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ABSTRACT

Large-scale cancer genome sequencing has enabled
the catalogs of somatic mutations; however, the mu-
tational impact on intrinsically disordered protein
regions (IDRs) has not been systematically investi-
gated to date. Here, we comprehensively character-
ized the mutational landscapes of IDRs and found
that IDRs have higher mutation frequencies across
diverse cancers. We thus developed a computational
method, ROI-Driver, to identify putative driver genes
enriching IDR and domain hotspots in cancer. Nu-
merous well-known cancer-related oncogenes or tu-
mor suppressors that play important roles in can-
cer signaling regulation, development and immune
response were identified at a higher resolution. In
particular, the incorporation of IDR structures helps
in the identification of novel potential driver genes
that play central roles in human protein–protein in-
teraction networks. Interestingly, we found that the
putative driver genes with IDR hotspots were sig-
nificantly enriched with predicted phase separation
propensities, suggesting that IDR mutations disrupt
phase separation in key cellular pathways. We also
identified an appreciable number of clinically rele-
vant genes enriching IDR mutational hotspots that
exhibited differential expression patterns and are as-
sociated with cancer patient survival. In summary,

combinations of mutational effects on IDRs signifi-
cantly increase the sensitivity of driver detection and
are likely to open new therapeutic avenues for vari-
ous cancers.

INTRODUCTION

Large-scale cancer genome sequencing studies have gener-
ated comprehensive catalogs of mutations for various types
of cancer (1,2). However, only a handful of ‘driver’ muta-
tions are considered to provide selective advantages to can-
cer cells, and the majority of mutations are neutral ‘pas-
sengers’ (3). Distinguishing driver mutations from passen-
ger mutations is thus critical to elucidating the underlying
mechanism of cancer development and progression.

A majority of cancer-driver detection methods identify
significantly mutated genes based on the recurrence of mu-
tations (4,5). However, the presence of rare somatic mu-
tations and limited cohort sizes usually make frequency-
based driver identification very challenging (6). In addi-
tion, emerging computational algorithms attempt to predict
pathogenic mutations based on the effects of mutations on
the stability of protein structure (7). Typically, changes in
folding free energy are employed in quantifying the mag-
nitude of a mutation’s effect on protein structure stability
(8). Most of these methods [i.e. MuStab (9), I-Mutant (10)
and PoPMuSiC (11)] incorporate different physicochemi-
cal properties and structural preferences of proteins and are
trained on differences in folding free energy caused by vari-
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ous mutations. In addition, several methods employ 3D pro-
tein structures to identify mutational hotspots in cancer-
related genes (12–14). These methods have suggested that
including protein structures significantly increases the sen-
sitivity of driver detection in cancer.

Moreover, proteins usually exhibit a continuum of struc-
tures and fully folded proteins only represent ∼37% of the
human proteome (15). The majority of human proteins con-
tain both folded protein domains and intrinsically disor-
dered regions (IDRs) (16). It has been established that un-
structured IDRs in proteins are equally crucial elements for
protein function (17,18). However, current research focuses
on mutations in folded domain regions with little consid-
eration of mutations in IDRs. Recent studies have demon-
strated that IDRs are enriched in disease-associated pro-
teins (19) and ∼25% of disease mutations are located within
IDRs (20). These observations raise the important question
of how to better predict the pathogenic mutations by incor-
porating IDRs in cancer.

To address these questions, we hereby propose a compu-
tational method to accurately predict potential driver genes
or mutations in IDRs across various cancer types. We found
that mutations are prevalent in IDRs in cancer, and genes
enriched with mutations in IDRs are associated with can-
cer development. Functional analysis revealed that the po-
tential driver genes play important roles in cancer signaling
pathways. In particular, genes enriched with IDR mutations
are associated with phase separation, a physical process of-
ten mediated by IDRs. Ultimately, considering the impact
of DNA mutations on IDRs improves our understanding
of complex genetic diseases.

MATERIALS AND METHODS

Somatic mutations among various cancers

Genome-wide somatic mutations over 10 000 tumors across
33 different cancer types were obtained from The Can-
cer Genome Atlas (TCGA) (Supplementary Table S1) (21).
The mutational file (MC3) generated by the MC3 working
group was used in this study. Seven mutation-calling algo-
rithms with scoring and artifact filtering were utilized to ob-
tain mutations (22). In this study, we only analyzed single-
nucleotide polymorphism (SNP) missense mutations. The
mutation frequency of genes was calculated as the propor-
tion of samples with mutations in a specific cancer.

Protein sequences

The sequences of all human proteins were obtained
from GENCODE (23) (https://www.gencodegenes.org/).
For genes with multiple protein sequences, we selected the
longest sequence for further analysis.

Identification of IDRs and domains in proteins

All protein domains were assigned using Pfam HMM mod-
els based on HMMER (http://hmmer.org/). The protein se-
quences from GENCODE were subjected to this tool for
predicting domains in each protein. The remaining signifi-
cant matches (those with E-values <0.0001) were subjected

to further analysis (24). In total, 57 599 domains in 15 201
proteins were identified.

To predict the IDRs in a protein, we used IUPred2A that
allows energy estimation-based predictions for ordered and
disordered residues (25). To avoid confusion between do-
mains and IDRs, we excluded regions that were predicted
as both IDRs and domains. Finally, we identified 229 313
IDRs in 12 541 proteins for further analysis.

ROI-Driver: prioritization of mutated IDR and domain
hotspots

We propose a computational method, ROI-Driver, for the
prioritization of regions of interest (ROIs) that are enriched
with cancer mutations. A protein region with significant en-
richment for mutations across individuals is defined as a
hotspot. For each ROI in genes, we assume that the ob-
served number of mutations for an ROI follows a binomial
distribution (26). The binomial is (N, pri), in which N is the
total number of mutations observed in one gene and pri is
the expected mutation rate for the ROI. The null hypothe-
sis is that the region is not recurrently mutated. We defined
LROI as the length of the ROI, and Lg is the length of the
gene. For each ROI, we calculated the P-value, which is the
probability of observing >=k mutations in the ROI out of
N total number of mutations observed in the gene:

P (X ≥ k) = 1 − P(X < k)

= 1 −
k−1∑

x = 0

(
N
x

)
px

ri(1 − pri)
N−x,

where pri = LROI/Lg. In addition, we calculated the enrich-
ment ratio for each ROI as follows:

EROI = k
N × LROI/Lg

.

The P-values were adjusted and ROIs with Padjusted <
0.05, P < 0.01 and E > 2 were identified as significant ROIs.
Only ROIs with >3 mutations were analyzed in this study.

Enrichment analysis of cancer-related genes

To investigate whether the prioritized genes are enriched
in cancer-related genes, we first downloaded known cancer
genes from the COSMIC Cancer Gene Census (CGC) (27)
and CancerMine (28). Approximately 705 and 4179 genes
were obtained from the two databases, respectively. The
number of overlapping genes was calculated, and the sig-
nificance of the overlap was evaluated by random tests. We
randomly selected the same number of genes as the priori-
tized ROI genes 100 000 times. The number of overlapping
genes was calculated, and P-values were defined as the num-
ber of random conditions with a higher number of overlap-
ping genes than observed. Moreover, the observed/expected
(O/E) ratio was calculated as follows:

O/E = n
(M × K) /N

,

where n is the number of overlapping genes, M and K are
the number of prioritized genes and cancer-related genes,

https://www.gencodegenes.org/
http://hmmer.org/
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respectively, and N is the total number of protein-coding
genes. The codes of ROI-Driver are available at https://
github.com/ComputationalEpigeneticsLab/ROI-Driver.

Phase separation-related proteins

We used PScore to predict the phase separation-related pro-
teins (29). PScore returns a score reflecting the Z-score ‘dis-
tance’ from values of folded protein sequences, with val-
ues ≥4 providing a strong prediction for phase separa-
tion (15,30). Proteins with Z-score ≥4 were deemed phase
separation-related proteins. Next, Fisher’s exact test was
used to evaluate whether the prioritized ROI genes were en-
riched with phase separation-related proteins.

Tissue-enriched genes

Tissue-enriched (TE) genes were collected from one re-
cent study (31). Briefly, four widely available transcriptome
datasets were collected, including the Genotype-Tissue Ex-
pression Consortium, Human BodyMap 2.0, Human Pro-
tein Atlas and FANTOM5 project. To identify TE genes
in each resource, we identified genes that have at least 5-
fold higher expression levels in one tissue compared with all
other tissues. TE genes in our analysis were refined to those
identified in the same tissue from at least two resources.

Functional analysis of potential cancer drivers

To identify the functions of prioritized genes with ROI mu-
tations, we used clusterProfiler to perform function enrich-
ment analysis (32). Gene Ontology (GO) biological pro-
cesses were considered in our analysis. We considered GO
terms with genes ranging from 15 to 500. The biological
processes with P < 0.01 and Padjusted < 0.05 were consid-
ered significant. Next, GO terms were clustered based on
the simplifyEnrichment R package (33). Similarities among
GO terms were calculated by the ‘GO similarity’ function,
and the cluster results were visualized by the ‘simplifyGO’
function.

Gene set enrichment analysis

To identify the perturbed pathways disrupted by mutations
in IDRs, gene set enrichment analysis (GSEA) was per-
formed (34). First, patients were divided into two groups
based on mutations within versus outside IDRs. All protein-
coding genes were ranked based on S scores, which were
calculated as follows:

S (i ) = − log (p) × sign (log (fold change (i ))) ,

where p is the Wilcoxon’s rank-sum P-value for compar-
ing the expression difference between two groups and fold
change is the average expression of the IDR group divided
by the average expression within versus outside IDR group.
Genes were subjected to pre-ranked GSEA, and cancer hall-
mark pathways from MSigDB were considered (35).

Topological features of genes in the human protein–protein
interaction network

The topological features of genes in the human protein–
protein interaction (PPI) network were calculated based

on the igraph package (http://igraph.org/). Here, human
PPIs were obtained from HuRI (36). The human PPIs
include 52 068 interactions among 8245 proteins. More-
over, we downloaded the PPIs from HumanNet V3, which
encompasses 99.8% of human protein-coding genes (37).
Three-tier models were used in our analysis, including
HumanNet-PI (633 460 interactions among 17 849 genes),
HumanNet-FN (977 495 interactions among 18 459 genes)
and HumanNet-XC (1 125 494 interactions among 18 462
genes). Three types of topological features, including de-
gree, betweenness and closeness, of each protein were cal-
culated. We next compared the topological features between
putative drivers and other proteins by Wilcoxon’s rank-sum
test.

Differential expression of genes

Gene expression profiles of 33 cancer types were down-
loaded from the TCGA project (38). Only 18 cancer types
with >= 5 normal samples were analyzed in this study.
Genes that were not expressed in >30% of samples were ex-
cluded. We next used Wilcoxon’s rank-sum test to evaluate
the expression differences between cancer and normal sam-
ples. Genes with fold changes >1 and Padjusted ≤ 0.05 were
upregulated and fold changes <1 and Padjusted ≤ 0.05 were
downregulated. Moreover, we also used the same method to
evaluate whether cancer patients with ROI mutations versus
other patients showed differential gene expression. Genes
that were with ≥3 ROI mutations in patients were consid-
ered in this analysis.

Clinical association analysis of genes in cancer

To evaluate the association between gene expression and
patient survival, all patients were divided into two groups
based on the expression of genes of interest. The log-rank
test was used to evaluate the difference in survival rate
between the two groups. Moreover, we also divided pa-
tients into three groups, including patients with mutations
in ROI in a specific gene, patients with gene mutations
outside the ROI and patients without mutations in this
gene.

RESULTS

IDRs are prevalently mutated across cancer genomes

Proteins exhibit a continuum of structures ranging from
fully folded to entirely intrinsically disordered proteins. We
first predicted IDRs and domains in proteins and found that
∼63% of the proteins included at least one IDR structure
(Figure 1A). Moreover, the majority (∼75%) of proteins
contain at least one domain. Many of these proteins con-
tain both IDRs and domains, including several oncogenes
(i.e. ASH1L, CTNNB1 and FNDC1) and tumor suppres-
sors (i.e. TP53, NOTCH2 and EGFR). Next, we calculated
the length of the IDRs and domains in each protein. We
found that the lengths of domains were significantly longer
than IDRs (Figure 1B). The majority of IDRs had lengths
ranging from 10 to 50 amino acids.

Lines of evidence have demonstrated that proteins con-
tain IDRs that enrich in disease-associated proteins (19,39).

https://github.com/ComputationalEpigeneticsLab/ROI-Driver
http://igraph.org/
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Figure 1. Prevalent mutations in IDRs across cancer types. (A) The proportion of proteins with IDR and domain structures. (B) The cumulative distribution
of the length of IDRs and domains. Inset shows the enlarged region of length <50 amino acids. (C) Proportion of mutations located in IDRs or domains
across cancer types. (D) Frequency of mutations located within versus outside IDRs, and mutations located within versus outside domains. ***P < 0.001,
Wilcoxon’s rank-sum test.

We next mapped all mutations across 33 cancer types
to proteins and found that ∼30–40% of mutations oc-
curred within either IDRs or domains (Figure 1C). These
observations raise important questions of whether these
mutations are correlated to cancer development. Tradi-
tionally, candidate driver genes or mutations have been
identified by a frequency-based approach, where genes
with many recurrent mutations are likely to be asso-
ciated with cancer (40). We thus calculated the muta-
tion frequency in pan-cancer and found that the muta-
tions located within IDRs or domains had significantly
higher frequencies than other mutations (Figure 1D, P-
values <0.001, Wilcoxon’s rank-sum tests). Moreover, we
observed similar results in individual cancer types (Sup-
plementary Figure S1A and B). These results suggest that
the mutations can impact IDRs and domains across cancer
types.

Identification of potential drivers with IDR hotspots

Numerous computational methods have attempted to pre-
dict pathogenic mutations based on the characteristics of
folded protein regions. However, studies on the impact of
mutations with IDRs are limited. We thus developed a com-
putational method, ROI-Driver, to predict the pathogenic
mutations in cancer based on the enrichment of mutations
in ROIs. This method mainly contains four steps (Figure
2A) that integrate protein structures with genome-wide mu-
tations. Here, we only considered the SNP missense muta-
tions in 33 cancer types. First, IDRs and domains were pre-
dicted based on protein sequences. Enrichment and signif-
icance were evaluated by considering the number of muta-
tions in the ROIs and the relative length of ROIs to the en-
tire gene. IDRs or domains in genes with Padjusted < 0.05,
P < 0.01 and E > 2 were identified as significant ROIs, i.e.
hotspots in cancer.
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Figure 2. Putative driver gene identification in cancer. (A) Workflow of ROI-Driver for identifying the putative driver regions, IDRs or domains. Four
main steps were included by integrating mutations with protein structures. (B) Circos plot showing the putative driver genes and mutations across cancer
types. Bar plot showing the number of driver genes that overlapped with COSMIC genes. Dark colors indicate IDRs and light colors represent domains.
Stars indicate that the number of genes enriched with mutations within domains is higher than that in IDRs. The order of cancers from inner to outer is
as follows: BRCA, UVM, HNSC, SARC, LGG, GBM, THYM, LAML, DLBC, THCA, PCPG, ACC, UCS, UCEC, OV, CESC, PAAD, LIHC, CHOL,
STAD, READ, ESCA, COAD, TGCT, PRAD, KIRP, KIRC, KICH, BLCA, MESO, LUSC and LUAD.

We next applied our workflow to identify significantly
mutated IDR or domain hotspots for each cancer cohort.
In total, we identified 1–919 IDRs and 1–423 domains en-
riched by missense mutations (Supplementary Figure S2A
and B, and Supplementary Tables S2 and S3). These IDRs
and domains involved 1–818 and 1–375 genes in 33 can-
cer types, respectively (Supplementary Figure S2C and D).
Next, we particularly focused on cancer-related genes from
CGC (27) and CancerMine (28). We found that 1–63 genes
in CGC were prioritized by mutation impact on IDRs
across cancer types (Figure 2B). Moreover, several genes
were enriched by mutations in both IDRs and domains,
such as ERBB4, NOTCH2, FLT4, EP300 and BRCA2.
Similarly, we obtained 519 genes that were enriched with
mutations in IDRs and 662 genes enriched with mutations
in domains, as well as 96 genes enriched with mutations in
both IDRs and domains in CancerMine (Supplementary
Figure S3). Together, we have identified prevalent cancer-
related mutations in IDRs and utilize these in identifying
the potential driver genes.

Known cancer genes harbor IDR hotspots

We next compared our set of predicted driver genes to the
set of curated genes in COSMIC and CancerMine. Over-
all, our workflow identified many additional genes (1653
genes) with IDR hotspots compared with COSMIC (Fig-
ure 3A). In total, 133 genes prioritized in our method were
verified in COSMIC, including several well-known onco-
genes and tumor suppressors (Table 1). We next randomly

selected the same number of genes as our workflow pri-
oritized. We found that the genes identified in our work-
flow significantly overlapped with COSMIC (Figure 3A,
O/E = 2.14 and P-value <1.0E−6). We obtained similar
results in the CancerMine dataset (Supplementary Figure
S4). As previous studies involved predicting drivers based
on mutation-enriched domains, we compared genes enrich-
ing IDR hotspots with those enriching domain hotspots.
We found that 263 genes were prioritized by both IDR and
domain hotspots, and 1523 genes were only identified by
IDR mutation enrichment (Figure 3B). Among these genes,
108 genes overlapped with driver genes in COSMIC, which
was significantly higher than random conditions (Figure
3B, O/E = 2.04 and P-value <1.0E−6).

In addition, we analyzed the expression data of several
prioritized genes to obtain further evidence corroborating
the biological validity of candidate driver genes. For exam-
ple, we prioritized an IDR of CTNNB1 in the liver hepato-
cellular carcinoma (LIHC). There were 19 missense muta-
tions located within IDRs, which is ∼24.25-fold to that of
the whole gene (Figure 3C, P < 1.0E−6). We found that
patients with IDR mutations showed significantly higher
expression than those with mutations outside IDRs (Fig-
ure 3D, P = 0.0017). Lines of evidence have demonstrated
that mutations in CTNNB1 can activate the Wnt signaling
pathway and appear to be major events in hepatocellular
carcinoma (41–43). Indeed, we performed GSEA based on
differential expression patterns between the two groups. We
found that genes showing higher expression in patients with
IDR mutations were significantly enriched in cancer-related
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Figure 3. Putative driver genes overlapping with known cancer-related genes. (A) Venn plot showing the overlap between IDR hotspots and COSMIC
genes. The bar plot at the bottom shows the frequency of the number of overlapping genes in random conditions. (B) Venn diagram showing the overlap of
IDR hotspots and domain hotspots. The bottom Venn diagram shows the overlap between only IDR hotspots and COSMIC genes. The bar plot shows the
distribution in random conditions. (C) Lollipop plot showing mutations in the CTNNB1 gene. IDRs and domains are shown at the bottom. (D) Boxplot
showing the expression of CTNNB1 in patients with mutations within versus outside IDRs. (E, F) GSEA plots showing the activation of the Wnt signaling
pathway and repression of interferon-alpha response. (G) Lollipop plot showing the mutations in the NCAM2 gene. IDRs and domains are shown at the
bottom. (H) Boxplot showing the expression of NCAM2 in patients with mutations within versus outside IDRs. (I, J) GSEA plots showing the repression
of interferon-alpha response and IL2–STAT5 signaling pathway in patients with NCAM2 IDR mutations.

hallmark pathways. In particular, the canonical Wnt signal-
ing pathway was activated (Figure 3E, FDR = 0.001), while
the interferon-alpha response pathway was repressed (Fig-
ure 3F, FDR = 0.009) in patients with CTNNB1 IDR mu-
tations.

Another example is the NCAM2 gene that is enriched
with IDR mutations in lung squamous cell carcinoma
(LUSC). We identified six mutations that mapped to an
IDR in LUSC (Figure 3G), which showed 6-fold enrich-
ment relative to the whole gene (P < 1.0E−6). Expres-
sion analysis revealed that patients with mutations in IDRs
exhibited significantly higher expression of NCAM2 (Fig-
ure 3H, P = 0.042). NCAM2 has been identified as a tar-
get molecule in several types of cancers (44,45). Functional
analysis indicated that mutation in the NCAM2 IDR is as-
sociated with repressed immune-related pathways, such as
interferon-alpha response (Figure 3I, FDR < 0.001) and
IL2–STAT5 signaling pathway (Figure 3J, FDR = 0.006).

Moreover, we also identified several genes with IDR
hotspots, which play important roles in cancer, such as
FNDC1 in lung adenocarcinoma (Supplementary Figure
S5A and B) and TANC2 in uterine corpus endometrial car-
cinoma (Supplementary Figure S5C and D). The upregu-
lated expression of FNDC1 has been demonstrated to be
correlated to poor prognosis in cancer (46) and TANC2
was identified as a driver gene in cancer with effects on cell
growth, survival and transformation (47). Together, these
results suggest that IDR mutations may help identify puta-
tive driver genes in cancer.

IDR hotspots are located in central positions of human PPIs

We next performed GO enrichment analysis for functional
annotations of genes with predicted IDR and domain
hotspots. Functional enrichment analysis implicates the pu-
tative IDR driver genes in diverse biological functions such
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Table 1. Top 10 putative driver genes and mutations with IDR mutational hotspots across cancer types

Genes Cancers E-value P-value Resource Potential driver mutations

ANK1 SARC 32.52 1.02E−6 CGC p.L1626M|p.L1626Q|p.A1621D
CTNNB1 PRAD 27.56 2.62E−10 CGC/CancerMine p.S33C|p.D32Y|p.S33Y|p.S37A|p.D32V|p.D32H
GLI1 STAD 25.14 4.30E−6 CGC/CancerMine p.R81W|p.R81Q|p.S84P
ZMYM2 LUSC 25.04 4.37E−6 CGC/CancerMine p.G268V|p.M264I|p.Q272H
NOTCH2 LUAD 23.17 7.84E−6 CGC/CancerMine p.M2183V|p.G2174R|p.L2184F
MUC16 HNSC 22.07 1.22E−5 CGC/CancerMine p.T3859K|p.R3852G|p.Q3851L
PRDM2 COAD 21.48 1.05E−5 CGC/CancerMine p.Y1680H|p.S1679I|p.R1683H
TRIP11 SKCM 20.61 1.29E−6 CGC p.G149W|p.H158Y|p.S145L|p.F146L
PRCC BLCA 18.41 2.75E−6 CGC p.I245V|p.S243C|p.I245M
DAXX GBM 17.76 6.34E−6 CGC/CancerMine p.C664F|p.P667L|p.K658N

as signaling regulation, development and cell morphogene-
sis (Figure 4A). Moreover, the putative domain driver genes
were significantly enriched in signaling regulation, develop-
ment, kinase activity and immune response (Figure 4B).

Cancer genes often function as network hub proteins
that are involved in many cellular processes (48–50). We
next investigated the topological features of the prioritized
driver genes with IDR or domain mutations. As expected,
we found that genes with domain hotspots showed signif-
icantly higher degrees and betweenness than other genes
(Figure 4C–E). Interestingly, we found that genes with IDR
hotspots exhibited a significantly higher degree, between-
ness and closeness than those genes with domain hotspots
(Figure 4C–E). Moreover, we used three other human PPI
networks in this analysis. We found that the results were
robust to different networks (Supplementary Figure S6).
These results indicated that genes with IDR hotspots are
located in the central region of human PPI networks and
play important roles in diverse biological processes.

IDR hotspots are associated with phase separation

As noted earlier, IDRs are important for regulating phase
separation (51,52). A previous study has demonstrated sig-
nificant enrichment for phase separation of proteins associ-
ated with autism spectrum disorder and neurological disor-
ders (15). However, the extent of enrichment for IDR or do-
main mutation in relevant genes related to phase separation
is unclear. We thus predicted the phase separation-related
proteins based on the PScore method (29). We calculated
the proportion of genes that are related to phase separa-
tion in each cancer type. Based on Fisher’s exact tests, we
found that genes enriched with IDR mutations significantly
overlapped with phase separation-related genes in 72.72%
(16/22) of cancer types (Figure 5A, P-values <0.05). How-
ever, only 28.57% (6/21) of the cancer types with genes that
showed enrichment of domain mutations significantly over-
lapped with phase separation-related genes (Figure 5B, P-
values <0.05).

Moreover, to investigate whether the phase separation en-
richment is a property of TE genes, we next obtained the
TE genes from a recent study (31). Although TE genes ex-
hibited significantly higher PScores in several tissues than
others, the IDR hotspot genes showed the highest PScores
across cancer types (Figure 5C). We did not observe simi-
lar results in domain hotspot genes (Supplementary Figure
S7). These results strongly suggest that phase separation is
not a baseline property of TE genes. In contrast, the IDR

hotspot genes are associated with phase separation, which
may specifically be involved in biological processes under-
lying cancer development and progression.

IDR hotspots are associated with differential expression and
patient survival

Clinical relevance is commonly used to define cancer-
related clinical features, including differential expression
and association with survival. To further investigate the
clinical utility of putative driver genes with IDR or domain
hotspots, we identified several clinically relevant drivers
(Figure 6A and B). In particular, ∼25% (in ESCA) to 100%
(in KIRC and CHOL) of putative driver genes with IDR
hotspots exhibited differential expression in various cancers
(Figure 6A). In addition, we found that 50% of putative
drivers with IDR hotspots and 46.7% of drivers with do-
main hotspots are correlated to patient survival in KIRC
(Figure 6B). For example, ATXN2L was prioritized as a
driver gene in LUSC (Supplementary Figure S8A). We
found that ATXN2L was significantly upregulated in can-
cer (Figure 6C, P = 1.9E−22), suggesting its oncogenic role.
In particular, cancer patients with IDR mutations exhibited
even higher expression of ATXN2L than patients with mu-
tations outside IDRs or wild types (Figure 6D). A previous
study has demonstrated that ATXN2L upregulated by epi-
dermal growth factor promotes cancer cell invasiveness and
oxaliplatin resistance (53). These observations indicate that
ATXN2L functions as an oncogene in cancer, and muta-
tions in IDRs further promote carcinogenesis. Clinical sur-
vival analysis revealed that patients with IDR hotspots have
worse prognosis than other patients (Figure 6E, log-rank
test, P = 0.052).

Another example is the ASH1L gene (encoding a his-
tone methyltransferase protein), which was prioritized to
have IDR hotspots in UCEC (Supplementary Figure S8B).
ASH1L has been found to be frequently altered in various
cancers (54,55). We found that ASH1L exhibited signifi-
cantly lower expression in cancer (Figure 6F, P = 8.2E−10).
Moreover, patients with IDR mutations exhibited signifi-
cantly downregulated expression than other patients (Fig-
ure 6G). These results suggest that the mutations within
IDRs might play protective roles in cancer. We next com-
pared the survival rates of three groups of patients and
found that patients with mutations in IDR show better sur-
vival than others (Figure 6H, log-rank P = 0.014). Taken
together, these results suggest the clinical relevance of puta-
tive driver genes with IDR hotspots.
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Figure 4. Hotspot genes enriched in cancer-related pathways and central region of the PPI network. Heat maps showing the biological processes enriched
by genes with IDR (A) or domain (B) hotspots. (C) Degree distribution of genes with IDR or domain hotspots and other genes. (D) Betweenness distribution
of genes with IDR or domain hotspots and other genes. (E) Closeness distributions of genes with IDR or domain hotspots and other genes.

DISCUSSION

Although tremendous efforts on genome-wide cancer
genome analyses have facilitated the establishment of so-
matic mutation catalogs in cancer, the identification of
driver genes remains a challenge. The impact of IDRs, par-
ticularly those that lack a stable folded protein structure, on
cancer remains unclear. In this study, we systematically in-
vestigated the mutation distribution in IDRs across 33 can-
cer types and further proposed a computational method to
prioritize genes enriched with mutations in IDRs. We ob-
served a higher frequency of mutations in IDRs in cancer-
related genes. We also compared our putative driver gene
list with well-known cancer-related genes and found that
the putative drivers identified by ROI-Driver significantly
overlapped with cancer genes. Accordingly, assessing IDR
structures will help identify additional cancer genes that
may play important roles in cancer-related pathways. We
observed a significant enrichment of putative driver genes
in signaling regulation, development and immune response,
which have previously been implicated in tumor growth.
Thus, functional enrichment of putative IDR hotspot driver
genes in critical signaling pathways provides clear biological
evidence for their roles in cancer.

Moreover, we analyzed mutations in various cancers and
prioritized the IDRs and domains in pan-cancer. Further-
more, we identified 395 genes that are enriched with mu-
tations in IDRs and 158 genes enriched with mutations
in domains (Supplementary Figure S9). A total of 40 and

131 genes enriched with mutations in IDRs that are anno-
tated in the CGC and CancerMine were found. The pri-
oritized genes were significantly overlapped with known
cancer-related genes in the CGC and CancerMine (all P-
values <0.01). In addition, 384 additional genes were pri-
oritized by IDR mutation enrichment analysis (Supplemen-
tary Figure S9). Subsequently, 38 genes annotated as cancer
genes in CGC and 126 genes annotated in CancerMine were
found to be significantly higher than random conditions
(Supplementary Figure S9). We discovered that CTNNB1
also harbored IDR mutation hotspots that merged with
pan-cancer (Supplementary Figure S10). These results sug-
gested that incorporating IDR information may help in pri-
oritizing cancer-related genes.

Furthermore, phase separation, which was mediated by
IDRs, has lately been recognized for its roles in cellular or-
ganization and regulation (56–58). We also observed signif-
icantly higher enrichment of our driver genes with genes as-
sociated with phase separation, suggesting that IDR mu-
tations disrupt phase separation in key cellular processes.
Moreover, PScore only predicted proteins expected to phase
separate due to planar pi–pi interactions in their IDRs.
Thus, our predictions based on this method were considered
conservative estimates. Moreover, because the PScores of
putative IDR driver proteins were significantly greater than
the PScores of other proteins encoded by highly abundant
TE genes (Figure 5C), this observation strongly suggested
that phase separation was not a baseline property of highly
TE proteins. Rather, phase separation may specifically be in-
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Figure 5. Putative driver genes associated with phase separation. (A) Odd ratios of Fisher’s exact tests showing the enrichment of IDR driver genes in
phase separation-related genes. (B) Odd ratios of Fisher’s exact tests showing the enrichment of domain driver genes in phase separation-related genes.
Cancers with P-values <0.05 are marked in red. (C) Boxplots showing the PScore of proteins encoded by IDR hotspot genes, TE genes and other genes
across cancer types. Red, IDR hotspot genes; blue, TE genes; brown, other genes. *P-values <0.01 for Wilcoxon’s rank-sum tests.

volved in the pathways underlying cancer development. We
prioritized IDRs enriched with mutations and found that
these genes were associated with phase separation; however,
not all IDRs contributed to phase separation. Thus, further
studies should determine whether an IDR of interest linked
to cancer would phase separate by experimental methods.

In the context of identifying the putative driver genes
in cancer, protein structure-based detection methods offer
significant advantages over approaches limited to protein
sequences (59). However, protein structure-based methods
suffer from the limited coverage of the human proteome,
and numerous proteins have unknown structures (60). Im-

portantly, a growing number of examples of verified IDRs
have been collated into several databases such as DisProt
(61); these entries only provide a small sample of IDRs.
Accordingly, most efforts focused on predicting IDRs in
proteins, such as flDPnn (62), DisoRDPbind (63) and AN-
CHOR2 (25). IUPred2A is one of the most widely used and
reliable intrinsic disorder prediction algorithms. We thus
used the predicted IDRs from IUPred2A in our analysis.
Moreover, we predicted the IDRs based on flDPnn and ES-
pritz (64) and found that ∼80.35% and ∼65.85% of the
IDRs predicted by IUPred2A were supported by ESpritz
and flDPnn (Supplementary Figure S11A and B). In par-
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Figure 6. Driver genes associated with expression perturbation and clinical survival. (A) Heat map showing the proportion of driver genes with a perturbed
expression between cancer and normal samples. (B) Heat map showing the proportion of driver genes that are associated with patient survival. (C) Boxplot
showing the expression of ATXN2L in LUSC and normal samples. (D) Boxplot showing the expression in patients with mutations within versus outside
IDRs and wild type. (E) Survival curves are plotted for LUSC patients with ATXN2L mutations within and outside IDRs and wild type. (F) Boxplot
showing the expression of ASH1L in UCEC cancer and normal samples. (G) Boxplot showing the expression in UCEC patients with mutations within
versus outside IDRs and wild type. (H) Survival curves are plotted for patients with ASH1L mutations within and outside IDRs and wild type.

ticular, ∼94.98% and ∼43.1% of the prioritized IDRs in
IUPred2A were supported by ESpritz and flDPnn (Sup-
plementary Figure S11C and D). Significant experimen-
tal technical improvements in the cryogenic electron mi-
croscopy technique (65) and computational methods are ex-
pected to expand the list of structurally resolved proteomes.

Recurrently mutated coding and noncoding
regions––such as long intergenic noncoding RNA genes
and regulatory and enhancer regions (54)––play important

roles in cancer development and progression. Li et al.
provide a blueprint for the identification and functional
validation of cancer-associated mutations in noncoding
regions of the genome (66). Moreover, intronic mutations
have also been correlated with cancer development (67).
Our proposed ROI-Driver pipeline can be easily extended
to genome-wide analyses to reveal the landscape of func-
tional mutations within the noncoding genome. Moreover,
we identified number of genes that were correlated with
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patient survival, suggesting their clinical relevance. We next
identified the potential candidate drugs whose activities
are correlated with the expression of prioritized genes
based on Genomics of Drug Sensitivity in Cancer (68).
We identified numerous genes that were correlated with
drug activities across cancer cell lines (Supplementary
Figure S12), providing potential drug targets for further
functional validation.

In summary, with the development of new computational
tools coupled with established experimental methods, the
mutational impact of IDRs can be evaluated to link muta-
tions to functional effects in complex diseases. Additionally,
the knowledge of protein IDR mutations can potentially
help uncover druggable hotspots in cancer. Such studies will
open new therapeutic avenues for various cancers and will
provide novel insights into precision medicine in cancer.
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