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On the precarious path of reverse neuro-engineering
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In this perspective we provide an example for the limits of reverse engineering in neuroscience. 
We demonstrate that application of reverse engineering to the study of the design principle 
of a functional neuro-system with a known mechanism, may result in a perfectly valid but 
wrong induction of the system’s design principle. If in the very simple setup we bring here 
(static environment, primitive task and practically unlimited access to every piece of relevant 
information), it is diffi cult to induce a design principle, what are our chances of exposing biological 
design principles when more realistic conditions are examined? Implications to the way we 
do Biology are discussed.
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experimental conditions. These ideas have been cast in modern 
form within the mathematical theory of learning, which provides, 
under well defi ned settings, necessary and suffi cient conditions for 
the success of the inductive process. A clear result of this theory 
is that based on any fi nite set of observations, it is impossible to 
generalize since many possible hypotheses may explain the data 
equally well. More interestingly, it can be shown that generaliza-
tion may be impossible even after observing an infi nite number 
of instances (Vapnik, 1998). The point is that even if we know 
in advance that the instances were generated according to some 
rule within a class of possible rules, there may be no way for a 
learner to infer the rule, if the class of possible rules is too large. 
The main approach taken within Physics in order to improve the 
prospects of constructing a good theory is to use some form of 
Occam’s razor principle, suggesting that among several theories 
consistent with a set of observations, the “simplest” one should be 
selected. However, there is, unfortunately, no unequivocal notion 
of simplicity to be guided by. More fundamentally, the justifi ca-
tion of this principle is itself subject to the same criticism raised 
by Hume. Finally, when it comes to biology, there seems to be no 
a-priori argument which suggests why “simple” solutions should 
be better.

In this commentary we provide an example for the limits of 
reverse engineering in neuroscience. We demonstrate that appli-
cation of reverse engineering to the study of representation in 
a functional neuro-system with known design principles, may 
result in a perfectly valid but wrong induction of the system’s 
design principle. Of course, the commentary is not aimed at re-
 discovering the limits of inductive reasoning; rather, it offers an 
exercise in modesty. Probably some neuroscientists feel that they 
do not need such exercises; this commentary is intended for the 
rest of us.

We use a biological toy model, a realized Braitenberg Vehicle II 
(Braitenberg, 1984). This is a continuously moving Lego robot that 
is equipped with two ultrasonic eyes that transmit their input to 
a large scale network of real, cultured biological cortical neurons 
(for review see Marom and Shahaf, 2002). The task of the agent 
(the Lego apparatus together with the biological network) is to 
avoid running into obstacles in a static environment. Based on the 

Reverse engineering is a concept in software and hardware indus-
try, denoting the process of detailed examination of a functional 
system, in the face of limited a-priori knowledge of its design 
principles. While in the above sense we (biologists) all do reverse 
engineering, there are aspects that signifi cantly complicate matters 
in that context: Unlike reverse engineering of man-made appara-
tuses, in biological reverse engineering there is no prior knowl-
edge of the relevant level of organization. Furthermore, biological 
systems are characterized by deep degeneracy; functional objects 
may be mapped to many different processes within a given level 
of organization as well as at many different levels.

Perhaps the most vivid example of reverse engineering in biol-
ogy is that of neuroscience, the Holy Grail of which is to map the 
path from stimuli to action through the brain. In neuroscience, the 
above mentioned complications translate to diffi culties in pointing 
at a relevant level of organization: To some of us it is the single 
neuron, single synapse or even a single membrane protein; to oth-
ers it is large populations of neurons or global concentrations of 
chemicals. Furthermore, it has been repeatedly demonstrated that 
behavior (the function to be explained in the neurosciences) may 
be mapped to many different brain processes within and between 
many different levels of organization. These complications render 
the inherent diffi culty of reverse engineering – that is, the unde-
terminability of inductive reasoning – a strong constraint on the 
entire endeavor of neuroscience; a constraint that we all, too often, 
tend to ignore.

Inductive reasoning has traditionally been defi ned as the 
process of inferring a general law from the observations of par-
ticular instances. David Hume was probably the fi rst modern 
thinker to raise doubts about induction as a process of gaining 
knowledge about nature; his main argument revolved around the 
idea that any inductive process must make certain assumptions 
(e.g. uniformity) in order to apply. As he pointed out, these very 
assumptions cannot be justifi ed on any “rational” grounds. These 
diffi culties led Popper to suggest the principle of falsifi cation as a 
guideline to the construction of scientifi c theories. In this sense, 
a scientist constructs a theory which must be falsifi able by some 
specifi c experiment. According to this idea, theories are never 
proved, but can be refuted by subjecting them to appropriate 
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electrical responses of neurons to the input from the  ultrasonic 
eyes, a decision is taken (by a well-defi ned algorithm) as to which 
direction should the agent be driven (see caption of Figure 1). 
This algorithm considers only the delay from stimulus time to 
fi rst spike that is emitted by broadly-tuned neurons (i.e. neurons 
that responded to input from the right as well as the left ultrasonic 
eyes). The responding neurons are ranked based on the time to 
fi rst spike, and the resulting rank order represents the input source. 
The algorithm, which is based on a reported analysis of response 
dynamics (for detailed explanation see Shahaf et al., 2008), per-
forms fl awlessly in spatial input classifi cation tasks. This is demon-
strated in a movie fi le (Supportive Information Video S1 in Shahaf 
et al., 2008) that shows the behaviour of the agent over 1500 s; 
Figure 1 depicts the trajectory of the system over that period of 
time. The agent performs perfectly in the sense that it succeeds 
in its avoidance task. Importantly, no learning is involved; the 
representations of stimuli from the ultrasonic eyes are fi xed by 
the rank-order.

To prove our point about the precariousness of reverse engineer-
ing in biology, let us test the validity of an interpretation that is 
 “orthogonal” to the actual design principle (algorithm) of the above 
toy. The actual design principle of representation, as explained above, 
relies on the rank order of fi rst spikes in a subset of identifi ed broadly-
tuned neurons. Now, suppose that a neurophysiologist wishes to test 
an hypothesis, according to which representation of the visual fi eld 

is embedded in a population response rate. This idea of population 
rate differs from the actual design principle in several key aspects: 
Neuronal identities are ignored and temporal relations between 
spikes are ignored; only the temporal profi le of total spike counts 
throughout the network, following input, is considered. Note that 
thus defi ned, there is practically no relation between this popula-
tion-based representation scheme and the original (rank-order) 
scheme that drives the agent1. Figure 2 shows the process of data 
reduction.

There are several ways to test an hypothesis about the validity 
of a given representation scheme in neurophysiology. One very 
effi cient and bias-free way is to use state-of-the-art non-linear 

FIGURE 1 | Trajectory of the agent’s path, over 1500 s, in an obstacle 

avoidance task. Obstacles and walls are depicted in gray. Inputs from the 
two ultrasonic eyes of a Lego Mindstorms vehicle are sampled at 0.2 Hz and 
translated into stimulation of a large random network of cortical neurons at 
two different sites. The side corresponding to the nearest visual object 
(relative to the vehicle’s longitudinal axis) is classifi ed using an Edit-distance 
metric based on the recruitment order of 8 neurons, similar to procedures 
shown in Figure 6 of Shahaf et al. (2008). Based on the classifi ed activity, a 
command is sent to the appropriate motor attached to one of the wheels. See 
Video S1 in Shahaf et al. (2008) for technical details.

FIGURE 2 | The upper panel shows the spikes (blue dots) emitted by ∼60 

neurons in response to one stimulus to the network. The stimulus was 
triggered by the right eye of the agent. Note that in this case there were no 
spontaneous spikes in the network immediately preceding the stimulus, 
although this need not be generally true. Black circles depict the fi rst spikes 
(of each neuron) following the stimulus. The actual design principle is based on 
the rank-order of these fi rst spikes, resulting in a unique “time-less” neuronal 
recruitment order; the recruitment order in the top panel example is 24, 17, 26, 
25, 48, 1, 13,…. The bottom panel shows the population count histogram 
(“network spike”).

1In what sense we think of population rate code and rank order code as being “or-
thogonal” to each other? We start by realizing that the raw data that comes out of 
the recording system includes an ordered list of pairs of numbers: {id, t}, where id is 
the label of the neuron and t is the time at which that neuron evoked a spike. Note 
that there is no a-priori requirement on entailment between id and t. Thus, for in-
stance, independent Poisson processes may generate such a list of pairs of numbers. 
The rank order code is constructed from the fi rst term in each pair, the id. The 
population response rate code is constructed using only the second number of each 
pair, the time t. They are “uninformative” about each other; in that sense they are 
completely orthogonal. Having said that, complete orthogonality is not the main 
issue, nor a requirement for the argument presented in this paper.
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 classifi ers. Indeed, our dedicated neurophysiologist uses the non-
linear version of Support Vector Machine approach (Vapnik, 
1998): Data is transformed to a space where linear classifi cation 
is performed. To avoid over-fi tting, only a fraction of the data is 
used for the construction of the classifi er, and the effi cacy of cat-
egorization by population response rate is evaluated by testing the 
classifi er on the complementary (unseen) set of the data. The blue 
point of Figure 3, denoted (100;5), shows the effi cacy of catego-
rization using vectors of population spike rate constructed over a 
100 ms time window at 5 ms bin size; categorization is very good 
(accuracy 0.9), for all practical purposes. In other words, popula-
tion response rate provides an accurate input categorization. So, 
concludes the neurophysiologist, population response rate is (or, 
“may be,” as a less cavalier physiologists would say) the scheme 
of representation, the “neural code.” But it is wrong; we know it 
is wrong because we have designed the machine otherwise. Of 
course, one might say that the neurophysiologist is too hasty in 
jumping to conclusions; but honestly, how many of us (physiolo-
gists) try to fi nd an alternative design principle to one at hand 
that is 80–90% accurate in predicting the results? Moreover, if in 
the very simple neural setup examined here (static environment, 
primitive task and practically unlimited access to every piece of 
relevant information), it is diffi cult to induce a design principle, 
what are our chances of exposing biological design principles when 
more realistic conditions are examined?

An experienced biologists will immediately respond to the above 
heretical thought, coming up with two arguments: (i) “Your claim 
is based on a single, unique and quite esoteric setup;” and, (ii) 

“furthermore, do you have an alternative? Otherwise,” will say the 
experienced biologist “your claims are destructive!”

Well, to the fi rst argument we answer that our example is strong 
enough to refute (at least) the naive reductionistic version of reverse 
engineering in biology, which is predominated by indeterminacy of 
data to theory. Under these circumstances, a more liberal approach 
that allows for coexistence of different models seems appropriate 
(e.g. Johnson and Omland, 2004). Of course, in other domains of 
knowledge (e.g. machine learning and statistical inference) this 
approach is well-established.

To the second argument we say: it is not in our (scientists) 
mandate to fi nd reasons to do wrong things when the right things 
to do are unclear. Reverse engineering is a pragmatical process; if 
it succeeds in extracting a predictor that works, irrespective of its 
relation to the actual design principle, the process is considered 
succesful. However, the business of Biology as a basic science is to 
uncover the actual design principles; this is where the naive version 
of reverse engineering fails.

But there might be an even stronger lesson here: maybe the 
degeneracy that is inherent to biological systems should not be 
considered as an obstacle to our capacity to decipher unique 
machineries. Rather, deep degeneracy at all levels is an integral 
part of biology, where machineries are developed through evolu-
tion to cope with a multiplicity of functions, and are therefore not 
necessarily optimized to the problem that we choose to reverse 
engineer. Viewed in this way, our limitation in reverse engineer-
ing a biological system might refl ect our misconception of what 
a design principle in biology is. There are good reasons to believe 
that this conclusion is generally applicable to reverse engineering 
in a wide range of biological systems.

One reviewer of this position paper (E. Ahissar) proposed that 
perhaps what we named “deep redundancy,” where different mod-
els predict the agent’s behavior to a good enough degree, should be 
thought of as refl ecting something that is akin to relations between 
theories in (for instance) physics; some are more universal com-
pared to others (e.g. Einstein’s vs. Newtons). Therefore, an experi-
ment can be designed such that the less universal theory is ruled 
out. Clearly, in the example we provided here, where we know that 
there is a single design principle, such an approach might reveal 
that principle, even if it “beats” other candidate principles only 
marginally. Note, however, that one of our key messages is that in 
the possible absence of such principles, pushing the experiment 
to various limits may not necessarily lead to the selection of one 
universal (“true”) model; in other words, different models may 
“win” in different extreme experimental conditions. Of course, 
we do not intend to claim that there are no laws underlying the 
dynamics of the system, laws that may (and indeed should) be 
discovered; rather, we raise the possibility that there are no design 
principles in a sense similar to the absence of design principles in 
evolution. In that respect our criticism is not merely on methodol-
ogy, but on belief systems.
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FIGURE 3 | Accuracy of input classifi cation (i.e. classifi cation of the eye 

that triggered the network stimulation). A classifi er (Gaussian kernel) 
was constructed using network spike profi les of the kind shown in the 
bottom panel of Figure 2. Each blue point is the average classifi cation 
accuracy obtained by 30 independent executions of the classifi cation 
procedure (80% training set); error bars depict standard deviation. 
Parameters of the network spike histograms are depicted inside the plot: 
(x; y) is a network spike histogram computed over x ms, starting 10 ms 
following the stimulus, using y ms bin size. Analyses of (100;25) and (10;5) 
are shown, indicating that the result obtained by analyzing (100;5) is by and 
large valid under more restricted conditions. Gray points depict the 
classifi cation of same data set using Euclidean distance based cluster 
analysis. All computations were carried out within Mathematica (Wolfram 
Research) environment.
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