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Abstract

Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of
cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to
complement morphology in species identification. The sexual advertisement calls in several groups of acoustically
communicating animals are species-specific and can thus complement molecular data as non-invasive tools for
identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of
acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding
the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly
used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based
on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated
the optimal number of species and calling song characteristics for both the methods that lead to most accurate
classification and identification. The accuracy of classification using DFA was high and was not affected by the number of
taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs.
Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and
decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel
derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool
for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets
works effectively for species classification and identification.
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Introduction

Traditional taxonomy, which involves discovering and identi-

fying new species using key morphological characters and

matching them with the characters of voucher specimens, has

contributed to biodiversity exploration since the time of Linnaeus.

However, the process of biodiversity exploration and estimation

slows down in the tropics due to high species diversity, lack of

sufficient numbers of active trained taxonomists [1] and also often

due to the inaccessibility of the holotype specimens that are

necessary for confirming species identity.

This problem can be even more confounding in the case of

arthropods which have enormous diversity, especially in the

tropics [1]. Several attempts have been made to use technological

advances in the fields of molecular biology and engineering to

overcome this problem. In this modern era of taxonomy, many

new methods for systematic study of organisms are in use such as

DNA barcoding [2,3] and Web-based taxonomy [4–6]. Tradi-

tional taxonomy based on morphology fails to identify taxa that

appear morphologically very similar to each other and in such

cases, molecular taxonomy using DNA sequences becomes one of

the important approaches in identification of cryptic species [7].

Advertisement calls, which are produced in various behavioral

contexts in many taxa such as birds, frogs, cicadas and

orthopterans [8] help in pre-mating isolation [9–11] between

species and can thus be useful in systematics [12]. Acoustic signals

have mostly been used as an additional tool in identification of

cryptic species [13–15] along with molecular and morphological

characters [16]. Differences in the calling songs of Hawaiian

crickets of the genus Laupala have been shown to correspond to

species boundaries obtained on the basis of mitochondrial DNA

variation [17,18]. Therefore, advertisement calls, because of their

species-specificity, can be used to complement DNA sequence

data. Concordance in the results obtained from the cluster analysis

of calling songs and clusters based on morphological characters

has illustrated the ability of acoustic features to delimit species

boundaries in four sympatric species of tree crickets of the genus

Oecanthus [19]. Thus, species-specific calling songs can be used as

a reliable feature for taxonomic identification and classification

[20,21].

Due to the inaccessibility of the reference specimens and

taxonomic literature, which are largely available in North

American and European museums, new methods have been
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developed such as automatic identification of species based on

their morphological characters [22] or acoustic signals [23–25].

The ‘‘Orthoptera Species File Online’’ is a Web-based catalogue

developed for the insect Order Orthoptera where different kinds of

information such as classification, distribution, pictures of holotype

specimens and references to background literature have been

incorporated. Despite this development, the available information

on crickets is still not sufficient to make species-level identification.

For many of the holotype specimens, images are absent and at

times key taxonomic characters are not present. Morphological

identification of crickets to the species level is thus difficult but

given the distinct and species-specific structures of their calling

songs, these may be employed together with distribution

information to identify species in a rapid, reliable and non-

invasive manner.

Identification based on morphological characters requires

collection of animals and involves extensive surveys in the field

whereas identification based on acoustic signals does not require

collection of specimens. Acoustic signals of animals can be

recorded easily and the recordings can be used for species

identification either by analyzing the acoustic features using

statistical methods or using these features in training algorithms for

their automatic identification. This is documented in many studies

using linear discriminant analysis [26,27], decision trees [28],

artificial neural networks [29–32], hidden Markov chains [33] and

support vector machines [25]. All of these algorithms perform well

in automatic identification with an accuracy of .90% [34]. There

exist a large number of studies in which acoustics has been used

independently for species identification in bats [27,35–39], fish

[26,40–46], birds [47,48], frogs [49–53], crickets [23] and

dolphins [54]. Most of the studies listed above have used

discriminant analysis for the classification of organisms into

different groups. Some of the recent studies have also used an

automated identifier based on their calls [23,32]. Discriminant

function analysis, regardless of its requirement for a priori

definition of groups is powerful since the percentage of correct

classification is 80–96% [27,35,38].

Therefore, in this study we used discriminant function analysis

(DFA) to evaluate its strength in species identification using calling

songs of field crickets belonging to the subfamily Gryllinae. We

also aimed to compare the efficacy of DFA with cluster analysis. As

discussed in the above sections, in case of cluster analysis the

accuracy in classification was almost 100% when used for only

four species of crickets. The percentage of accurate classification is

however unknown when these methods are employed for higher

numbers of species. Therefore, we used two methods in this study,

discriminant function analysis (DFA) and cluster analysis. We

examined the influence of varying the number of call types on

their efficiency in classification.

We addressed the following questions: What is the optimum

number of species to be used in the statistical analysis of acoustic

signal features to obtain a correct classification? How many and

which acoustic characters should be used in such an analysis? Is

there any relation between number of taxa and characters to

achieve clear and well resolved groups of individuals reflecting

species? We also compared the power of two statistical methods

i.e. discriminant function analysis and cluster analysis in correctly

assigning species based on their acoustic signals.

Materials and Methods

Ethics statement
Necessary permits for all locations sampled in this study were

obtained from the National Biodiversity Authority, Government of

India. None of the species in this study are listed as endangered

and were not collected from protected areas.

Sampling area and studied material
Extensive sampling of field crickets was performed to maximize

the possibility of capturing different call types which were

distributed in and around Bangalore within a range of 500 km

in the southern parts of India. Coimbatore (11.09uN, 76.78uE),

Kadari (13.2uN, 75uE), Valparai (10.32uN, 76.95uE), Masinagudi

(11.57uN, 76.64uE), Kuppam (12.82uN, 78.25uE) and Ullodu

(13.64uN, 77.7uE) were the sampling sites (Fig. 1). Calling songs of

field cricket species were recorded and individuals were collected

and preserved in 70% ethanol (Figures S1, S2, S3, S4, and S5,

Table 1) for morphological identification. The specimens are

stored in the Centre for Ecological Sciences, Indian Institute of

Science, Bangalore, India.

Song recordings and analysis
Individual males were located in the field by listening to their

calling songs and tracking them by ear. After visual confirmation

of the calling male’s position, its calling song was recorded using a

Sony WM-D6C Professional Walkman cassette recorder and a

Sony ECM-MS957 microphone (flat frequency response from

50 Hz to 18 kHz) with the microphone at a distance of 15 cm

from the male. Ambient temperature was measured close to the

calling male using a Kestrel 3000 Pocket Weather Station. The

same male was captured and preserved in 70% ethanol for further

studies. The recorded calling songs of 85 individual field crickets

(4–8 individuals per species) were digitized using a Creative Sound

Blaster A/D Card at a sampling rate of 44.1 kHz for spectral and

temporal analysis. Spectral analysis of the digitized signal was

carried out using the signal processing software Spectra Plus

Professional (1994, Version 3.0, Pioneer Hill Software, Poulsbo,

WA, USA). Spectral analysis was performed on recorded calling

songs of duration 1–1.5 minutes with the exception of the genus

Coiblemmus where 5.6 minutes of recorded call was used for the

analysis. Dominant frequency of the recorded calling song was

measured by generating a power spectrum using a Fast Fourier

Transform (FFT) with a Hamming window and a window length

of 2048 sampling points. As the calling songs of field crickets are of

narrow bandwidth, the dominant frequency i.e. frequency with

maximum energy is represented by a narrow peak with highest

amplitude. Temporal pattern analysis was performed using a

custom-built program (Chandra Sekhar, EE, IISc) in Matlab

(2001, Version 6.1.0.450, The Mathworks Inc., Natick, MA,

USA). Syllable duration, syllable period, call duration and call

period (Fig. 2) were measured as the key features of the temporal

pattern. In case of trilling call types, call duration was measured by

considering the number of bouts present within the recorded call

of 1–1.15 min duration. Crickets are poikilothermic animals and

thus several of the calling song features vary with change in the

environmental temperature. As the calling songs of the field

crickets were recorded from different localities, the temperature of

song recordings varied from 21–28uC. All the different acoustic

features were initially regressed with their corresponding temper-

ature recordings. If the regression was found to be significant, then

using the linear regression equation for the particular acoustic

feature, the corresponding values of the acoustic feature were

calculated at 25uC.

Apart from the fine temporal and spectral features, two novel

temporal characters were used to resolve the diversity and

complexity of acoustic signals. In general, syllables are either

arranged in the form of distinct chirps, which repeat in a

predictable way or as continuous trills. However, in two species of
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field crickets, Velarifictorus sp.2 and Coiblemmus sp., we found

grouping of chirps. These chirp groups had a repetitive pattern like

the chirps themselves. This higher order structure is not captured

by features such as chirp period and chirp duration (Fig. 2).

Therefore, two novel acoustic features, ‘Constancy factor’ and

‘Relative variance’ were used. Constancy factor was defined as the

summation of the modulus of differences between the successive

chirp periods normalized by the total number of chirps:

1

n

Xn

i~2

mod(CPi{CPi{1)

Relative variance [55] was measured as the standard deviation

of the natural logarithms of chirp periods. Calling songs with two

levels of organization of chirps were expected to have higher

values of both constancy factor and relative variance compared to

that of the other calling songs.

Statistical analysis
Two kinds of statistical approaches were employed in this study

i.e. discriminant function analysis and cluster analysis in identi-

fying species based on acoustic data. Both of these analyses were

performed in Statistica (Statsoft Inc., Tulsa, OK, USA).

As the aim of this study was to determine the optimal number of

species that could be used in correct identification, the number of

taxa used in each analysis was varied from 5 to 13. The rationale

behind choosing the lowest number of taxa as five for the analysis

is that it is known from a previous study that the use of four taxa in

cluster analysis performed very well in species boundary delimi-

tation based on acoustic features.

Out of the 14 call types recorded from the different sampling

sites, 5 to 13 taxa were selected randomly using a random number

generator in R version 2.14.1 [56]. There were nine different

groups with varying numbers of taxa, ranging from 5 to 13, each

with ten replicates. The taxa groups were named based on the

number of taxa included in the analyses, for example, the group

including nine taxa is referred to as taxa9. To assess the effects of

the number of acoustic features on correct classification of taxa,

Figure 1. The sampling sites of field crickets in Southern India.
doi:10.1371/journal.pone.0075930.g001
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the number of acoustic features was also varied, using five and

seven features respectively. The five standard acoustic features

included syllable duration, syllable period, call duration, call

period and dominant frequency whereas in the case of seven

features, two new acoustic features i.e. relative variance and

constancy factor were added for the analysis. These two new song

features were defined by observing the super-structured temporal

pattern of the calling songs of two species of field crickets of the

genus Coiblemmus sp. and Velarifictorus sp.2. Thus for each of

the two character sets, there were 90 (9 taxa groups610 replicates)

cases. To evaluate the effect of number of taxa and number of

acoustic characters on the classification, the same set of 10

replicates was used for performing both the discriminant function

and cluster analysis.

In discriminant function analysis (DFA), all the individuals

included in the study are classified into different groups a priori

based on some information about the taxa. Therefore, in this study

we classified individuals of field crickets into different groups

representing different species based on the detailed study of their

external and internal morphological characters and using the keys

of Chopard [57]. There were also certain cases where some of the

species could not be identified to known species using these keys

despite their morphological features being specific and distinct. In

the case of the genus Itaropsis a single species is known from the

Indian subcontinent however, an analysis performed on the

combined data set (morphology and molecular data) revealed

three subspecies with distinct songs [16]. Two rounds of DFA were

performed, first with five and then with seven acoustic features, for

all the sets of randomly selected taxa. For DFA, we used groups

(defined by classifying individuals with similar morphological

characters together) as the dependent variable and the acoustic

features as independent variables. A classification matrix was

derived for each of the 180 (9062) different sets. To investigate the

effect of number of individuals per taxon on the DFA results, the

entire analysis was repeated with a data set containing five

individuals per taxon (achieved by removing individuals randomly

from the total sample size for each taxon). We also randomly

misclassified some individuals of the total data set a priori to study

the effect of erroneous classification based on morphology. We

misclassified 5%, 10% and 20% of the individuals of one

particular group with eight randomly selected taxa and seven

acoustic features separately. The analysis was iterated ten times for

each of the three misclassification sets.

For cluster analysis, measured acoustic features were standard-

ized by subtracting the mean from each value and then dividing by

the standard deviation. All the acoustic data were pooled together

and pairwise Euclidean distances were calculated. The distance

matrix thus obtained summarizes distances between all paired

individuals. This matrix was then subjected to cluster analysis

(single linkage) to examine groups emerging on the basis of overall

call similarity between individuals. This exercise was performed

for all the sets of randomly selected taxa and characters to evaluate

the efficiency of cluster analysis in grouping individuals correctly

into groups reflecting species. In the dendrogram derived from

cluster analysis, a linkage distance of 0.4 was used as an objective

criterion for defining individuals that were grouped together as

belonging to the same species. Thus, there was a total of 180 (2

character sets69 taxa groups610 replicates) data points with two

categories each, number of taxa (with nine levels) and number of

characters (with two levels). To investigate the effect of these two

categories (taxa groups and character sets) on the proportion of

correct classification, a Two-Way Analysis of Variance was

conducted using a Generalised Linear Model with binomial family

of errors and a Logit link function. All the analyses were carried

out in R version 2.14.1. The default contrast settings were used to

compare taxa5 with all the other eight taxa groups in a pairwise

manner. Contrasts were then changed in a way that would give all

the possible pairwise comparisons between taxa8 and the rest of

the taxa groups. Bootstrapping was performed in Matlab version

6.5, with 100 iterations for each of the nine taxa groups separately

for the two different sets of characters. The binomial data were arc

sine transformed. Using the standard errors and the means of the

distribution generated by bootstrapping, confidence intervals were

calculated. The means and confidence intervals were reverse arc

sine transformed to obtain the actual proportions.

The robustness of the results of cluster analysis could depend on

the number of replicates as well as the number of individuals per

taxon used in the study. To investigate the effect of number of

replicates on the results of cluster analysis, five more replicates

were added to the initial data set of ten replicates and GLM was

carried out with the pooled dataset of fifteen replicates separately.

To investigate the effect of sample size, the number of individuals

was randomly reduced to five for all the taxa before carrying out

cluster analysis.

In order to quantify the effect of two novel acoustic characters, it

was important to retain the only two species that had a complex

calling song pattern in all the clusters. Thus, more clusters were

generated with 6, 7 and 10 taxa. In each of these taxa groups,

Velarifictorus sp.2 and Coiblemmus sp. were retained and the rest

of the taxa were randomly selected. These randomizations were

repeated ten times for each of the 3 taxa groups, with 5 and 7

characters separately. Finally, for each of the two species

Velarifictorus sp.2 and Coiblemmus, the number of times these

were correctly resolved out of 10 randomizations was calculated.

The proportions of successful identification were calculated for

clusters with five and seven characters across the 3 different taxa

groups. These proportions were compared using a Binomial Test

for equality of proportions [58] for the two species separately.

Thus for each of the two species there were three pairwise

comparisons for the three different taxa groups.

Results

Discriminant function analysis
The results of discriminant function analysis performed on all

the ten replicates for 5 to 13 taxa are shown in Table 2. The

percentage of correctly classified individuals into their predefined

group was found to be always 100% for five and six taxa based on

both five and seven acoustic characters in all the ten replicates. For

seven to ten taxa, the percentage value was 98–100% in all the

replications except for five cases where it was found to vary

between 95–97%. The percentage classified correctly reduced on

further increase in number of taxa i.e. from eleven to thirteen,

however it was still almost 95% correct. Overall, the discriminant

analysis revealed an increase in the accuracy of classification when

the number of acoustic features was increased from five to seven.

Reducing the number of individuals per taxon to five by random

Figure 2. Oscillogram of Gryllus bimaculatus illustrating mea-
sured temporal features. Scale bar represents 0.5 second.
doi:10.1371/journal.pone.0075930.g002
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removal of individuals did not affect the accuracy of classification

(Table S1). A priori misclassification of individuals yielded

accuracies that varied between 80–94%, on average, in case of

20–5% misclassification respectively (Table S2).

Cluster analysis
The results of cluster analysis based on five and seven acoustic

features for the ten replicates of the number of taxa varying from

five to thirteen are shown in Table 3. The percentage of correct

clustering of individuals belonging to a species was comparatively

lower than that obtained from discriminant analysis. However,

accurate classification of individuals into species (85–90%) was

obtained in the case of six or seven randomly selected taxa. With

the increase in the number of taxa from seven to ten, the accuracy

in classification level reduced but was still found to be 82% correct

on average. From eleven taxa onwards, the percentage of correct

classification reduced to 64%. On bootstrapping, the trend

remained similar between the clusters with 5 acoustic traits

(Fig. 3A) and those with 7 acoustic traits (Fig. 3B).

In the GLM analysis (Table 4), taxa5 was first compared with

the rest of the eight taxa groups containing six to thirteen taxa.

The proportion of correct classification decreased significantly

when more than 10 taxa were used in the cluster analysis (Table 4).

When taxa8 group was compared with all the other taxa groups

in a pairwise manner (Table 5), no significant differences were

detected in the proportions of correct classification between taxa8

and the other taxa groups with five to ten taxa (Table 5). However,

taxa groups with 11 and 13 taxa showed a significant decrease in

proportion of correct classification from that of taxa8. There was

no significant difference in accuracy of classification between

clusters generated using 5 and 7 characters (character2, Table 4 &

5). There were no significant interactions between clusters with

different number of taxa and different sets of characters.

The proportion of correct classification decreased significantly

when more than ten taxa were analyzed together, in both the

analyses with fifteen replicates as well as with reduced number of

individuals per taxon (Tables S3 & S4 respectively).

Effect of constancy factor and relative variance on call
superstructure resolution

Binomial tests revealed that the proportion of correct resolution

increased significantly for Coiblemmus with the introduction of

two novel characters (p,.01, Table 6) in all the three taxa groups.

However, for Velarifictorus sp.2 the proportions did not change

significantly (Table 6).

Discussion

Comparison of DFA and cluster analysis as tools for
species classification and identification

In this study, we used song features of field cricket species and

subjected them to two different kinds of statistical analysis i.e.

discriminant function analysis (DFA) and cluster analysis to

examine their efficacy in species identification. DFA was able to

classify individuals with an accuracy of 95–100% for up to 13

species considered together. The high accuracy of classification

Figure 3. Mean proportion of correct classification as derived from bootstrapping with 100 iterations. Error bars represent 95%
confidence interval. (A) Clusters with 5 acoustic characters. (B) Clusters with 7 acoustic characters.
doi:10.1371/journal.pone.0075930.g003
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based on DFA was not affected by reducing the number of

individuals per taxon. Even with a priori misclassification of 20% of

the individuals, DFA yielded eighty percent accuracy, implying its

robustness as a classification tool. The high accuracy of

classification of crickets to the species level using DFA is

concordant with previous studies. 79% of echolocating bats

belonging to twelve species from Britain were correctly classified

based on 13 acoustic variables using DFA [27]. Similar studies

have reported overall 80–82% correct classification of 22 bat

species from Italy [35] and 8 bat species from Japan [37]. DFA has

also been used in identification of birds and frogs [34] and the

average of correct classification for both the taxa was found to be

71%. In nine species of dolphins of the Pacific Ocean, the

accuracy of classification was found to be 41% using DFA.

In our study, correct classification based on cluster analysis

varied from 55–90% with varying number of taxa (5–13). In

cluster analysis, accuracy of classification was optimal for six to

seven taxa, considered simultaneously, and dropped significantly

with more than ten taxa. Cluster analysis is sensitive to the number

of individuals per taxon. Even with reduced number of individuals

per taxon, accuracy of classification, however, did not differ

significantly for up to ten taxa. This pattern was also observed

when higher replicate sizes were used in the analysis suggesting

greater robustness of our results.

Even though the percentage of correct classification was

comparatively low in the case of cluster analysis when compared

with DFA, cluster analysis can be more useful in situations where

no prior knowledge or basis of grouping all individuals is available.

This is frequently the case with tropical insects, where there are a

large number of unknown species or those whose acoustic signals

have not been recorded, commonly co-existing with known

species. Once species have been identified and their call features

are known, their song features can be used in training algorithms

and species identification can be automated using DFA as a

statistical tool. Automated recognition of four British Orthopteran

species has been achieved using artificial neural network analysis

[32] and nine species of frogs and three bird species were also

identified correctly by using an automated classifier which used

linear discriminant analysis as an algorithm [34].

Acoustic characters
In this study, two sets of song features were used, with five and

seven acoustic characters respectively, to examine the influence of

number of characters on the percentage of correct classification of

thirteen species of field crickets. There was no significant

difference in the accuracy of classification when performed using

the two character sets. A recent study [34] compared the ability of

Table 4. Results of the Generalised Linear Model analysis
with all the pairwise comparisons between taxa5 and the
other eight taxa groups and their interactions with character
sets.

Categories z Value P Value

taxa5 (intercept) 4.454 0.000008

taxa6 0.940 0.347313

taxa7 0.670 0.502782

taxa8 20.700 0.483626

taxa9 20.415 0.678184

taxa10 20.163 0.870386

taxa11 23.544 0.000395

taxa12 22.134 0.032859

taxa13 22.791 0.005248

character2 21.262 0.207020

taxa6:character2 0.357 0.721072

taxa7:character2 0.346 0.729065

taxa8:character2 1.120 0.262556

taxa9:character2 0.282 0.778217

taxa10:character2 20.278 0.780797

taxa11:character2 1.691 0.090797

taxa12:character2 1.245 0.213159

taxa13:character2 1.132 0.257484

Residual deviance: 215.35 on 162 degrees of freedom

AIC: 585.65

doi:10.1371/journal.pone.0075930.t004

Table 5. Generalised Linear Model with all the pairwise
comparisons between taxa8 and the other eight taxa groups
and their interactions with character sets.

Categories z Value P value

taxa8 (Intercept) 5.119 0.0000003

taxa5 0.700 0.483626

taxa6 1.700 0.089108

taxa7 1.489 0.136357

taxa9 0.355 0.722230

taxa10 0.670 0.503080

taxa11 23.618 0.000297

taxa12 21.774 0.076023

taxa13 22.643 0.008225

character2 0.205 0.837424

taxa5:character2 21.120 0.262556

taxa6:character2 20.618 0.536520

taxa7:character2 20.735 0.462381

taxa9:character2 21.017 0.309071

taxa10:character2 21.698 0.089423

taxa11:character2 0.518 0.604385

taxa12:character2 20.007 0.994293

taxa13:character2 20.174 0.862092

Residual deviance: 215.35 on 162 degrees of freedom

AIC: 585.65

doi:10.1371/journal.pone.0075930.t005

Table 6. Binomial Test results for proportions of correct
classification of Velarifictorus sp.2 and Coiblemmus sp.

Velarifictorus sp.2 Coiblemmus sp.

Chi-squared
Estimate P value

Chi-squared
Estimate P value

6 taxa 0.31 0.58 7.27 0.007

7 taxa 0.21 0.65 10.21 0.001

10 taxa 0.81 0.37 10.21 0.001

doi:10.1371/journal.pone.0075930.t006

Acoustic Identification of Crickets

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e75930



three machine learning algorithms (linear discriminant analysis,

decision tree and support vector machine) to automate the

classification of nine frog and three bird species. For this, they

proposed two sets of characters based on their recorded calls i.e. 4 and

11 call parameters. The difference between the percentage of correct

classification when using 4 and 11 calls in case of both the taxa was

,1% indicating no significant statistical effect of higher number of

characters. Although the overall difference was found to be small, it

was observed that by increasing the number of call parameters from 4

to 11, the accuracy of classification of both taxa increased for all the

three algorithms. However, this also reduced the correct classification

of a few species by all classification methods. Redundancy in the

information content of the acoustic parameters could lead to failure in

resolution of classification. In methods such as cluster analysis and

DFA, redundancy can also cause misclassification due to increased

probability of false clusters along the redundant acoustic parameters.

In this study, the choice of two novel acoustic parameters, constancy

factor and relative variance was in order to include additional

information at the level of the superstructure of song where it exists.

However a lack of greater accuracy of classification on using seven

characters can be attributed to the fact that calls of only two species

out of thirteen had a complex superstructure. The two additional

acoustic characters add little information for calls with a simple call

structure. As the probability of representation for two calls with

superstructures were low in the several randomizations, one could

expect little effect of the two additional acoustic features on the

resolution of classification. However, when one of these call types was

retained in all the randomizations, addition of the two novel acoustic

parameters enhanced the accuracy of classification significantly for

Coiblemmus sp. but not for Velarifictorus sp.2 (Table 6). We found

that though constancy factors were high for both the species with

complex calls, relative variance was not very high in case of

Velarifictorus sp.2 (Table 1). Moreover the performance of five

acoustic characters in resolving the Velarifictorus sp.2 call was higher.

These could have led to the failure of the two additional acoustic

characters to resolve Velarifictorus sp.2.

In conclusion, both DFA and cluster analysis were effective in

correctly identifying species based on their acoustic signals. DFA is

the more powerful and accurate method but requires a priori

classification of songs and can only be used to identify known song

patterns and species. Cluster analysis is less powerful and its

accuracy is more contingent on the number of taxa being examined

together, but it can be used in situations where the signals of some of

the species in the habitat are not previously known, since it does not

require a priori grouping of signals or species. Both methods could

thus be used to develop quantitative and automated tools for species

identification for the cricket fauna in local areas.
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songs of Velarifictorus sp.2 and Coiblemmus sp. Scale bar

represents 1 second.

(EPS)

Table S1 Percentage of correctly allocated individuals
by discriminant function analysis (DFA) on a dataset
with reduced number of individuals per taxon.

(DOCX)

Table S2 Percentage of correctly allocated individuals
by discriminant function analysis (DFA) for eight taxa
with seven acoustic characters with varied amount of
misclassification.

(DOCX)

Table S3 Results of the Generalised Linear Model
analysis with all the pairwise comparisons between
taxa5 and the other eight taxa groups and their
interactions with character sets for the dataset with
fifteen replicates.

(DOCX)

Table S4 Results of the Generalised Linear Model
analysis with all the pairwise comparisons between
taxa5 and the other eight taxa groups and their
interactions with character sets for the dataset with five
individuals per taxon.

(DOCX)

Acknowledgments

We thank the Ministry of Environment and Forests, Government of India

for funding this work and the National Biodiversity Authority, Government

of India, for providing necessary permits. We also thank Sudhakar

Malekudiya Gowda for help with fieldwork.

Author Contributions

Conceived and designed the experiments: RB. Performed the experiments:

RJ. Analyzed the data: RJ DN. Contributed reagents/materials/analysis

tools: RJ DN. Wrote the paper: RJ DN RB.

References

1. Gaston KJ, May RM (1992) Taxonomy of taxonomists. Nature 356: 281–282.

2. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological

identifications through DNA barcodes. Proceedings of the Royal Society of

London Series B: Biological Sciences 270: 313–321.

3. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of

Birds through DNA Barcodes. PLoS Biol 2: e312.

4. Godfray HC (2002) Challenges for taxonomy. Nature 417: 17–19.

5. Scoble MJ (2004) Unitary or unified taxonomy? Philosophical Transactions of

the Royal Society of London Series B: Biological Sciences 359: 699–710.

6. Knapp S, Polaszek A, Watson M (2007) Spreading the word. Nature 446: 261–

262.

7. Proudlove G, Wood PJ (2003) The blind leading the blind: cryptic subterranean

species and DNA taxonomy. Trends in Ecology & Evolution 18: 272–273.

8. Bailey WJ (1991) Acoustic behaviour of insects. An evolutionary perspective.

9. Blair WF (1964) Isolating Mechanisms and Interspecies Interactions in Anuran

Amphibians. The Quarterly Review of Biology 39: 334–344.

10. Blair WF (1974) Character Displacement in Frogs. American Zoologist 14:

1119–1125.

Acoustic Identification of Crickets

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e75930



11. Fouquette MJ (1975) Speciation in Chorus Frogs. I. Reproductive Character

Displacement in the Pseudacris Nigrita Complex. Systematic Biology 24: 16–23.
12. Heyer WR, Press SI (1984) Variation, systematics, and zoogeography of

Eleutherodactylus guentheri and closely related species (Amphibia: Anura:

Leptodactylidae): Smithsonian Institution Press.
13. Vredenburg VT, Bingham R, Knapp R, Morgan JAT, Moritz C, et al. (2007)

Concordant molecular and phenotypic data delineate new taxonomy and
conservation priorities for the endangered mountain yellow-legged frog. Journal

of Zoology 271: 361–374.

14. Lemmon EM, Lemmon AR, Collins JT, Lee-Yaw JA, Cannatella DC (2007)
Phylogeny-based delimitation of species boundaries and contact zones in the

trilling chorus frogs (Pseudacris). Mol Phylogenet Evol 44: 1068–1082.
15. Ferreira RS, Poteaux C, Delabie JHC, Fresneau D, Rybak F (2010) Stridulations

Reveal Cryptic Speciation in Neotropical Sympatric Ants. PLoS ONE 5:
e15363.

16. Jaiswara R, Balakrishnan R, Robillard T, Rao K, Cruaud C, et al. (2012)

Testing concordance in species boundaries using acoustic, morphological, and
molecular data in the field cricket genus Itaropsis (Orthoptera: Grylloidea,

Gryllidae: Gryllinae). Zoological Journal of the Linnean Society 164: 285–303.
17. The Crickets of Hawaii: Origin, Systematics and Evolution (Paperback).

18. Shaw KL (1999) A nested analysis of song groups and species boundaries in the

Hawaiian cricket genus Laupala. Mol Phylogenet Evol 11: 332–341.
19. Metrani S, Balakrishnan R (2005) The utility of song and morphological

characters in delineating species boundaries among sympatric tree crickets of the
genus Oecanthus (Orthoptera: Gryllidae: Oecanthinae): a numerical taxonomic

approach. Journal of Orthoptera Research 14: 1–16.
20. Walker TJ (1962) Factors Responsible for Intraspecific Variation in the Calling

Songs of Crickets. Evolution 16: 407–428.

21. Otte D (1983) Australian Crickets (Orthoptera: Gryllidae): Academy of Natural
Sciences.

22. Gauld ID, O’Neill MA, Gaston KJ, Austin AD, Dowton M. Driving miss daisy:
the performance of an automated insect identification system; 2000 2000.

CSIRO Publishing. 303–312.

23. Brandes TS, Naskrecki P, Figueroa HK (2006) Using image processing to detect
and classify narrow-band cricket and frog calls. The Journal of the Acoustical

Society of America 120: 2950–2957.
24. Nickerson CM, Bloomfield LL, Dawson MRW, Sturdy CB (2006) Artificial

neural network discrimination of black-capped chickadee (Poecile atricapillus)
call notes. The Journal of the Acoustical Society of America 120: 1111–1117.

25. Fagerlund S (2007) Bird species recognition using support vector machines.

EURASIP J Appl Signal Process 2007: 64–64.
26. Simmonds JE, Armstrong F, Copland PJ (1996) Species identification using

wideband backscatter with neural network and discriminant analysis. ICES
Journal of Marine Science: Journal du Conseil 53: 189–195.

27. Parsons S, Jones G (2000) Acoustic identification of twelve species of

echolocating bat by discriminant function analysis and artificial neural networks.
J Exp Biol 203: 2641–2656.

28. Herr A, Klomp NI, Atkinson JS (1997) Identification of bat echolocation calls
using a decision tree classification system. Complexity International 4: 1–10.

29. Do MT, Harp JM, Norris KC (1999) A test of a pattern recognition system for
identification of spiders. Bulletin of Entomological Research 89: 217–224.

30. Balfoort HW, Snoek J, Smiths JRM, Breedveld LW, Hofstraat JW, et al. (1992)

Automatic identification of algae: neural network analysis of flow cytometric
data. Journal of Plankton Research 14: 575–589.

31. Boddy L, Morris CW, Wilkins MF, Tarran GA, Burkill PH (1994) Neural
network analysis of flow cytometric data for 40 marine phytoplankton species.

Cytometry 15: 283–293.

32. Chesmore D (2004) Automated bioacoustic identification of species. Anais da
Academia Brasileira de Ciências 76: 436–440.

33. Kogan JA, Margoliash D (1998) Automated recognition of bird song elements
from continuous recordings using dynamic time warping and hidden Markov

models: A comparative study. The Journal of the Acoustical Society of America

103: 2185–2196.
34. Acevedo MA, Corrada-Bravo CJ, Corrada-Bravo H, Villanueva-Rivera LJ, Aide

TM (2009) Automated classification of bird and amphibian calls using machine
learning: A comparison of methods. Ecological Informatics 4: 206–214.

35. Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia:
Chiroptera) from Italy by analysis of time-expanded recordings of echolocation

calls. Journal of Zoology 258: 91–103.

36. Rydell J, Arita HT, Santos M, Granados J (2002) Acoustic identification of

insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology

257: 27–36.

37. Fukui D, Agetsuma N, Hill DA (2004) Acoustic Identification of Eight Species of

Bat (Mammalia: Chiroptera) Inhabiting Forests of Southern Hokkaido, Japan:

Potential for Conservation Monitoring. Zoological Science 21: 947–955.

38. Britzke ER, Slack BA, Armstrong MP, Loeb SC (2010) Effects of Orientation

and Weatherproofing on the Detection of Bat Echolocation Calls. Journal of

Fish and Wildlife Management 1: 136–141.

39. Ramasindrazana B, Goodman SM, Schoeman MC, Appleton B (2011)

Identification of cryptic species of Miniopterus bats (Chiroptera: Miniopteridae)

from Madagascar and the Comoros using bioacoustics overlaid on molecular
genetic and morphological characters. Biological Journal of the Linnean Society

104: 284–302.

40. Haralabous J, Georgakarakos S (1996) Artificial neural networks as a tool for
species identification of fish schools. ICES Journal of Marine Science: Journal du

Conseil 53: 173–180.

41. Scalabrin C, Diner N, Weill A, Hillion A, Mouchot M-C (1996) Narrowband
acoustic identification of monospecific fish shoals. ICES Journal of Marine

Science: Journal du Conseil 53: 181–188.

42. Zakharia ME, Magand F, Hetroit F, Diner N (1996) Wideband sounder for fish
species identification at sea. ICES Journal of Marine Science: Journal du Conseil

53: 203–208.

43. LeFeuvre P, Rose GA, Gosine R, Hale R, Pearson W, et al. (2000) Acoustic
species identification in the Northwest Atlantic using digital image processing.

Fisheries Research 47: 137–147.
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