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Abstract

Objective—Obesity is transmissible across generations through both genetic and nongenetic 

routes, but distinguishing between these factors is challenging. We aimed to quantitatively study 

the contribution of these genetic and nongenetic effects to assess their influence on obesity 

prevalence.

Methods—We proposed a mathematical model that incorporated both genetic and nongenetic 

effects of obesity. Model parameters were estimated by using observational data. Model 

simulations were used to assess the sensitivity of model parameters. To strengthen our approach, 

we also performed the parameter estimation and simulation using data from the UK.

Results—Individuals homozygous for a ‘hypothetical obesogenic gene’ are suggested to be more 

susceptible to both social contagious risk and spontaneous weight gain risk. The model predicted 

that obesity prevalence reaches 41.03% (39.28, 44.31) and 26.77% (25.62, 28.06) at 2030 in the 

US and UK, respectively. The social contagious risk factor had a greater overall impact on the 

distribution of the population with obesity than did spontaneous weight gain risk or mother-to-

child obesity transmission risk.

Conclusions—Although the proposed “first approximation” model captured the complex 

interactions between the genetic and nongenetic effects on obesity, this framework remains 

incomplete. Future work should incorporate other key features driving the obesity epidemic.
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INTRODUCTION

Obesity prevalence has increased steadily for the past few decades. Although obesity is 

considered to be a noncommunicable disease, evidence of the contagiousness of obesity has 

accumulated in the last 10 years. In 2007, Christakis and Fowler introduced a modeling 

framework that studied the impact of social influences on obesity, whereby individuals with 

more contact with other persons with obesity have a higher risk of becoming obese1. While 

the analytical methods have been debated2, Christakis and Fowler reported that the 

association between weight gain risk and the connection with other persons with obesity 

remains even after the removal of other possible confounders, including common 

environmental factors. Thus, they concluded that obesity is contagious through social 

connections. The complete mechanism behind social contagion of obesity has not been fully 

elucidated, but scientific evidence for social contagion is accumulating. For example, it was 

recently found that adolescents tend to have more friends with similar physical activity 

levels and eating behaviors3,4.

Obesity is also transmitted vertically from parents to offspring through or beyond genome 

sequences (intergenerational transmission)5. Heredity studies have found that a substantial 

proportion (60–80%) of the variance in BMI distribution can be explained by genetic 

variance6,7. Genome-wide association study has identified multiple genes and single-

nucleotide polymorphisms that affect obesity8,9. Among them, the fat mass and obesity-

associated gene (FTO) is strongly associated with increased BMI, although the detailed 

mechanism behind this association is not clear10. Interestingly, however, the FTO genotype 

is not associated with outcome after weight loss interventions11. Vertical transmission also 

results from the fetal environment imposed by parental, especially maternal, lifestyle12. 

Maternal obesity has an epigenetic impact on the expression of metabolic genes in children, 

a finding that has been experimentally documented in mice13. Furthermore, maternal obesity 

(and maternal diet during pregnancy and lactation) interrupts the construction of neural 

circuits in the hypothalamus, which regulate the offspring’s appetite and which may 

influence a path toward obesity later in adulthood14. Also, maternal diet during pregnancy 

and lactation impacts children’s growth15. Taken together, the data suggest that even after 

excluding genetic factors, children of mothers with obesity are at higher risk of obesity 

themselves.

Despite the evidence of intergenerational obesity transmission, quantification of the 

influence of intergenerational obesity transmission on obesity prevalence remains elusive. 

There are two significant challenges to quantifying this influence. First, estimating relative 

risk requires carefully designed, large-scale surveillance, which is difficult to conduct in a 

wide-reaching population. Qi et al. estimated the relative risk of the FTO gene using two 

large cohort studies (the Nurses’ Health Study [NHS] and the Health Professionals Follow-

Up Study [HPFS]), but their analysis was confined to specific populations and may not 

represent national population trends16. Second, the interdependency of the different sources 

of obesity risk is impossible to measure directly and separately. For example, the genetic 

correlation between direct genetic effect and maternal effect makes it hard to observe both 

effects separately. A mother carrying “obesity genes” may pass these genes to her offspring 
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(direct gene effect) and is susceptible to becoming obese herself, which increases her child’s 

childhood obesity risk (phenotypic transmission).

Mathematical models can account for these interdependencies and allow investigators to 

hypothesize different scenarios by changing parameters. Because the dynamics of obesity 

resemble the dynamics of a contagious infectious disease, several investigators have 

proposed obesity prevalence models based on the Kermack-McKendrick infectious disease 

model17. Previous dynamic obesity prevalence models incorporated both social and 

nonsocial influences on obesity18–21, and Hong et al. additionally incorporated genetic 

heredity22. Dawson et al. proposed a statistically based computational model that accounted 

for assortative mating and fertility rate differentiated by BMI that reflects the transient BMI 

distribution across generations23.

Advancing previous approaches, here we construct a mathematical model in which we 

included both genetic and nongenetic effects. To demonstrate the usefulness of the model, 

we applied the model to address two key questions: (1) How much do genetic characteristics 

contribute to obesity prevalence? and (2) How do interventions that target social influences, 

nonsocial influences, and pregnancy-related influences on obesity risk impact trends in 

obesity prevalence?

METHODS

Models for the obesity epidemic

Following the approach derived from infectious disease modeling24, we compartmentalized 

the population into two subgroups by phenotype: a class without obesity (underweight, 

normal, and overweight; BMI < 30 kg/m2), termed S, and a class with obesity (BMI ≥ 30 

kg/m2), termed I. These classes were further divided into three subgroups by the genotype of 

a hypothetical obesogenic gene, AA, Aa, and aa. Thus, for example, SAa is the proportion of 

the population without obesity with the Aa genotype. We adopted Mendelian laws of genetic 

heredity. To present the simplest model that reflects reality, we did not consider continuous 

BMI values and other physiological and socioeconomic features. All time-dependent 

variables in the model and their descriptions are shown in Table 1. The proportion of the 

population determined by genotype (Nij, where i, j ∈ {A, a}) is the sum of proportion of 

populations with and without obesity with the same genotype (i.e., Nij = Sij + Iij). The allele 

frequencies for a and A, ca and cA, are described by Nij as follows: 

Ca = Naa +
NAa

2 , CA = NAA +
NAa

2 , because the gamete from homozygous (AA or aa) 

individuals is A or a with a 100% chance, but the gamete from heterozygous (Aa) 

individuals is A with 50% chance or a with 50% chance. Here we describe the most 

important characteristics of the model; a comprehensive description is included in the online 

supporting information.

(1) Birth process—The natural birth rate is denoted by v. Newborn genotype is 

formulated by combining maternal and paternal genotype; the maternal (and paternal) 

gamete receives one of the paired alleles. Assuming random mating, the proportion of 

newborns with a specific genotype is determined by the allele frequencies: the proportions of 
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newborns with genotype aa, AA, and Aa are Ca
2, CA

2 , and 2cA ca , respectively. The childhood 

obesity risk is differentiated by the maternal phenotype; the risk given the mother is 

nonobese is kl; if the mother is obese, the risk is k2. The maternal phenotype (obese or not) 

affects the phenotype of children regardless of maternal genotype. This is called “phenotypic 

(nongenetic) transmission”.

(2) Obesity flow rates—All individuals without obesity are at risk of becoming obese 

after birth. We assumed progression to obesity with two terms: social contagious weight gain 
risk and spontaneous weight gain risk. To model potential social draws to obesity, we 

applied a first-order term that is linearly dependent on the proportion of the population with 

obesity. βij is the coefficient for the rate of transition from a class without obesity to a class 

with obesity due to social contagious weight gain risk and ηij is the rate due to spontaneous 

weight gain risk for individuals with genotype ij, where the susceptibility to both rates is 

differed by individual genotype.

(3) Removal (death) process—The model includes a differential death rate dependent 

on phenotype (obese or nonobese). The parameter µ represents the natural death rate of the 

individuals without obesity (independent of genotype) and dij is the death rate of the 

individuals with obesity conditional on genotype ij. Combining the set of processes 

described yields the full model (Figure 1).

Determining model parameters

The model was numerically simulated with input of baseline values and parameters. Because 

of the model’s complexity, we simplified it so that we could better analyze it by using tools 

from calculus.

First we constrained the differential death rate, which translates mathematically to: daa = dAa 

= dAA = µ (and this is justified by an epidemiological study25). We set the death rate equal to 

the birth rate, similar to a previous analysis21. The coefficients for the transition rate due to 

social contagious risk, βij, and the rate due to spontaneous weight gain risk, ηij, are assumed 

to differ only in the homozygous AA subclasses (i.e., ηaa = ηAa ≠ ηAA, βaa = βAa ≠ βAA). 

The phenotypic transmission from a mother without obesity is assumed to be zero for 

mathematical analysis (kl = 0).

The birth rate was obtained from publicly available records26. Other parameters were 

estimated by fitting our model to both the observed obesity prevalence data from the US 

National Health and Nutrition Examination Survey (NHANES)27,28 and genotype 

distribution data (aa, Aa, and AA) from the Nurses' Health Study (NHS) (we used the FTO 
gene as a placeholder for any obesogenic gene)16. We used what is referred to as a shooting 

method to fit model parameters29. The shooting method is widely used to solve boundary 

value problems. In the estimation of model parameters, we moved the parameter values and 

computed the sum of squared deviations until the minimal value was realized by using the R 

package ‘FME’. Obesity prevalence and genotype distribution in 1988 were used as initial 

values for simulation. We used the data from 1988 to 2007 for the parameter estimation, and 

the data from 2009 to 2014 were plotted to validate the model. The uncertainty of the 
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simulation was assessed by plotting the 95% confidence interval of the future obesity 

prevalence using the last 100 sets of parameters obtained during the MCMC process. To 

strengthen our approach, we examined whether our model could capture the observed 

convergence of obesity prevalence in Western countries since around 2000 using data from 

the United Kingdom. Obesity prevalence data are available from the Health Survey for 

England30 (1993–2010 were used for estimation and 2011–2015 were used for model 

validation), and FTO genotype distribution was obtained from cohort surveillance31 (The 

Avon Longitudinal Study of Parents and Children [ALSPAC], of which the participants were 

born in 1991–1992).

Assessment of different interventions to predict future obesity prevalence

We may be able to estimate the genetic and nongenetic effects on obesity development by 

conventional simulation methods in genetics, such as SIMLA, MERLIN, and PLINK32. 

However, the advantage of employing a mathematical model instead of conventional 

methods is that it enables us to project future obesity prevalence scenarios simply by 

changing parameters or initial conditions. Hereafter, after setting the estimated values of the 

parameters at baseline (Table 2), we investigated (1) how much the hypothetical obesogenic 

gene contributes to obesity prevalence and (2) how intervention programs influence future 

obesity prevalence. The obesity prevalence changes dynamically at first but reaches a 

specific value (which is determined by the set of parameters) as time goes by, and we 

observed this ‘converged prevalence’ or plateau to compare different scenarios. We used the 

best fit parameters as baseline.

(1) Genetic effect of a hypothetical obesogenic gene—In our model, the genetic 

effect is on the susceptibility to obesity due to social contagious risk, β, and that due to 

spontaneous weight gain risk, η, and both of the parameters differ by genotype. To 

investigate the population-level impact of those genetic effects, we observed simulations as 

the estimated values of βAA, ηAA are moved toward the estimated values of βAa(= βaa), 
ηAa(= η,aa).

(2) Impact of obesity intervention programs—We created the above scenario to 

elucidate the genetic effect of a hypothetical obesogenic gene by varying parameters for 

individuals who possessed the hypothetical obesogenic gene. However, given that 

interventions to control weight usually target the whole population or are customized for 

individuals with specific phenotypes or demographics (obese, nonobese, pregnant, race/

ethnicity, sex, etc) regardless of genotype, it may be more helpful to assess the impact of 

obesity intervention programs targeting the whole population or populations with a specific 

phenotype. In this study, we define “implementing intervention programs” as changing 

parameters. We assessed the impact of the following scenarios (a) impeding social contagion 

for whole population, (b) impeding spontaneous weight gain for whole population, and (c) 

managing gestational weight gain for pregnant women with obesity. (a) or (b) corresponds to 

reducing β or η of the whole population at the same time and (c) corresponds to reducing k2. 

The above analysis for the assessment of intervention programs was carried out only for the 

case of the US. We used the statistical computing software R 3.3.1 and its library “deSolve” 

for simulation.
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RESULTS

Interpretation of the numerical predictions

Before formalizing and quantifying model results, we emphasize that the model represents a 

‘first approximation’ that incorporated several key components which are considered to be 

potentially important drivers of the obesity epidemic. Because we may be missing other 

components and drivers of the obesity epidemic we cautions that the predictions be 

interpreted with the model assumptions which we revisit in the discussion section.

Estimated parameters and predicted obesity prevalence

The best-fit parameters are shown in Table 2. The coefficient for the transition rate due to 

social contagious risk (β) and the transition rate due to spontaneous weight gain risk (η) for 

a homozygote of the hypothetical obesogenic gene AA was estimated to be higher than for 

the other genotypes (aa and Aa), which means that homozygotes for the hypothetical 

obesogenic gene are more susceptible to obesity. The childhood obesity risk given that the 

mother is obese, k2, was estimated as 0.19 and 0.26 for the US and UK, respectively.

The obesity prevalence trajectory is shown in Figure 2A and 3A. At first, obesity prevalence 

continuously increases and reaches 41.03% (95% CI: [39.28, 44.31]) and 26.77% (95% CI: 

[25.62, 28.06]) at 2030 in the US and UK. As time evolves further obesity prevalence 

gradually reaches a stable state at 52.77% (95% CI: [48.69, 58.30]) and 26.84% (95% CI: 

[22.22, 32.62]) in the US and UK, respectively.. We can observe that the model tracks the 

obesity prevalence after the period used for estimation (open circles in Figure 2A and 3A). 

Interestingly, the prevalence converges earlier in the UK than in the US. Figure 2B and 3B 

show the genotype distribution trajectory, which appears nearly stable during the time period 

of simulation. Repeated numerical simulations confirmed that the initial obesity prevalence 

does not alter the converged obesity prevalence; the initial genotype distribution, however, 

substantially alters it.

Figure S4 (in the online supporting information) shows the percentage of new cases (or 

incidence) of obesity due to the social contagious risk factor among people who become 

obese at time t, p(t) in the US. The number of individuals who become obese at time t is 

βAAI(t) + ηAA)SAA + (βAaI(t) + ηAa)SAa + (βaaI(t) + ηaa)Saa and that because of the 

contagious risk is βAAI(t)SAA + βAaI(t)SAa + βaaI(t)Saa, which leads to 

p(t) =
βAAI(t)SAA + βAaI(t)SAa + βaaI(t)Saa

(βAAI(t) + ηAA)SAA + (βAaI(t) + ηAa)SAa + βaaI(t) + ηaa)Saa
.p(t) increases as the contagious 

risk, in other words, the population with obesity, increases. During the course of the 

epidemic, about 75% of the population become obese due to the contagious risk.

Genetic effect

To see the population-level impact of the hypothetical obesogenic gene, we simulated the 

model varying βAA from 0.184 (baseline) to 0.012, which is equal to the estimated value of 

βAa(βaa) (Figure 4A). When βAA was reduced to 0.012, the converged prevalence fell to 

40.35%. Similarly, we varied ηAA from the baseline (0.0046) to the level of ηAa (0.0027) 

and observed the converged obesity prevalence (Figure 4B). In this case, the prevalence 
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slightly decreased, but the impact was quite small compared with social contagious risk. The 

converged obesity prevalence reached 52.71% as ηAA reached the level of ηAa.

Impact of obesity intervention programs

To see the impact of different obesity intervention programs, we compared the converged 

obesity prevalence by relatively changing the parameters: the coefficient for the transition 

rate due to the social contagious weight gain risk (β), the transition rate due to the 

spontaneous weight gain risk (η), and phenotypic transmission risk (k2) in the US. Figure 5 

shows the obesity prevalence when we magnified (or reduced) each obesity risk for all 

genotypes simultaneously, where 1 (relative change) corresponds to the estimated level of 

each risk. We found that the relative change in the social contagious weight gain risk 

modifies the converged obesity prevalence more than changing the other risk. For example, 

if we reduce the transition rate due to socially contagious weight gain risk to the 50% level 

of the baseline value, the prevalence reaches 39.60% as time goes to infinity. Meanwhile, 

even if the transition rate due to spontaneous weight gain risk, η, is reduced to the 50% level 

of the baseline, it can reach 48.00%. The effect of the intervention against the phenotypic 

transmission risk, k2, is also quite limited (48.94%).

DISCUSSION

Our model describes the time evolution of obesity prevalence and the prevalence of a 

hypothetical obesogenic gene accounting for phenotypic and genetic heredity. When we 

combined empirical data with our proposed model, we found a difference in social 

contagious weight gain risk and spontaneous weight gain risk between homozygotes and 

others, which suggests that individuals with the homozygous genotype of the hypothetical 

obesogenic gene are more susceptible to obesity. The simulation suggested that the genetic 

factor is important because it modifies susceptibility to socially contagious weight gain risk. 

Furthermore, we found that reducing the social contagious risk factor had the biggest impact 

on obesity prevalence.

Although some of our results are readily applied we again emphasize that given both the 

reasonable and controversial (meaning we cannot judge reasonability at this stage) 

assumptions used to simplify the model as listed in Table S1, the results should not be 

interpreted without considering those assumptions. We have to be especially careful in 

interpreting the effect of “intervention” programs. While the model can be used to provide 

insight into hypothetical questions regarding, for example, the impact of policy decisions, 

these conclusions should be balanced against the model assumptions. Relaxing or changing 

these assumptions may lead to different conclusions.

Our model contains several strong assumptions. For example, we didn’t consider paternal 

effect. Despite this, maternal obesity may have a stronger influence on infant obesity33 for 

both biological and sociological reasons: the prenatal (intrauterine) environment is a risk 

factor for chronic disease including obesity, and the mother-child relationship in nutrition 

intake is stronger than between father and child34. Another assumption we did not consider 

is other social factors or age-dependency that can affect spontaneous weight gain risk. 

Moreover, all of the parameters were fixed over time. We made these stronger yet reasonable 
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assumptions to keep the model simple and tractable, given the trade-off between complexity 

and tractability of mathematical models. However, incorporating these additional factors into 

the mathematical model is a future aim of our work.

We are not the first to model the genetic effect of obesity. Hong et al. incorporated the role 

of genetic effects in a mathematical model and investigated these effects on obesity 

prevalence22. This study assumed that the mortality rate of obese individuals was higher 

than that of normal-weight individuals and that the obesity risk is the social contagious risk 

only, which led them to conclude that the population with the hypothetical obesogenic gene 

variant (AA or Aa) would continue to decrease in the long run (1000 years later) and that 

"the effect of environmental factors on the dynamics of obesity are negligible." Hence, this 

is a good demonstration that results can differ depending on the model assumptions and 

study purpose.

There remains a plausibility problem regarding modeling assumptions; however, the strength 

of our model is that we can correct the model based on different assumptions. For example, 

phenotypic transmission is not uniformly supported by all recent large-scale cohort 

studies35–37. Thus, readers using the model who do not think the assumption of phenotypic 

transmission is acceptable can realize this in the model by simply assuming k2 = 0. Also, if 

the assumption that spontaneous weight gain risk is time constant is not acceptable (we fixed 

the parameter over time because we don’t know how it changes in the future), the reader can 

use a time-dependent function for spontaneous weight gain risk. Furthermore, it is still not 

well known how the FTO gene works on social behavior. This is the reason we set different 

parameters for the social contagious risk of different genotypes (βaa = βAa ≠ βAA). If readers 

do not agree with this assumption, they can realize their assumption simply by setting βaa = 

βAa = βAA.

Despite these disadvantages mainly relevant to model assumptions, we note several 

advantages of our study. First, this is the first study proposing an obesity prevalence model 

that accounts for both phenotypic and genetic obesity heredity and social contagious risk in 

a single model. This enabled us to compare the impacts of different types of risk factors. 

Second, compared with conventional epidemiologic studies, we modeled the time course of 

the obesity epidemic, which enabled us to predict future obesity prevalence.

We have refined the mathematical framework incorporating the genetic heredity of obesity. 

The model assumptions in Table S1 are oversimplified and are in no way intended to 

undermine the complexity of the obesity prevalence, nor undermine prior studies and 

findings. Those findings are helpful for constructing the more valid obesity epidemic model, 

which will be used in predicting obesity prevalence and understanding the current and future 

epidemic in the US and worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is already known about this subject?

• Obesity is transmissible across generations through both genetic and 

nongenetic routes.

• The complex interactions between the risk factors for obesity makes it 

challenging to assess the influence of the different risk factors on obesity 

prevalence.

What does your study add?

• By combining our mathematical model and observational data, we were able 

to evaluate the contribution of genetic and nongenetic factors on obesity 

prevalence under varying assumptions.

• The model projected that obesity prevalence reaches 41.03% (95% CI: [39.28, 

44.31]) and 26.77% (25.62, 28.06) at 2030 in the United States and the United 

Kingdom, respectively.

• By using simulations with different scenarios, we were able to assess 

plausible genetic influences on obesity prevalence across generations.
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Figure 1. Schematic illustration of the obesity epidemic model
The model describes the time-variant dynamics of the population with and without obesity 

differentiated by genotype. Sij, Iij are the proportion of the population without and with 

obesity with genotype ij among the total population. The rate of transition from classes 

without obesity to classes with obesity is dependent on genotype.
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Figure 2. Obesity prevalence and genotype distribution from 1988 to 2030 in the US
(A) Obesity prevalence. The dots show the obesity prevalence from NHANES, and the line 

is the fitted curve realized by the parameters estimated by the shooting method21. The grey 

area shows the 95% confidence interval of the prediction. The closed circles show the data 

used for the parameter estimation (1988–2007) and open circles (2009–2014) are plotted for 

the purpose of model validation. (B) Each line shows the proportion of the genotypes aa, Aa, 

and AA among the total population.
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Figure 3. Obesity prevalence and genotype distribution from 1991 to 2030 in the UK
Obesity prevalence. The dots show the obesity prevalence from the Health Survey for 

England, and the line is the fitted curve realized by the parameters estimated by the shooting 

method21. The grey area shows the 95% confidence interval of the prediction. The closed 

circles show the data used for the parameter estimation (1993–2010) and open circles 

(2011– 2015) are plotted for the purpose of model validation.
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Figure 4. Simulated obesity prevalence varying the transition rate due to social contagious 
weight gain risk and the rate due to spontaneous weight gain risk for homozygotes of a 
hypothetical obesogenic gene
Each line corresponds to the time evolution of the obesity prevalence varying (A) the 

coefficient for the transition rate due to social contagious weight gain risk for homozygotes 

of the hypothetical obesogenic gene from the estimated value (0.184) to the level of that for 

the other genotype (0.012) and (B) the transition rate due to spontaneous weight gain risk for 

homozygotes of the hypothetical obesogenic gene from the estimated value (0.0046) to the 

level of that for the other genotype (0.0027).

Ejima et al. Page 15

Obesity (Silver Spring). Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Converged obesity prevalence varying controllable parameters
Each line corresponds to the converged obesity prevalence relatively magnifying (or 

reducing) coefficient for the transition rate due to social contagious weight gain risk (β), the 

transition rate due to spontaneous weight gain risk (η), and phenotypic transmission risk (k2) 

from the estimated values, respectively.
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Table 1

Time-dependent variables in the obesity epidemic model

Variable Description

Saa Proportion of population without obesity with no risk allele (genotype: aa)

SAa Proportion of population without obesity with one risk allele (genotype: Aa)

SAA Proportion of population without obesity with two risk alleles (genotype: AA)

Iaa Proportion of population with obesity with no risk allele (genotype: aa)

IAa Proportion of population with obesity with one risk allele (genotype: Aa)

IAA Proportion of population with obesity with two risk alleles (genotype: AA)

Naa Proportion of population with no risk alleles (genotype: aa)

NAa Proportion of population with one risk allele (genotype: Aa)

NAA Proportion of population with two risk alleles (genotype: AA)

ca Frequency of allele a among total population

cA Frequency of allele A among total population
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