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ARTICLE INFO ABSTRACT

Keywords: Resting state electroencephalography (EEG) has proved useful in studying electrophysiological
Resting state electroencephalography changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the
Parkinson

eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological
changes with high temporal resolution. However, scalp EEG microstate maps tend to underesti-
mate the non-occipital or non-alpha-band networks, which can also be used to detect neuro-
pathological changes. Recent evidence has shown that the source-space microstates can
characterize distinct functional connectivity patterns but its clinical ability to detect neuropath-
ological changes has not been demonstrated so far. It should also be remembered that the eye
condition may play an important role in neural activity dynamics.

The aim of this study was to systematically characterize the dynamic neuropathological fea-
tures of sensor-space and source-space EEG microstates in PD patients with no cognitive
impairment in both EC and EO conditions with the aim of identifying potential biomarkers that
could be used as a complementary clinical screening method for early PD detection. We found
that the dynamic features of the source-space microstates were more sensitive in detecting PD
than the sensor-space microstates, while EO was able to detect neuropathological changes in PD
patients better than EC. In EO, PD disease exhibited significantly higher occurrence and coverage
in visual-network related source-space microstates and abnormally high duration in sensorimotor
network-related microstates. Our results suggest that the source-space microstate analysis of
resting-state EEG could provide robust biomarkers to detect early-stage PD, which would allow
the development of patient-oriented strategies to prevent the disease and improve the patients’
quality of life.

Microstate
Eyes influence
Dynamic features
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, with a prevalence of 10 million worldwide [1,2].
It affects 1-2% of those over 60 years of age, with an increasing trend due to population ageing. Zhong et al. [3] estimated an increase
of 155.51 % in the global Parkinson’s disease between 1990 and 2019. PD is not only debilitating for the patient but is also one of the
biggest social challenges with a huge economic burden on governments worldwide, including social security expenses, medication and
loss of income, among others. The gross annual social economic burden was estimated at about $52 billion for approximately 1 million
PD patients in the United States in 2017 [4]. Early detection is essential to help clinicians design a neuroprotective disease-modifying
therapeutic program to prevent or slow down the progress of PD and provide patients with additional years of a better quality of life.

Neuropathological changes can precede the appearance of the clinical symptoms by up to a decade, giving rise to detectable
abnormal neuronal activity [5]. However, diagnosis of PD in the prodromal stage is still restricted to the research field, although it will
be important to design more effective therapies with a high repercussion on the patients’ quality of life [6]. Increasing evidence has
shown the effectiveness of resting state electroencephalography (EEG) for early PD detection [7-11]. Previous studies used different
techniques for successfully extracting clinically meaningful biomarkers that correlate well with the severity of the disease, including
the use of quantitative spectral analysis, functional connectivity analysis and non-linear dynamic analysis [12-17].

Microstate analysis describes broad-band spontaneous EEG activity in a limited number of scalp potential topographies (maps) that
remain stable for a certain period of time (60-120 ms) but rapidly transition to a different topography that again remains stable [18].
Microstate analysis provides the topological changes in bioelectrical potential in milliseconds. Resting-state EEG microstates are robust
and highly reproducible and are linked with functional magnetic resonance imaging (fMRI) resting-state networks [19]. Previous
studies have identified the same four canonical EEG microstates (A, B, C, D) with high global explained topographical variance and
appear to correlate with four well-known resting-state networks defined by fMRI [18,20]. Microstates with diagonal orientation (A and
B), anterior-posterior (C) and fronto-central distribution (D) of the topographic map field have been consistently found in resting EEG,
related to phonological processing, the visual network, the saliency network, and dorsal attention, respectively [20]. EEG microstate
dynamics are modulated by different consciousness levels and diseases. Microstate analysis has been able to detect a variety of
neurological disorders such as schizophrenia, anxiety disorders, autism, Alzheimer’s disease, dementia, stroke, or multiple sclerosis,
providing a reliable diagnosis and prognosis in easy-to-measure, task-free resting EEG recordings of only 3 min, which greatly con-
tributes to transferring it to clinical settings [18].

Few previous studies have used microstate analysis to assess PD. Pal et al. [21] proposed scalp microstate from resting state EEG in
the eyes closed (EC) condition to differentiate between cases of PD with and without dementia and healthy subjects. Chu et al. [22]
found that dynamic scalp microstate features obtained from resting-state EEG in the EC condition could be used to differentiate be-
tween drug-free PD patients and healthy subjects. EEG microstates were also used to assess the effect of deep brain stimulation of the
subthalamic nucleus [23]. Previous studies successfully reconstructed source microstate maps by projecting sensor-space microstates
onto the surface of the cortex using brain source localization techniques [18,24]. However, this approach may still restrict our un-
derstanding of functional brain states due to several factors. Firstly, sensor-space EEG topographies have limited spatial resolution due
to the blurring effect of volume conduction and so may not distinguish finer differences across maps. The sensor-space EEG microstate
maps underestimate the importance of non-occipital or non-alpha-band networks, given the dominance of alpha-band occipital sources
in the sensor-space eyes-closed resting-state EEG, which could be attributed to the shape of the head and the forward model [19,25].
Tait et al. [19] proposed a source-space microstate pipeline, obtaining 10 resting microstates with distinct functional connectivity
patterns, although it is still unclear whether source-space microstates can detect neuropathology better than sensor-space microstates.

To the authors’ knowledge, only two studies have to date assessed the usefulness of microstate analysis from scalp EEG in the EO
condition in PD patients [26,27]. It is expected that visual processing during this condition could regulate the microstate dynamics.
Indeed, it has been shown that microstate A had significantly shorter durations, while microstate C had increased occurrence [28] and
microstate D had decreased coverage and duration in the EO condition [28]. Also, recent studies have shown that resting-state
quantitative EEG in EO condition can better differentiate between PD and control subjects than EC [29-31] and no previous
studies have assessed the ability of the EC and EO microstate dynamic features to detect PD neuropathology.

The aim of this study was thus to assess both the sensor-space and source-space EEG microstate dynamic features to differentiate
between PD and healthy subjects in both EC and EO and also determine their relationship with clinical PD symptoms. This study is
expected to provide the basic findings for the development of a simple quantitative real-time tool to promote EEG as a complementary
screening technique for early PD detection in clinical practice, besides objectively monitoring the progress of the disease and/or

Table 1
Demographical information and clinical measurements from the database. The t statistic was used for continuous variables and the Chi-square for
categorical variables.

Control (N = 20) PD (N =13) Test statistic p-value
Sex (male/female) 8/12 6/7 0.05 0.82
Age, mean (SD) 68 (6.0) 68 (7.4) -0.2 0.84
Disease duration, years, mean (SD) n/a 5(4.3) n/a n/a
Mini-mental state score, mean (SD) 28 (2.0) 28 (1.4) —0.63 0.54
Beck’s depression inventory, mean (SD) 5(3.0) 8 (5.6) -1.62 0.12
MDS-UPDRS, mean (SD) 5(3.0) 29 (15.6) —5.14 <0.001




G. Gimenez-Aparisi et al. Heliyon 11 (2025) e41500
evaluating the effectiveness of modifying therapies.

2. Materials and methods

2.1. Database

We used a public database consisting of 20 healthy subjects and 20 PD patients [32] but only performed the analysis for 13 of the PD
patients who broke off their medication for 12 h before acquiring the data (medication OFF) to avoid any possible interference. Table 1
depicts the demographic and clinical information from the database. There were no significant differences in age, sex or the
mini-mental state score between both groups. Beck’s PD Depression score was slightly higher and with more variance, but not
significantly, than in the healthy subjects. The PD patients showed a significantly higher MDS-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) than the healthy subjects.

2.2. Signal preprocessing

The EEG signal was recorded by a 64-channel system with the NeuroOne Tesla amplifier. Two additional EOG channels were also
recorded and the sample rate was 500 Hz. The raw data are available in Ref. [33]. Each register was compounded of a 2-min resting
EEG with eyes closed, followed by another 2-minuterecording with eyes open. Preprocessing was by EEGLAB on Matlab. First, we
applied a high-pass FIR filter by the Hamming window at 1 Hz to remove baseline fluctuations, followed by the FASTER toolbox in the
default configuration (z-score>3) to automatically reject motion artifacts. Spherical interpolation was by adjacent channels. We split
the continuous EEG into 2-s epoch data without overlap and used the FASTER toolbox to remove bad epochs (default configuration
with z-score>3). We then applied independent component analysis (ICA) of the EEG epochs and inspected them visually to remove any
remaining interference, such as cardiac, muscle and motion artifacts. We ended by projecting back to the original space to obtain the
clean EEG epochs.

2.3. Microstate analysis

The microstate analysis was carried out in both the sensor-and source-space EEG in EC and EO using the +microstate toolbox [19].
We systematically compared the performance of two broad bandwidths commonly used in the literature for scalp-space and
source-space microstate analysis: 2-20 Hz [22,27,34] and 1-30 Hz [19,25,35]. The scalp-recorded EEG was projected to cortical
source-space EEG by the Exact Low Resolution Electromagnetic Tomography (eLORETA) [36] implemented in Fieldtrip (freely
available at https://www.uzh.ch/keyinst/loreta.htm). ELORETA is a discrete, linear, 3D distributed imaging system that belongs to the
weighted minimum norm inverse solution methods. It also has zero error localization, even with low spatial resolution. The solution
space consists of 6239 voxels in the cortical grey matter at 5x5x5 mm?® of spatial resolution in a realistic head model (standardised
scalp-skull-brain head model) with MNI152 template [36]. Cortical parcellation was performed by computing the average power of all
the voxels within each of 78 ROI, according to the AAL atlas [19].

The microstate analysis was conducted by a typical pipeline that consisted of identifying the global field power (GFP) peaks across
the recordings, which are stable potential maps with the optimal signal-to-noise ratio. We randomly selected 5000 GFP peaks from
each recording from all the healthy and PD subjects to group them into k global maps by a modified k-means clustering algorithm that
uses the global map dissimilarity as the clustering criterion. For both sensor-space and source space EEG, we swept the number of
global maps from 2 to 10 by the Kneedle algorithm to determine the optimum number of microstates.

After identifying the global maps from 165000 GFP peaks (5000 GEP peaks per subject x 33 subjects), we carried out the backfitting
procedure to fully scan each GFP peak from each subject. All the GFP peaks in the whole dataset were labelled as a state based on the
microstate centroid map with minimum distance. All the other samples were given the same state label as their nearest GFP peak. The
following dynamic features were then computed for each subject.

- Duration: average duration of each microstate in milliseconds.

- Occurrence: average occurrences per second of the microstates.

- Coverage: percentage of the EEG covered by each microstate.

- Transition: probabilities of transitioning from one microstate to another.

2.4. Statistical analysis

We first conducted a Topographic Analysis of Variance (TANOVA) to assess the different topographies between the PD and healthy
groups (o« = 0.01).

We carried out one-way ANOVA on the dynamic features of the microstates to assess the statistical differences between the PD and
healthy subjects (a = 0.05) for both EC and EO sensor-space and source-space data. We also computed Spearman’s correlation between
microstate dynamic features (duration, coverage occurrence and transition) and MDS-UPDRS (a = 0.05). The FDR proposed by
Benjamini-Hochberg corrections were used to minimize false positive in multiple comparisons for each microstate’s state.

We also assessed significant differences in regional activation between PD and healthy subjects. Region activation shows the
current density distribution of the parcellated cortical surface obtained through microstate analysis. It was first obtained by averaging
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the current density distribution of each patient for the instants of each source-space microstate in both EC and EO. Statistical
nonparametric mapping (available in LORETA-KEY software [37]) was then used to perform voxel-by-voxel independent F-ratio tests
of the log-transformed current source density power between healthy and PD subjects (a = 0.05). A nonparametric randomization
procedure (N = 5000) was conducted to deal with multiple comparison and identify significantly different cortical voxels.

3. Results
3.1. Scalp and cortical microstates

Fig. 1 shows the EC and EO microstate maps obtained from the scalp EEG, in which the optimum cluster was 5. The four consistently
found microstates in the resting state EEG were A and B with diagonal orientation, anterior-posterior C and D fronto-central, which
have been linked to phonological, visual, the salience network and dorsal attention, respectively. We also identified the microstate F
associated with the fronto-parietal network. We only found topographical differences between groups for EC microstate A and F (p <
0.01), while none were found in EO by the TANOVA analysis.

As depicted in Fig. 2, the optimum of the global maps of source state microstates was 5 and 7 for EC and EO, respectively. State 1
mainly reflect the visual network in EO, state 2 mostly represented left temporo-parietal and left sensorimotor activities, state 3 seems
to be linked with right frontal, right frontal-temporal, and right sensorimotor activity, while state 4 is associated with left frontal
activity in EC and EO. We also found right temporo-parietal-occipital activity in state 5, while state 5 in EO could be associated with
bilateral frontal activities. States 6 and 7 in EO describes left frontal-parietal activities and bilateral sensorimotor activities, respec-
tively. No topographical differences were found between PD and healthy groups in either EC or EO (p > 0.01).

3.2. Scalp and cortical microstate dynamic features

Table 2 shows the number of scalp and cortical microstate dynamic features that obtained the uncorrected p-value<0.05 to
distinguish healthy subjects from PD for different bandwidths in both EC and EO, plus the significant correlations with MDS-UPDRS.
The 2-20Hz bandwidth performed slightly better than the 1-30 Hz range for the scalp microstate. In the cortical microstates, the EC
microstate dynamic features seemed to better discriminate PD and healthy subjects, although the correlation with MDS-UPDRS was
higher in EO. In general, the scalp microstate dynamic features presented a poor discriminatory ability and correlation with MDS-
UPDRS.

The dynamic features derived from the cortical microstate were noticeably better than those from the scalp in distinguishing PD
and healthy subjects as well as their relationship with MDS-UPDRS. Unlike the scalp microstates, the 1-30 Hz bandwidth obtained
slightly better results in source-space microstate analysis. As the EC microstate dynamic features seemed to better differentiate healthy
and PD subjects, we only give the results of the cortical microstates.

Tables 3 and 4 give the results of the statistical analysis of the cortical microstate dynamic features in discriminating between
healthy and PD subjects and their relationship with MDS-UPDRS in EC. We found a significantly lower coverage, occurrence frequency
and duration in state 1, which was due to a reduced transition from states 2-5 to 1. The state 2 dynamic features remained almost
stable, while only transition 4 - 2 decreased in PD subjects (uncorrected p < 0.05). The PD group had lower coverage of state 5 than
healthy subjects (uncorrected p < 0.05), which was associated with the reduced transition of states 3 -5 and 4 — 5. After FDR
correction, no significant results were obtained for states 2 and 5. The PD subjects showed significantly higher coverage than healthy
subjects, frequency of occurrence and duration of states 3 and 4, with a significant increase of transition from other states. Even after
FDR corrections, the dynamic features obtained from states 1, 3 and 4 significantly differentiated the groups in EC.

In addition, the transitions of states 1 -1,2—-1,3—1, 4— 5, 5— 5 and the coverage and duration of states 1 and 5 presented a
negative correlation with the MDS-UPDRS score with an uncorrected p < 0.05. The transitions of states1 -4,2—-4,5—-3,and 5— 4
and the coverage and frequency of occurrence of state 4 was positively correlated with the MDS-UPDRS score with the uncorrected p <

Microstate A Microstate B Microstate C Microstate D Microstate F
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Fig. 1. Scalp microstates from resting state EEG in EC (Upper row) and EO (Lower row).
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Fig. 2. Cortical microstate maps from resting state EEG in EC (Upper row) and EO (Lower row) after projection of EEG onto the cerebral cortex. A
threshold of 60 % was applied. The optimum number of global maps (states) was 5 for EC, and 7 for EO.

Table 2
Number of dynamic features that obtained uncorrected p-value<0.05 to differentiate healthy and PD subjects and correlate with MDS-UPDRS for both
EC and EO microstates derived from scalp and cortex.

1-30 Hz 2-20 Hz
HC vs. PD MDS-UPDRS HC vs. PD MDS-UPDRS
EC Scalp 1 0 0 0
Cortical 29 15 27 15
EO Scalp 3 4 5 6
Cortical 18 18 15 17

Table 3

Statistical analysis of dynamic cortical microstate features to distinguish healthy and PD subjects in
EC. Increased and decreased features with uncorrected p-value<0.05 are shaded in blue and grey,
respectively. Asterisk indicates statistically significant difference after FDR correction.

To
HD vs. PD State 1 State 2 State 3 State 4 State 5
Duration 0.049* 0.437 0.007* 0.016* 0.081

Coverage 0.007* 0.463 0.001* 0.006* 0.029
Occurrence 0.010* 0.501 0.001* 0.006* 0.130

State 1 0.009* 0.787 0.001* 0.030* 0.331
3 g State2 0.007* 0.281 0.002* 0.016* 0.078
‘;% © State3 0.013* 0.061 0.008* 0.027* 0.013
=% State 4 0.020* 0.037 0.015* 0.025* 0.031
State 5 0.017* 0.538 <0.001*  0.010* 0.154

Table 4

Spearman coefficient between MDS-UPDRS and dynamic cortical microstate features in EC. Positive
and negative correlations with uncorrected p-value<0.05 are shaded in blue and grey, respectively.
Asterisk indicates statistically significant difference after FDR correction.

To
HD vs. PD State 1 State 2 State 3 State 4 State 5
Duration -0.353 -0.211 0.305 0.216 -0.375
Coverage -0.432 -0.043 0.312 0.364 -0.362
Occurrence -0.302 -0.081 0.289 0.381 -0.297
State 1 -0.353 0.096 0.327 0.362 -0.240
3 c State2 -0.379 -0.211 0.260 0.437 -0.338
T’E © State 3 -0.362 -0.254 0.307 0.232 -0.315
S%  State 4 -0.301 -0.235 0.182 0.216 -0.365
State 5 -0.320 -0.028 0.418 0.431 -0.376
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0.05, although after FDR correction no EC dynamic features significantly correlated with MDS-UPDRS.

Similar dynamic features were obtained for states 2 and 3 in EO, with no difference between both groups (see Table 5). Some
dynamic features of states 4, 5 and 6 yielded weak differences between groups and/or weakly correlated with MDS-UPDRS (uncor-
rected p < 0.05), but with no significant results (see Table 6). The main changes in PD occurred for states 1 and 7; we found signif-
icantly higher coverage and frequency occurrence of state 1, with a significantly increased transition from states 2, 3, 5, 6, and 7 to 1
(FDR correction). These dynamic features, except the auto-transition of state 1 — 1, also showed a significantly negative correlation
with MDS-UPDRS (FDR correction).

Both duration of state 7 and auto-transition 7 — 7 were significantly higher in the PD group, and also significantly correlated with
MDS-UPDRS (FDR correction). Both coverage and transition of state 1 — 7 seemed to increase in the PD subjects, while the transition
from state 2 — 7 was lower, but no significant result was achieved after FDR correction. Again, these dynamic features did not yield a
significant positive correlation with the MDS-UPDRS score.

In the region activation difference between the groups we found similar results for different microstates under the same eye
conditions. Table 7 shows the significant region activations between the healthy and PD group. In EC, PD showed hyperactivation in
regions of the frontal lobe and also the anterior cingulate gyrus of the limbic lobe. The hypoactivation regions in PD were mostly
located in the parietal lobe, along with regions in the limbic, temporal, and occipital lobes. The PD default mode network and the
sensorimotor network showed hypoactivation.

We also found hyperactivation and hypoactivation in the frontal, and parietal lobes, but in different regions, except for the
hyperactivation of the limbic lobe, which did not show any hypoactivation. These lobules were the frontal and parietal, including the
hyperactivation of the left precentral gyrus (motor area) and the left postcentral gyrus (somatosensorial area), and the hypoactivation
of the right postcentral gyrus (somatosensorial area). The interhemispheric asymmetry should be mentioned in EO, in contrast to EC,
which had a more symmetric distribution. No significant activation was found for DMN in EO.

4. Discussion
4.1. Microstate dynamic features

This study involved a microstate analysis of both EC and EO sensor-space and source-space EEG. In a previous study, Pal et al. [21]
considered the lower frequency of occurrence of microstate D to be the hallmark signature of PD in EC. The microstate of PD patients
has also been shown to have longer durations and more frequent occurrence than in healthy controls in EC, but only the frequency of
occurrence of microstate A significantly correlates with MDS-UPDRS [22]. Lamos [23] found that the time coverage of microstate D,
associated with the supplementary motor area, reflected the effect of DBS treatment on PD motor symptoms, while the microstate of PD
patients provided higher mean beta power than the control group. However, we did not find any difference in scalp microstate dynamic
features between the PD and healthy groups in EC, which could be related to various factors. Firstly, our database was relatively small,
which makes it more difficult to obtain statistical differences. The progressive nature of the disease, plus the additional confusion of a
different disease etiology can also contribute to these controversial results [38]. In addition, we assessed the capability of scalp and
source microstate dynamic features to predict PD in both EC and EO and confirmed that, although the scalp microstate features
contained information to differentiate PD from healthy subjects, their performance was lower than the source space microstate fea-
tures. We also confirmed the underperformance of EC in comparison to EO (the results are not shown in the manuscript due to the bias
of the small sample size).

Serrano et al. [26] assessed the levodopa effect on PD using the resting state scalp microstate analysis in EO. They found that
microstate A duration decreases after a levodopa intake and microstate B appears more times than before a levodopa intake, which

Table 5

Statistical analysis of cortical microstate dynamic features to distinguish healthy and PD subjects in EO. Significantly increased
and decreased features (uncorrected p-value<0.05) are shaded in turquoise and grey, respectively. Asterisk indicates statis-
tically significant difference after FDR correction.

To
HC vs. PD State1 State2 State3 State4 State5 State6 State7
Duration 0.458 0.539 0.917 0.090 0.047 0.092 0.006*

Coverage 0.024* 0.321 0.148 0.047 0.101 0.111 0.024
Occurrence <0.001*  0.195 0.104 0.089 0.164 0.160 0.100

State 1 0.164 0.153 0.290 0.068 0.138 0.187 0.047
State 2 0.008*  0.490 0.091 0.030 0.296 0.126 0.037
3 g State3 0.017*  0.505 0.867 0.109 0.109 0.179 0.079
é O State4 0.078 0.145 0.130 0.100 0.083 0.259 0.266
S State5 0.004*  0.695 0.273 0.475 0.034 0.209 0.448
State 6 0.009*  0.221 0.398 0.110 0.150 0.048 0.185
State 7 0.010*  0.281 0.078 0.178 0.178 0.178 0.006*
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Table 6

Spearman coefficient between MDS-UPDRS and cortical microstate dynamic features in EO. A significant positive and negative
correlation (uncorrected p-value<0.05) is shaded in blue and grey, respectively. Asterisk indicates statistically significant
difference after FDR correction.

To
HD vs. PD State1 State?2 State3 State4 State5 State6 State7
Duration -0.250 0.150 0.130 0.235 0.450* 0.370 0.499*

Coverage -0.502* -0.132  -0.211 0.254 0.212 0.215 0.415
Occurrence = -0.543* -0.233 -0.284 0.211 0.151 0.186 0.300

State 1 -0.250 -0.203  -0.153 0.222 0.215 0.179 0.408
State 2 -0.553*  0.150 -0.260 0.282 0.148 0.184 0.275
3 g State3 -0.536* -0.165 0.130 0.231 0.143 0.233 0.251
g o State4 -0.477* -0.213  -0.307 0.235 0.214 0.142 0.111
=" State5 -0.501* -0.270 -0.174 0.121 0.450* 0.242 0.026
State 6 -0.490* -0.239 -0.173 0.212 0.168 0.370 0.206
State 7 -0.564* -0.085 -0.304 0.158 0.150 0.152 0.498*

could be due to lower fatigability in visual monitoring. Again, we did not find any significant alterations in these microstates. By
contrast, we did find that microstate F in EO better differentiated PD patients and healthy subjects and better correlated with
MDS-UPDRS (see Supplementary Material). The frontal-parietal network, which mainly occurs in 4-13 Hz o/6 rhythm, regulates the
spontaneous decisions involved in planning and is essential for coordination in a rapid, accurate, and flexible goal-driven manner [39].
There is a great deal of evidence to show that PD is linked to the shifting of the dominant neuronal activity frequency from the alpha to
theta rhythm, so that giving importance to the o/0 ratio may serve as one of the most typical characteristics of the disease [12,40,41].

To the author’s knowledge, this is the first microstate analysis in source-space resting EEG to detect PD. We found that source-space
microstate analysis is much more sensitive than sensor-space by carrying out a classification algorithm, but the number of subjects was
not enough to generalise the results. The main changes were the higher duration of states 3 and 4, which are mainly linked to the right
sensorimotor and left frontal activities. These changes could be related to alterations in the attention and executive functions present in
PD [42-44]. We also found lower duration of state 1 focused on the occipital region in EC and a longer duration of the same state in EO,
which is in line with recent studies that suggest reduced a-reactivity as a hallmark PD signature [45-48]. Physiologically, these
phenomena reflect poor visual information processing in PD patients, which is associated with a marked deficit in the cholinergic
system caused by degeneration of the nucleus basalis of Meynert [45]. Cholinergic dysfunction is also strongly linked to cognitive
deficits in PD subjects with dementia [49]. A higher sensorimotor microstate duration has previously been associated with movement
disorders [50] and cognition and perception functions [17], although no dynamic EC features showed a significant correlation with
MDS-UPDRS after FDR correction. By contrast, the dynamic features of states 1, 5, and 7 in EO — associated with the visual network,
bilateral frontal activities, and bilateral sensorimotor activities, respectively — showed a significant correlation with MDS-UPDRS,
suggesting a relationship with clinical PD symptoms. In other words, the microstate dynamic features extracted from EO may bet-
ter describe PD clinical symptoms than those obtained from EC. As this finding partially agrees with other studies [10,29-31] we
therefore strongly recommend including EO in the clinical practice recording protocol.

4.2. Differences in region activation

The fact that we found significant activation regions between PD and healthy subjects in both EC and EO could be associated with
the compensation mechanism for reorganizing resources in neurological disorders. Our EC results in general agree with previous fMRI
studies. For example, Ma et al. [51] found that both tremor-dominant PD and postural instability-dominant PD contained disrupted
regions that involved the basal ganglia, cerebellum, superior temporal gyrus, insula, pre- and postcentral gyri, inferior frontal gyrus,
middle temporal gyrus, lingual gyrus, and parahippocampal gyrus, the last 5 of which match with our results. Pan et al. [52] showed
that the most consistent and replicable findings in PD were hypoactivation in the bilateral supplementary motor areas, left premotor
cortex, left inferior parietal gyrus, and hyperactivation in the right inferior parietal gyrus. This partially agrees with the hypoactivation
in the bilateral inferior parietal lobule we found in the present work. The hypoactivity in the bilateral cuneus cortices were also
replicable in 14 of the analysed datasets, which supports our results.

In comparison to healthy subjects, PD in normally cognitive patients showed significantly higher local neural synchronization in
the right middle frontal gyrus and lower local synchronization in the left supramarginal gyrus, bilateral inferior parietal lobule, and the
right postcentral gyrus [53]. PD subjects showed hypoactivity, default mode network (DMN), and in the sensorimotor network,
[54-57]. This hypoactivation in the postcentral gyrus agrees with our result. Tessitore et al. [58] found reduced resting-state functional
connectivity of the right medial temporal lobe and bilateral inferior parietal cortex in the DMN, which agree with our finding. We
found PD subjects had hypoactivity in the bilateral inferior temporal gyrus extending to other regions of the DMN, such as the fusiform
and parahippocampal gyri and precuneus, in line with previous studies [59,60].

Increased neuronal synchronization was found in PD patients in the frontal, primary sensory cortex, and cerebellar regions [55,56,
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Table 7

Brain regions that yield an activation when comparing PD patients and healthy subjects. The regions in the first column are
classified as hyper or hypo activated and EC or EO. Regions belonging to the DMN are shaded in green, and the sensorimotor
network in orange.

Hyperactivation Hypoactivation

Regions EC EO EC EO

Superior Frontal Gyrus,
Frontal Lobe, BA9

Medial Frontal Gyrus,
Frontal Lobe, BA10

Right Middle Frontal Gyrus,
Frontal Lobe, BA 46
Middle Frontal Gyrus,
Frontal Lobe, BA9

Left Precentral Gyrus,
Frontal Lobe, BA 6

Left Inferior Frontal Gyrus,
Frontal Lobe, BA47
Anterior Cingulate Gyrus,
Limbic Lobe, BA24
Posterior Cingulate,
Limbic Lobe, BA31
Parahippocampal Gyrus,
Limbic Lobe, BA19

Inferior Parietal Lobule,
Parietal Lobe, BA40
Precuneus,

Parietal Lobe, BA7
Supramarginal Gyrus,
Parietal Lobe, BA40

Right Supramarginal Gyrus,
Parietal Lobe, BA40
Postcentral Gyrus,

Parietal Lobe, BA1

Left Postcentral Gyrus,
Parietal Lobe, BA2

Right Postcentral Gyrus,
Parietal Lobe, BA2

Right Superior Parietal Lobule,
Parietal Lobe, BA7
Angular Gyrus,

Parietal Lobe, BA39
Middle Temporal Gyrus,
Temporal Lobe, BA37
Inferior Temporal Gyrus, Temporal
Lobe, BA20

Cuneus,

Occipital Lobe, BA19
Fusiform Gyrus,

Occipital Lobe, BA19
Lingual Gyrus,

Occipital Lobe, BA19

X

X
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61,62]. Hyperactivation in the posterior supplementary motor area, the anterior cingulate cortex and the primary sensorimotor
cortices was suggested as a cortical motor reorganization in PD during a complex sequential motor task [63]. These findings supported
the hyperactivation in both medial and superior frontal gyrus as well as the left precentral gyrus in PD patients in this work. We found
that the alteration of regional activation was symmetrically distributed in EC, and more lateralized in EO. We did not find any sta-
tistical difference in DMN between PD and healthy subjects in EO, suggesting that this network depends on the eye condition. This may
be related to the fact that the effective connectivity within the DMN improved in EO, which could be related to mood and emotional
perception [35]. This phenomenon was also present in the visual network, but the sensorimotor network remained altered regardless
of the recording condition. The alterations of regional activation indicate disease-related functional deficits secondary to degeneration
of the dopaminergic neurons of the nigrostriatal system, so that further studies should be conducted to corroborate the regulation of
the eye state.

To sum up, PD showed abnormal brain activity in multiple regions, including the frontal, limbic, parietal, temporal and occipital
lobes, which could have been due to the neuropathological brain reorganizing its functional networks. The most important of these
changes included hypoactivation of the default mode network and the altered EC sensorimotor network and visual network, while the
alteration of the regional activation occurred symmetrically in EC but was asymmetrically distributed in EO.

4.3. Limitations of the study and future perspectives

This work is not exempt from limitations; firstly, the sample size was relatively small and further studies should be carried out to
further corroborate the results. It also limits the design of a robust and generalisable PD prediction and detection model. The half-width
of the confidence interval with only 13 PD subjects can be expected to be relatively high (approximately 0.23 for a sensitivity of 0.75,
which means it can range from 0.52 to 0.98) and calls its real usefulness into question. At least 70 patients are required in even a
balanced database to obtain a computer-assisted aid prediction system for preterm labour with a sensitivity range of [0.8-1] and
specificity of [0.8-1]. In this regard, the technical and scientific community urgently needs a comprehensive database that includes the
various causes of PD and serves as a platform that benchmarks diverse methods and identifies the most reliable EEG biomarkers of the
disease’s progress. We did not evaluate whether the microstate dynamic features provided complementary or redundant information
to quantitative EEG analysis or other techniques. Future works should be directed towards the development of computer-assisted Al
tools to predict the risk of PD even in the prodromal phase before the first symptoms appear and estimate its progress. In this context, a
10-year longitudinal study of the general population with an age range of 50-60 could offer valuable insights into neuropathological
EEG changes and aid in preventing neurodegenerative diseases.

The microstate analysis method we used can only recognize less than 90 % of the EEG signals in each subject. In this regard, Chu
et al. proposed an EEG microstate recognition framework based on deep neural networks that yielded recognition rates of from 90 % to
99 % [64]. These anti-artifact properties will considerably simplify the signal preprocessing step, enhance reproducibility and help to
transfer the system to clinical practice.

5. Conclusions

In this study we found that the source-space microstate dynamic features were more sensitive in discriminating PD from healthy
subjects and also correlated better with the MDS-UPDRS score than those in the sensor-space microstate. Both the visual and senso-
rimotor networks-related source-space microstates showed abnormal dynamic features in both EC and EO, the latter being more
sensitive in detecting neuropathological changes in PD. PD showed a significantly higher occurrence and coverage of the microstates
related to the visual network in EO, along with an abnormally prolonged duration of the microstates associated with the sensorimotor
network. These abnormal dynamic patterns not only distinguish PD patients from healthy controls but are also moderately correlated
with the MDS-UPDRS score, emphasising the importance of including both the EC and EO conditions in the recording protocol.

EEG microstate analysis is thus seen to be a robust and reproducible technique that could provide a reliable diagnosis in a very short
time and could be used as a complementary screening technique for early detection of PD and/or better evaluation of the progress of
the disease.
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