

time points are visualized, and can be seen to evolve along

with tumour progression. To look more closely at how these

different subtypes of cells are distributed in space and time,

we present slices of the simulated tumour at a series of time

points. Each cell subtype is shown with different colours

(figure 2d), mimicking multiplex immunohistochemistry slides

from patient samples [10,52,53]. From these figures, we can dis-

cern an immune front formed between immune cells and cancer,

with PDL1 positive cancer cells and PD1 positive T cells cluster-

ing at the interface; however, patches of these cells also appear

inside the tumour. Parameter values for tumour development

baseline are listed in electronic supplementary material,

table S1. Ten replications are performed for the simulations in

this case. It should be noted that these simulations illustrate

the power and capabilities of the model platform and the par-

ameters or their ranges should be selected for specific cancer

type; this includes the rate of tumour growth that could be

much slower than the above example for some cancer types.
3.2. Simulated tumours display a range of histological
patterns resembling immunohistochemistry data
from patient biopsies

Patterns in figure 2d represent only one of the many different

types of patterns seen in patients’ biopsies. Next, we qualitatively

validate the model by producing a collection of tumours with a

range of patterns with cell type distribution resembling those

seen in patients [54–56]. We hypothesize that the patterns can

be affected by each individual’s tumour neoantigen profile. In

our ABM, tumour neoantigen profile is characterized by two fac-

tors: mutational burden (ka) and antigen strength (ki). These two

factors together determine effector recruitment rate in the model

(see Material and methods section for details). We simulated

tumour development in patients with the following tumour

neoantigen characteristics combinations: high (ka¼ 20) or

low (ka¼ 10) mutational burden, with high (ki ¼ 0.1) or low

(ki¼ 0.001) antigen strength. Three-dimensional visualizations

of tumour at day 30 are shown in figure 3. To better relate our

simulation to patient biopsies, available to pathologists, we

took snapshots of pretreatment tumour slices at day 30 (figure 4).

We find that different patterns of PDL1þ cancer cells

emerge from these settings, qualitatively similar to those seen

in patients [52,53]. In cases with low mutational burden

(figure 4a,c), PDL1þ cancer cells can be seen sporadically

distributed within the tumour, and PDL1þ cancer cells are

seen more frequently in high antigen strength case than in

low antigen strength case. When mutational burden is high,

PDL1þ expression is observed in patchy patterns (figure 4d ).

When antigen strength is also high a clearer immune front is

observed, as a PDL1þ cuff forms to envelope the tumour.

The spatial characteristics (immuno-architecture) have poten-

tials of predictive power of treatment outcomes when

quantified [57], which we will further examine in §3.4.

To make the simulations more tractable, the lattice we use to

simulate tumour development is 1 mm3 in size (i.e. 1 million

voxels), which is smaller than actual vascularized tumours;

the region could be considered as representative of sub-regions

of larger tumours. Electronic supplementary material, figure S1,

shows that when larger lattice is used (2� 2 � 2 mm or 8 million

voxels), the overall patterns are similar to those obtained from

smaller lattices. While the model does not place limitations on

tumour size, the implementation could be limited by the

size of the computer RAM, or would be slowed down when

the size exceeds a certain computer-specific limit. However,

different solutions could be found to circumvent this problem,

e.g. considering sample volumes of the tumour.

3.3. Responsiveness to anti-PDL1 treatment is affected
by patient neoantigen characteristics

In a recent study conducted among a colorectal cancer cohort,

the mutational burden of patients is found to correlate with

response to immune checkpoint blockade treatment [56]. In

our next simulation experiments, we attempted to verify that

our model reproduces such phenomenon and further predicts

which of the two factors, mutational burden versus antigen

strength, of a patient’s tumour neoantigen profile more strongly

influences the responsiveness of the patient to immune check-

point inhibitor treatment. Here we assume that all tumour

cells are equally affected by the treatment, and simulated anti-

PDL1 treatment by reducing the parameter value governing

the probability of a PDL1þ cancer cell suppressing a cytotoxic
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T cell by msupp¼ 0.8 after day 30 of each simulation. This takes

into account the potential redundancy of signalling pathways

and incomplete blocking. Results are shown in figure 5.
Without treatment, tumours in all four scenarios are progres-

sing from day 30 to day 50. In low mutational burden

scenarios, tumour continues to grow with anti-PDL1 treatment
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regardless of tumour antigen strength. The number of PDL12

cancer cells is smaller than in the cases where treatment is not

given, but still increases nevertheless. The number of PDL1þ

cancer cells is even higher than in no-treatment cases, possibly

induced by a more inflammatory TME resulting from reduced

suppression of cytotoxic T cells. In high mutational burden

scenarios, despite a brief initial increase of PDL1þ cells, cancer

cell counts begin to decline after treatment is applied after

day 30. Furthermore, in high mutational burden cases, the

rate of tumour size reduction is affected by antigen strength.

With high antigen strength, the tumour is eliminated before

the end of simulation (figure 5c), while the reduction is less

dramatic in the low antigen strength case (figure 5d).

3.4. Scoring simulated tumour immuno-architecture as
a potential biomarker for anti-PDL1 treatment
efficacy

Comparing the results in figures 4 and 5, we find that apparent

visual similarities may not be indicative of similar prognosis for

immune checkpoint blockade treatment. In figure 4a,d, both

tumours appear to have similar sizes and both have PDL1þ

cancer cells similarly distributed in the tumour. However, the
treatment outcome is very different (figure 5a,d). We use the

model to demonstrate how simulated tumour cross sections

can be analysed to assess potential predictive biomarkers.

Following the ideas of exploratory scoring systems pro-

posed by pathologists [11,12], we focus on the rim of the

tumour, which is defined as the region consisting of points

within a specified distance from the tumour surface

(figure 6a). The distance threshold can be varied in future ana-

lyses to optimize the power of the predictive biomarker. For

each simulated tumour, three cross sections are taken, perpen-

dicular to the x-, y- or z-axis, and all three go through the centre

of the lattice. Euclidian distance to surface is calculated, and for

each cross section a score is calculated as the fraction of cancer

cells in the rim region that are PDL1 positive. We calculated the

ratios of tumour sizes at day 50 (20 days post-treatment) and

day 30 (pretreatment) as a measurement of tumour shrinkage

(1: equilibrium; 0: elimination; .1: progression) (figure 6b). The

scoring results using a threshold distance of 50 mm are shown

in figure 6c.

To assess how the width of evaluated rim affects predictive

power of score, we examined a series of threshold distances

for regionalization and calculated the receiver operating charac-

teristic (ROC) curve (figure 6d). Results indicate that when
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smaller distance thresholds (e.g. 20 and 50 mm) are used as

opposed to larger ones (100þ mm), the score has a higher

sensitivity in separating responders from non-responders. The

difference is most prominent when high specificity is required

for a given sensitivity level, i.e. when we need low false positive

rate when using this biomarker to detect responders.
3.5. Tumour growth is insensitive to spatial distribution
of T-cell entry points

In previous sections, we fixed effector T-cell entry point density.

However, the arrangement of tumour vasculature may have

an impact on tumour growth by affecting T-cell recruitment

probability in different regions of a tumour. We varied the

parameter governing how steep the drop in vascular density

is towards the core (l) over two orders of magnitude,

resulting in cases ranging from almost uniformly distributed

(l ¼ 1/3200 mm21) entry points to nearly no entry points in

the core (l ¼ 1/25 mm21). Then we compared total cancer cell

counts and PDL1þ cancer cell counts generated with different

vasculature density distributions at a pretreatment (day 30)

time point. Ten replications of simulations are performed with

each parameter setting. The spatial distribution of recruitment

entry (in two dimensions) and resulting cancer cell counts are

shown in figure 7. It appears that no obvious correlation

exists between l and pretreatment total cancer cell counts

or PDL1þ cancer cell counts. We also looked into the spatial

distribution of PDL1þ cancer cells with different neo-

antigen characteristics when the core of the tumour is well

perfused (l ¼ 1/1600 mm21), resulting in nearly uniform

distribution of T-cell entry points throughout the tumour.
The results are shown in figure 8. We can see that those

patterns are similar to those we previously obtained from

simulated tumours with relatively poorly perfused cores

(figure 4, l ¼ 1/100 mm21).

However, it should be noted that this result may only be rel-

evant to T-cell recruitment locations in tumour. Tumour

vasculature is not only responsible for transporting tumour anti-

gen specific T cells; it also delivers oxygen, nutrients, growth

factors and therapeutic agents to the tumour. The aforemen-

tioned results do not take these factors into account, while the

spatial arrangement of tumour vasculature is likely to influence

tumour development by shaping the distribution of those factors.
3.6. Correlating pretreatment tumour properties with
other mechanisms

In §3.3, we analysed the impact of patient neoantigen profile on

treatment outlook. For other mechanisms that are parame-

trized in our model, we use sensitivity analysis to determine

the correlation between their values and tumour progression.

Parameters included in the analysis are listed in electronic sup-

plementary material, table S1. The parameters with significant

correlation with pretreatment tumour size/total cancer cell

count and the ratio of PDL1þ cancer cell to total cancer cell

counts are shown in figure 9, along with their PRCC values.

With regard to total cancer cell count, the results show that

the IL-2 threshold to activate effector T-cell division is posi-

tively correlated with pretreatment tumour size, indicating

the important role of anti-tumour effector T-cell proliferation

in TME to limit tumour size without immunotherapy. T-cell

motility is negatively correlated with total cancer cell count,
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meaning an increase in ability of highly mobile CD8þ T cells to

limit tumour growth. The velocities of cancer cells vary in a

wide range (0.01–5 mm min21) depending on cancer types,

stages of progression and migration modes [58]. In this

study, we are focusing on the lower end of the spectrum corre-

sponding to properties found in the early stage of tumour

development. At this stage, cancer cell mobility is positively

correlated with tumour size, indicating cancer cell migration

promotes tumour progression. The negative correlation

between tumour size and rate of cytotoxic T cells killing both

PDL1þ and PDL12 cancer cells is also in accordance with the

role of anti-tumour T cells in limiting cancer growth. The

higher correlation of the killing rate of PDL1þ than that of

PDL12 also suggests the importance of a higher PDL1þ

cancer cells’ overall contribution to tumour progression. This

will help us assess their correlation with treatment efficacy

and thus potentials as target of clinical intervention. PDL1

induction in cancer cells also correlates positively with

tumour size. This indicates that the resistance build-up

from the inflammatory environment not only prevents a

tumour from been eliminated by the immune system but also

contributes to its progression.

Furthermore, some mechanisms are correlated with both

total cancer cell count and PDL1þ fractions, but in opposite

directions. A high proportion of PDL1þ expression in tumours

is usually considered to suggest high probability of patient
responding to anti-PD1/anti-PDL1 treatment, and thus mech-

anisms that correlate negatively with tumour size and

positively correlate with PDL1þ expression might be helpful

to couple with such treatment to improve outcome. From

figure 9b, it can be seen that IL-2 threshold belongs in such cat-

egory, meaning sensitizing T cells to IL-2 may synergizewith the

therapy. Alternatively, mechanisms negatively correlated with

tumour size and positively correlated with PDL1þ fraction,

such as T-cell motility, can be induced to help with the therapy.

On the contrary, targeting mechanisms such as cancer cell PDL1

induction probability might not be fruitful because although

increasing it can promote PDL1 fraction, it also promotes overall

cancer growth, leaving the overall effect difficult to predict.
4. Discussion
In this study, we developed a three-dimensional agent-based

systems immuno-oncology model to simulate the interaction

between cancer cells and CD8þ T cells specific to cancer anti-

gen. The inputs of each simulation to capture individual

variance are parameters governing the tumour mutational

burden and antigen strength. Two important model outputs

are assessed. First, the emergent spatial patterns of different

cell types from our simulations without treatment, which

resemble patterns observed in patients’ biopsies. Second, the
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treatment outcome of simulated immune checkpoint blockade

therapy for each patient. By comparing the input and the emer-

gent patterns in pretreatment tumour, we attribute the source

of tumour spatial heterogeneity to patient tumour neoantigen

profile. By comparing the two outputs, namely pretreatment

immuno-architecture and treatment outcome, we presented

an in silico framework to assess potential predictive biomarkers

for the treatment by correlating simulated treatment outcome

with metrics obtained by applying the scoring scheme on

cross sections from simulated tumour.

At its current stage, the model can qualitatively capture

characteristics of a spectrum of cancers and is able to assess

and compare predictive biomarkers in a semi-quantitative

manner. However, at this stage it is not calibrated to any par-

ticular type of cancer, which prevents it from generating

predictions that can directly be used in clinical practice. By fit-

ting the model parameters to a specific type of cancer, the

model will transform into a platform for hypotheses testing.

The data required for model calibration would include

tumour biopsies from cancer patients, and preferably with cor-

responding post-treatment outcome. Such dataset can be used

to both quantify different cell types as well as record their

spatial arrangement. Half the images can be considered train-

ing data and be used to calibrate the ABM so that simulated

treatment outcome will match with patient treatment outcome,

while the other half can serve as testing data reserved to check

if the model predicts treatment outcome with reasonable accu-

racy that can be statistically assessed. Once this is done, the

same dataset can be used again in biomarker discovery, as a

standard to validate the power of biomarkers that are predicted

by the computational model.

Several limitations should be noted for our current model.

First, the lattice set-up constrains the flexibility of cell diameters.

Making all cells on-lattice means that diameters of cells can only

be multiples of the smallest cells being simulated, which in this

case are CD8þ T cells. In the current model implementation, we

set the diameter of T cells to be 10 mm and the diameter of

cancer cells to be 20 mm to reflect their relative size. While this

is a reasonable assumption, cancer cells can be of different

sizes depending on the type of cancer and the size can follow

a distribution. To relax this assumption, we can use an off-lattice

setting and make the diameter of cells a continuous variable.

This will increase the computational power required when we

simulate the dynamics, because collision detection in an off-

lattice space requires extra calculations and memory space.

One potential benefit of this choice is that we can then divide

the simulation space into sub-regions and parallelize the

computational process. However, because we always need to

perform global sensitivity analysis to address parameter uncer-

tainty, the large number of simulations required can cancel out

the benefit of parallelization of each individual simulation.

Nonetheless, if the constraint on cell size does affect the accu-

racy of the model’s predictive power, an off-lattice scheme has

to be used despite the extra computational time.

The current version of the model is also limited in that some

of the modules are coarse-grained or phenomenological. At

molecular scale, interactions of PD1/PDL1 on T cells and

cancer cells are rule based and lack explicit mathematical

formulation of receptor–ligand dynamics. The effect of

anti-PDL1 antibody works through changing the immuno-

suppression probability. ODE modules can be employed to

capture receptor–ligand dynamics and signal transduction in

cancer cells and T cells, as well as pharmacokinetics (PK) and
pharmacodynamics (PD), in order to quantitatively model

effects of therapeutic agents and how tumours respond to treat-

ment. At the cellular-tissue scale, some important cell types

found in the TME are not included in the current model,

such as regulatory T cells and myeloid-derived suppressor

cells. Regulatory T cells can inhibit tumour immune response

at multiple stages, including antigen presentation, T-cell prim-

ing and expansion in lymph nodes and T-cell activity in the

tumour lesion. They potentially contribute to the resistance

of tumour against the immune response. We are evaluating

the implication of such interactions in a molecularly detailed

systems pharmacology model [59], and such mechanisms can

also be explored in our spatially resolved paradigm by

adding new classes of cells and including pertaining rules.

Other important biological factors not currently taken into

account include cytokines other than IL-2. The complex cross-

talk of cytokines in the TME can be further studied for their

implication in tumour heterogeneity and differential responses

to treatment by extending the model to include them explicitly.

Tumour vasculature in this model is also reduced to entry

points of effector T cells, while other important functions

of the vasculature are not taken into account. A dynamic

tumour vasculature module coupled with tumour perfusion

should be able to capture tumour development in a more

mechanistic manner. The vascular geometry could either be

taken from experiments [60] or from computational models

[38,61]. At an organ-system scale, events including CD8þ

T-cell priming (in the lymph node), trafficking (via blood circu-

lation) and recruitment to the tumour compartment are largely

simplified and phenomenological. A more sophisticated

lymph node compartment sub-model can substitute current

module so that priming is more accurately and mechanistically

represented, allowing more stringent interrogation into roles of

anti-tumour immune components such as T-cell clonality. The

model platform we developed in this study is built in a modular

and extendable manner. The aforementioned modules can be

replaced with ones with more fine-grained versions as discussed.

If such models have been developed by other laboratories, they

can be incorporated into the present model via readily available

interfaces; otherwise these modules have to be built de novo and

connected to the core model. Particularly, with the implemen-

tation of PK/PD modules and rigorous model calibration and

validation, the model can be used as a platform for in silico
drug discovery and conducting virtual clinical trials [62].
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