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Protein-ligand interactions are a necessary prerequisite for signal transduction, immunoreaction, and gene regulation. Protein-
ligand interaction studies are important for understanding the mechanisms of biological regulation, and they provide a theoretical
basis for the design and discovery of new drug targets. In this study, we analyzed the molecular interactions of protein-ligand
which was docked by AutoDock 4.2 software. In AutoDock 4.2 software, we used a new search algorithm, hybrid algorithm of
random drift particle swarm optimization and local search (LRDPSO), and the classical Lamarckian genetic algorithm (LGA) as
energy optimization algorithms. +e best conformations of each docking algorithm were subjected to molecular dynamic (MD)
simulations to further analyze the molecular mechanisms of protein-ligand interactions. Here, we analyze the binding energy
between protein receptors and ligands, the interactions of salt bridges and hydrogen bonds in the docking region, and the
structural changes during complex unfolding. Our comparison of these complexes highlights differences in the protein-ligand
interactions between the two docking methods. It also shows that salt bridge and hydrogen bond interactions play a crucial role in
protein-ligand stability.+e present work focuses on extracting the deterministic characteristics of docking interactions from their
dynamic properties, which is important for understanding biological functions and determining which amino acid residues are
crucial to docking interactions.

1. Introduction

Molecular docking methods are of utmost importance and
have been widely used in new drug design and discovery
projects [1–3]. Molecular docking methods can provide a
relatively fast and economical alternative to standard ex-
perimental techniques [4, 5]. +ey aim to predict the ex-
perimental binding modes and affinities of small molecules
within the binding site of particular receptor targets. Two
important goals in molecular docking are to find correct
binding poses and to accurately predict binding affinity.
More accurate predictions of binding poses and binding
affinities can suggest candidates for active compounds with
higher true positive rates and can considerably reduce ex-
pensive experimental efforts [6]. +e quality of molecular

docking depends on two factors: the optimization search
method and the scoring function [7–9]. An optimization
algorithm mainly detects docking conformations with
minimum binding energies. +e scoring function is used to
evaluate the results obtained from the search. In this article,
we used AutoDock 4.2 software to perform molecular
docking. In AutoDock 4.2, a new hybrid algorithm of
random drift particle swarm optimization with local search
(LRDPSO) [10] and Lamarckian genetic algorithm (LGA)
[11] were used as energy search algorithms. Here, random
drift particle swarm optimization (RDPSO) algorithm is a
variant of the particle swarm optimization algorithm (PSO).
LGA is a combination of a genetic algorithm (GA) and a
local search (LS) and is one of the classical energy search
algorithms in AutoDock 4.2 software.
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In this study, oligopeptide binding protein (OppA) [12]
was used as the experimental object. OppA can act as a
receptor for peptide transport across the cell membrane and
is a potential target in antibacterial drug design [13]. It has
broad specificity and can bind to a wide range of peptides
that are 2–5 amino acid residues long. Here, we used the
sequence Lys-Tyr-Lys as the ligand binding structure. +e
OppA structure (PDB code 1B58 [14]) consists of three
domains: domain I contains residues 1–44, 189–269, and
487–517; domain II contains residues 45–188; and domain
III contains residues 270–486. Domains I and II have a
bilobate structure, allowing the ligand to act as a flexible
hinge connecting the two lobes. In the protein-ligand
complex structure, ligands are completely contained in
the protein interior [15]. For LRDPSO and LGA, we selected
the two best solutions for 1B58 in terms of binding energy.
+e lowest binding energies in LRDPSO and LGA were
−25.09 kcal/mol and −12.74 kcal/mol, respectively.

Protein-ligand interactions play an important role in most
biological processes, such as signal transduction, cell regula-
tion, and immune response [16, 17]. Studying protein-ligand
interactions continues to be very important in life science
fields [18–21]. +ere are variations in protein-ligand complex
structures due to different docking methods. In this article, we
mainly focus on analyzing the binding interactions between a
protein and a ligand, especially on the divergence of protein-
ligand interactions, which can help us understand and address
key questions, such as those related to the diversity of binding
affinity and specificity. We have performed molecular dy-
namic (MD) simulations on molecular docking results at four
different temperatures (ranging from 300K to 600K) to es-
tablish a more reliable mechanism for illustrating ligand-
protein interactions. +e dynamic properties of complexes
have been compared in terms of residue flexibility, binding
energy, salt bridge, and hydrogen bond interactions in the
binding region and structural variations during unfolding at
different temperatures. +is study provides a better un-
derstanding of the specific interactions predicted by different
docking methods, and it also allows us to more precisely study
a binding site or region to increase docking accuracy.

2. Materials and Methods

2.1. Protein and Ligand Structure Preparation. +e OppA
structure (PDB code 1B58 [14]), which was obtained from the
RSCB protein data bank (http://www.rcsb.org/), was used as a
receptor of the experimental object.+e sequence Lys-Tyr-Lys,
which contains 43 atoms, was used as the ligand structure.+e
docking results were used as models for the MD simulation.

2.2. Genetic Algorithm (GA). AutoDock has been applied
with great success in the prediction of binding conforma-
tions of protein-protein interactions, peptide-antibody
complexes, and enzyme-inhibitor complexes. Earlier ver-
sions of AutoDock used simulated annealing as a search
method; a subsequent version added the options of a GA, a
LS method, and a combination of GA and LS, which is called
LGA. In LGA, a GA is used for global searching, and Solis

and Wets [22] is used as the LS method. Each generation is
followed by a LS, which is performed on a user-defined
proportion of the population.

Genetic algorithm [23, 24] is a population-based meta-
heuristic algorithm, which contains initial population gen-
eration, fitness function evaluation, iteration, and termination
condition check off four steps. In addition, every iteration step
includes selection, crossover, and mutation operations. +e
pseudocode of GA is described in Algorithm 1.

2.3. HybridAlgorithm of RDPSOand Local Search (LRDPSO).
RDPSO [25] is derived from canonical PSO trajectory
analysis [26] and the free electron model. Particle behavior
in RDPSO is assumed to be similar to an electron moving in
a metal conductor in an external electric field. Particle
movement is thus the superposition of thermal and drift
motions, which is based on a global search and local search
of the particle, respectively.

In a RDPSO with M individuals, each individual is
treated as a volumeless particle in the N-dimensional space.
Vi,n � (V1

i,n, V2
i,n, . . . , VN

i,n) and Xi,n � (X1
i,n, X2

i,n, . . . , XN
i,n)

are expressed as the velocity vector and the position vector of
particle i at the nth iteration, respectively.

According to the above model, the updated equations of
RDPSO can be expressed by the following equation:
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for i � 1, 2, . . . , M; j � 1, 2, . . . , N, where α> 0 is a parameter
called the thermal coefficient and β> 0 is another parameter
called the drift coefficient. ϕj

i,n is a random number,
ϕj

i,n ∼ N(0, 1). p
j
i,n is the local attractor of PSO algorithm. Pj

i,n

is the personal best (pbest) position of particle i. Cj
n is defined

by the mean of the pbest positions of all particles, called the
mean best (mbest) position. +e pseudocode of RDPSO is
described in Algorithm 2.

+e hybrid of the RDPSO algorithm with the Solis and
Wets algorithm together form the LRDPSO algorithm. Here,
the RDPSO algorithm is used as a global search algorithm,
and the Solis and Wets algorithm is used as a local search
algorithm. +e Solis and Wets algorithm can facilitate
torsional space search, since it does not require gradient
information about the local energy landscape [22, 27]. +e
addition of local search effectively maintains the diversity of
particles and prevents premature convergence of the algo-
rithm. +erefore, the effective combination of the RDPSO
algorithm and the Solis and Wets algorithm can provide a
good global search ability and a rapid convergence ability.
+e pseudocode of LRDPSO is described in Algorithm 3.

2.4. !e Docking Experiment Settings. In molecular docking
experiments, the prepared protein and ligand structures
were saved in the PDBQT file format. +e AutoDockTools
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(ADT) was used as molecular graphical visualization tool.
+e AutoDock package includes AutoGrid program and
AutoDock program. AutoGrid program is responsible for

the calculation of energy grid maps; here, a grid size was set
to 60 × 60 × 60 points with a spacing of 0.375 Å. AutoDock
program is responsible for the conformation search and

(1) Initialize population P0;
(2) While (g < maximum) do
(3) Rg⟵recombine(Pg);
(4) Mg⟵mutate(Rg);
(5) Evaluate (Mg);
(6) Pg+1⟵select(Mg ∪Rg);
(7) End while

ALGORITHM 1: Pseudocode of GA.

(1) Initialize the positions and velocities of all particles randomly;
(2) Evaluate the objective function value f(Xi,n);
(3) Set the personal best position of each particle to its current position;
(4) Set n � 0;
(5) While (termination condition � false) do
(6) n � n + 1;
(7) Compute mean best position Cn according to equation (3);
(8) For (i � 1 to M)
(9) Update the personal best position (Pi,n) and global best position (Gn);
(10) For (j � 1 to N)
(11) V

j
i,n+1 � α|Cj

n −X
j
i,n|ϕj

i,n + β(p
j
i,n −X

j
i,n);

(12) X
j

i,n+1 � X
j

i,n + V
j

i,n+1;
(13) End for
(14) Evaluate the objective function value f(Xi,n+1);
(15) End for
(16) End while

ALGORITHM 2: Pseudocode of RDPSO.

(1) Initialize the positions and velocities of all the particles randomly;
(2) Evaluate the docking energy value f(Xi,n);
(3) Set the personal best position of each particle to be its current position;
(4) Set n � 0;
(5) While (termination condition � false) do
(6) n � n + 1;
(7) Compute mean best position Cn according to equation (3);
(8) For (i � 1 to M)
(9) Update the personal best position (Pi,n) and global best position (Gn);
(10) Calculate the velocity Vi,n+1 using equation (1);
(11) Calculate the position Xi,n+1 using equation (2);
(12) Evaluate the docking energy value f(Xi,n+1);
(13) End for
(14) Apply the Solis and Wets to the best particle among all Xi,n+1;
(15) For (i � 1 to M)
(16) if Xi,n+1 better than Pi,n then
(17) Pi,n+1 � Xi,n+1;
(18) else
(19) Pi,n+1 � Pi,n;
(20) End for
(21) End while
(22) Return the best position among all Pi,n as optimal solution;

ALGORITHM 3: Pseudocode of LRDPSO.
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energy evaluation; here, for LRDPSO and LGA algorithms,
the initial population was set to 50 individuals, the number
of energy function evaluations was set to 2.5 × 105, and
maximum number of generations was set to 27,000. +e
detail setting information refers to reference [10]. We fol-
lowed the methods of Fu et al. [10]. In that article, we
concentrate on discussing the design of LRDPSO algorithm
and its application in protein-ligand docking.

2.5. Molecular Dynamic (MD) Simulation. Docked protein-
ligand complexes were subjected to molecular dynamic
simulations using NAMD software [28]. MD simulations
were performed using the CHARMM27 force field [29].
Visual molecular dynamics (VMD) [30] was used to generate
PSF files for both complexes. Both complexes were solvated in
cubic water boxes containing transferable intermolecular
potential with 3 points (TIP3P) water molecules [31].+e box
size was chosen so that there was a distance of 10 Å between
the protein surface and the edges of the periodic box. A 12 Å
cutoff distance was used to calculate short-range nonbonded
interactions.+e particlemesh Ewald (PME) [32]methodwas
used to calculate long-range electrostatic interactions. +e
SHAKE method [33] was used to constrain all bonds in-
volving hydrogen atoms. +e system first performed 10000
steps of steepest descent with energy minimization. +en, the
minimized system was used to perform simulations using an
NVT ensemble. +e Nosé–Hoover method [34] was used to
maintain a constant temperature. +e simulated temperature
was set in the range of 300K to 600K with an interval of
100K. +e simulation time for each simulated temperature
was set to 10 ns. +e time step of each simulation was set to
2 fs. Visualizations and data analysis were performed with
VMD software.

3. Results and Discussion

3.1. Molecular Docking Energy Analysis. A semiempirical
free energy scoring function was used to evaluate a docked
conformation in AutoDock 4 [11]. +e total docked energy
of the ligand and protein included two components, which
are the intramolecular energy and the intermolecular energy.
+e intramolecular energy was evaluated for the transition
from the unbound state to the bound conformation of the
ligand and protein.+e intermolecular energy was estimated
for the combination of the ligand and the protein in their
bound conformation.

+e force field consists of six pairwise evaluations (V)
and an estimate of the conformational entropy lost upon
binding (ΔSconf ):

ΔG � V
L−L
bound −V

L−L
unbound  + V

P−P
bound −V

P−P
unbound 

+ V
P−L
bound −V

P−L
unbound + ΔSconf ,

(4)

where P refers to the “protein” and L refers to the “ligand” in
a protein-ligand docking calculation.

Each of the pairwise energetic items includes the fol-
lowing energy: the first item is a Lennard-Jones 12-6 van der
Waals interaction, the second item is a 12-10 hydrogen bond

potential, the third item is a coulombic electrostatic po-
tential, and the final item is a desolvation potential.
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We used the sequence Lys-Tyr-Lys, which contains 43
atoms, as the ligand structure. Table 1 shows a comparison of
the best solutions obtained (out of 30 independent runs)
from both LRDPSO and LGA for the OppA complex.
Figure 1 shows a comparison of each ligand atom binding
electrostatic energy and van der Waals energy. In general, as
indicated in Table 1 and Figure 1, the electrostatic and van
derWaals energy of the complex were lower when docked by
LRDPSO than when docked by LGA. In the molecular
docking predicted complex, a lower binding energy was
assumed to be closer to the native state of the complex. For
both complexes, the LRDPSO complex was energetically
more stable than the LGA one given the obtained energy
results; the lowest binding energy corresponded to −-
25.09 kcal/mol for the LRDPSO complex structure and −-
12.74 kcal/mol for the LGA one. Both ligands were docked to
the site of protein 1B58, but the LRDPSO ligand confor-
mation had a better docking position and a root mean square
deviation (RMSD) of 0.63 Å. +e RMSD of the LGA docking
was 2.00 Å (Figure 2).

For LRDPSO and LGA, we selected the two best solutions
with the lowest binding energy in analysis. +e ligand con-
formations in LRDPSO and LGA and the reference ligand are
compared in Figure 2. Figure 2(a) shows the best energy
solution (the ligand in magenta) obtained by LRDPSO for
protein 1B58 and the reference ligand (in green). Figure 2(b)
shows the solution selected from LGA and the reference
ligand. As shown, the ligand has a better conformation in
Figure 2(a) than in Figure 2(b) given that the ligand con-
formation obtained by LRDPSO is very similar to that of
the reference ligand. +e RMSD scores of the ligand con-
formations by LRDPSO and LGA were 0.63 Å and 2.00 Å,
respectively.

3.2. Structural Stability Analysis upon Ligand Binding.
We assessed the residue RMSD to study the residue behavior
of the protein during the simulations. In general, a residue’s
RMSD value was considered to represent the local flexibility
of a protein. It reflected the mobility of an atom during the
MD simulation trajectory. +erefore, a higher residue
RMSD value indicated higher mobility; conversely, a lower
residue RMSD value indicates lower mobility.

+e values of RMSD against each residue were calculated
for both complexes by MD simulation at multiple tem-
peratures. +is presentation clearly highlighted the differ-
ences in some residues of the complexes. +e results are
shown in Figure 3; for both complexes, there were relatively
small bump-like peaks for the structures at 300K. As the
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temperature increased, some regions showed significant in-
creases in fluctuation. +e curves observed for both com-
plexes exhibited great similarity in their fluctuation trends.
Only a few residues showed a great difference in heat fluc-
tuations. For example, when the simulation temperature was
300K, the RMSD values of residue PHE253 were 11.31 Å and
2.31 Å, corresponding to the LRDPSO and LGA docking
results. +e RMSD values of residue PHE44 in the LRDPSO
and LGA docking complexes were 2.30 Å and 7.65 Å, re-
spectively. In the 500K simulation, the region between
ARG41 and VAL164 had higher fluctuation in the LRDPSO
docking complex than in the LGA docking result. In addition,
for both complexes, the RMSD values of the residues asso-
ciated with the ligand were relatively low, even in the high
temperature simulations.

3.3. Salt Bridge Analysis of the Binding Domain. We docked
the tripeptide into the OppA crystal structure. +e peptide

was bound to the central cleft that surrounded domain I and
II. In the case of the OppA complex, there was a difference
between the results obtained by LRDPSO and LGA. +e
difference can be explained by the use of different stochastic
search algorithms. Next, we analyze concrete binding in-
teractions and the changes in these interactions under
thermal stress.

In this article, a salt bridge was defined according to the
criterion that the distances between any of the nitrogen
atoms of basic residues and the oxygen atoms of acidic
residues were less than 4 Å. Figure 4 shows a salt bridge
interaction associated with the ligand and the surrounding
protein residues.+e ligand can pack tightly into the binding
site through a number of favorable salt bridge interactions
with the protein. In the LRDPSO docking complex, the LYS1
of the ligand is anchored through a salt bridge interaction
with ASP419. Meanwhile, the ligand LYS3 also formed a salt
bridge interaction with GLU229 in the complex. Two sig-
nificant salt bridges (ASP419-LYS1 and GLU229-LYS3) were
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Figure 1: Comparison of the binding electrostatic (a) and van derWaals (b) energy of the ligand atom corresponding to LRDPSO and LGA.

(a) (b)

Figure 2: Molecular docking results: superposition of the predicted conformation (shown in magenta) and the native conformation (shown
in green). (a) LRDPSO docking method and (b) LGA docking method.

Table 1: Comparison of the docking energy of complexes from LRDPSO and LGA.

Complex Binding free
energy (kcal/mol)

Vdw + Hbond + desolv
energy (kcal/mol)

Electrostatic
energy (kcal/mol)

Intermolecular
energy (kcal/mol)

Internal
energy (kcal/mol)

LRDPSO docking −16.80 −16.86 −5.61 −22.47 −2.62
LGA docking −12.74 −14.51 −3.90 −18.40 −4.33
Vdw � van der Waals; Hbond � hydrogen bonds; desolv � desolvation.
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found in the binding position docked by LRDPSO. Com-
pared to the complex that was docked by LRDPSO, there was
only one salt bridge (ASP419-LYS1) located in the binding
region in the LGA-docked complex.

Figure 5 shows the changes in the salt bridge distance
in the last 8 ns of the simulations. In the dynamic simula-
tion at 300K, salt bridge ASP419-LYS1 was stable during the

simulation in both complexes. In the 400K simulation, the
salt bridges of both complexes experienced a short separation
during the simulation, but they were mostly maintained at
a distance of approximately 4.0 Å. In comparison, salt bridge
ASP419-LYS1 was found to be more stable in LRDPSO
docking than in LGA docking. +e average distance of
ASP419-LYS1 in the LRDPSO and LGA docking was 3.98 Å
and 4.18 Å, respectively. Along with the increase in the
simulated temperature, the distance of the salt bridge also
changed. In the 500K simulation, ruptures and restorations of
salt bridge ASP419-LYS1 were observed along the whole
simulation process. +e most obvious difference in this salt
bridge between the two complexes was that salt bridge
ASP419-LYS1 in the LGA docking was completely separated
during the last 5 ns of the simulation. +e disruption of salt
bridge ASP419-LYS1 probably greatly weakened ligand
binding under extremely high temperatures.

+e other salt bridge (GLU229-LYS3) was found in only
the LRDPSO docking result. Among the four different
temperatures, the salt bridge was the most unstable in the
400K simulation, and it was maintained within a short
distance during only the first 400 ps of the simulation.
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Figure 3: Plot of RMSD and the residue number of the docked complex in the MD simulated structures at different temperatures. (a)
LRDPSO-docked complex and (b) LGA-docked complex.

Figure 4: An overview of the location of salt bridges in the binding
domain of the LRDPSO-docked complex. +e dashed line repre-
sents a salt bridge interaction. +e adjacent number is the corre-
sponding distance of the salt bridge.
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Although the salt bridge plot showed several transient
separations in the 500K and 600K simulations, the salt
bridge remained at a short distance most of the time. Finally,
the salt bridge was completely separated after 6.5 ns of
simulation at 600K.

3.4. Hydrogen Bond Analysis upon Ligand Binding.
Hydrogen bonds are another important factor that in-
fluences protein stability. Here, a distance cutoff of 3.5 Å and
an angle cutoff of 30° were applied in the hydrogen bond
calculation. +e study showed that the ligand was entirely
buried in the interior of OppA. +e main chain and side
chain of the ligand could form strong hydrogen bond in-
teractions with the binding site residues of OppA.

Figure 6 shows the hydrogen bond interactions associ-
ated with the ligand and the surrounding protein residues in
the LRDPSO docking result. LYS1 forms hydrogen bonds
with the side chain of ASP419 and with the main chain of
CYS417, and LYS3 forms a hydrogen bond with the side
chain of ARG413. In both docking complexes, hydrogen
bonds are listed in Tables 2 and 3. Both tables also list the
occupancy time of hydrogen bonds in the binding region
during the simulation from temperatures of 300K to 600K.
As shown in the tables, hydrogen bonds are a significant
factor that contributes to the stability of protein-ligand
binding interactions in both docking complexes. Mean-
while, several hydrogen bond networks exist in the binding

region. It can be seen that some hydrogen bonds (listed in
the tables) did not exist individually. In the LRDPSO
docking result, LYS1 of the ligand could form a hydrogen
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Figure 5: Plot of salt bridge changes in the binding domain as a function of time. (a) Salt bridge ASP419-LYS1 changes in the LRDPSO-
docked complex during the simulation from 400K to 600K; (b) salt bridge GLU229-LYS3 changes in the LRDPSO-docked complex during
the simulation from 400K to 600K; (c) comparison plot of salt bridge ASP419-LYS1 in both complexes during the 600K simulation.

ARG404

GLY415
ARG413

GLU32

TRP416

ASP419

LEU504
CYS417

VAL34

HSD371

ASN506

Figure 6: Critical residues of the hydrogen bonds in the binding
domain of the LRDPSO-docked result. Residues are shown as ball
and stick models, and the ligand is shown in new cartoon secondary
structure style. +e residues are shown in different colors: yellow
for the hydrogen bond network of LYS1 of the ligand, red for the
hydrogen bond network of TYR2 of the ligand, and green for the
hydrogen bond network of LYS3 of the ligand.
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bond with the receptor residues ASP419, TRP416, CYS417,
LEU504, and ASN506, and TYR2 could form a hydrogen
bond with GLU32, VAL34, and ARG404. LYS3 formed a
hydrogen bond with ARG413, HSD371, and GLY415. +ese
hydrogen bond networks played a positive role in
strengthening the binding effect between the protein and
ligand.

+e average number of hydrogen bonds in both com-
plexes is listed in Table 4. As the simulation temperature
increased, the protein fold structure was generally weakened,
and the structure also became more distorted. +ese effects
resulted in a concomitant decrease in the number of hy-
drogen bonds at high temperatures. Figure 7 indicates the
number of hydrogen bond changes over simulation time.
+e number of hydrogen bonds was maintained to a certain
extent during the simulations. An interesting finding is that
the number of hydrogen bonds did not decrease dramati-
cally with increases in the simulated temperature. When the
temperature increased to 600K, the loss of hydrogen bonds
was comparatively higher than at other temperatures. +is
finding also indicates that the disruption of tertiary struc-
tural folds is extremely prominent at a temperature of 600K.

At the same time, the occupancy time of hydrogen bonds
also decreased as the simulation temperature increased. +e
occupancy time of hydrogen bonds in both complexes is listed
over the simulation temperature range of 300K to 600K in
Tables 2 and 3. +e types of hydrogen bonds in the two
complexes are almost the same. Only a few hydrogen bonds
are different. For the hydrogen bonds that were formed from
the same two amino acids, the occupancy time varied in
different complexes. For the LRDPSO docking complex, four
hydrogen bonds had a high occupancy time (>50%) in the
600K simulation. However, only two hydrogen bonds in the
LGA docking complex had a high occupancy time.

Table 2: Occupancy time of hydrogen bonds in the binding domain of the LRDPSO-docked complex at different temperatures.

Donor Acceptor Occupancy
time (%) (300K)

Occupancy
time (%) (400K)

Occupancy
time (%) (500K)

Occupancy
time (%) (600K)

ARG413-side LYS3-side 100 100 100 100
LYS1-main ASP419-side 100 100 92.79 92.39
ARG404-side TYR2-side 100 72.53 2.92 1.51
ARG413-side LYS3-main 100 54.61 76.1 68.13
LYS1-main TRP416-side 100 100 31.5 13.51
CYS417-main LYS1-main 89.58 86 77.86 66.16
LYS3-main GLY415-main 89.35 83.7 65.39 46.06
LYS1-side ASN506-side 87.25 37.96 3.19 2.46
LYS1-main CYS417-main 85.43 76.36 39.27 49.8
TYR2-main GLU32-main 79.58 50.61 45.56 20.99
LYS1-side ASP419-side 66.58 61.30 64.63 35.96
VAL34-main TYR2-main 63.90 68.97 34.23 30.07
LYS1-side LEU504-main 59.15 26.52 2.95 3.95
LYS3-side HSD371-side 52.33 0.61 0.16 1.04

Table 3: Occupancy time of hydrogen bonds in the binding domain of the LGA-docked complex at different temperatures.

Donor Acceptor Occupancy
time (%) (300K)

Occupancy
time (%) (400K)

Occupancy
time (%) (500K)

Occupancy
time (%) (600K)

ARG413-side LYS3-side 100 100 100 85.78
ARG404-side TYR2-side 100 100 11.58 5.8
LYS1-main TRP416-side 100 100 67.93 14.29
ARG413-side LYS3-main 100 100 93.55 51.71
LYS1-main ASP419-side 94.37 100 99.3 46.38
CYS417-main LYS1-main 92.25 87.1 80.22 41.29
LYS1-main CYS417-main 85.62 67.95 61.67 24.05
LYS1-side ASP419-side 83.87 86.03 62.23 34.33
LYS3-main GLY415-main 80.48 62.68 61.62 30.8
VAL34-main TYR2-main 74.75 80.47 20.37 27.76
TYR485-side LYS3-side 70.33 11.2 16.12 3.4
TYR2-main GLU32-main 68.58 44.52 58.4 21.9
LYS1-side HSD161-side 61.48 8.3 34.8 1.14

Table 4:+e average number of hydrogen bonds in both complexes
in different temperature simulations.

Complex
Average
number
(300K)

Average
number
(400K)

Average
number
(500K)

Average
number
(600K)

LRDPSO-docked
complex 208 200 182 155

LGA-docked complex 216 198 185 156
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3.5. Structural Variation in Unfolding upon Ligand Binding.
Under thermal stress, protein local conformations usually
undergo changes. Due to the loss of interactions between
residues, a regular secondary structure is often transformed
into an irregular secondary structure. +e process of
unfolding under thermal pressure was not the same in the
two complexes as these structures were obtained by different
docking methods. +ere are differences in structural vari-
ation during unfolding. Here, an analysis of the time evo-
lution of the secondary structure (Figure 8) can present
further structural variation information.

Simulation reveals that the structures of both com-
plexes are very stable when the simulation temperature
is 300 K. In the case of the 400 K simulation, only
slight structural differences were observed for both com-
plexes. +ere was high similarity in the structures of the
two complexes corresponding to the simulation results
at 300 K and 400K. For the LGA docking result, the
complex contained five α-helixes at residues VAL34-
ASP42, PRO108-TYR115, ASP369-ILE376, TRP397-
GLN406, and PRO423-ASN428, and it also contained five
β-sheets at residues PRO268-ILE277, LEU363-TYR365,
ASN394-GLU396, VAL411-CYS417, and ILE479-VAL486.
Compared to the LGA docking complex, the LRDPSO
docking complex contained four α-helixes at residues
VAL34-ASP42, TYP112-GLN114, ASP369-ALA375, and

TRP397-GLN406, and it also contained six β-sheets at resi-
dues PRO268-ILE277, LEU312-PRO313, LEU363-ASN366,
GLU393-GLN395, VAL411-CYS417, and ALA478-VAL486.
In the LRDPSO docking complex, the structure of residues
PRO423-ASN428 was switched from an α-helix to a loop
structure relative to the LGA docking complex.

+e structural fluctuations of both complexes were
significantly more pronounced in the 500K simulation. At
the end of the simulation, the LGA-docked complex con-
tained four α-helixes and four β-sheets, whereas the
LRDPSO-docked complex contained four α-helixes (the
same as those in the LGA docking complex) and six β-sheets.
Compared to the structures before the simulations, some of
the α-helixes and β-sheets were shortened among the regular
secondary structures in the high temperature simulations.
For regular secondary structures (α-helix and β-sheet),
unfolding begins at the edges and associated turns because
the center of these structures is mostly stronger than their
edges. In addition, the loops and turns begin to unfold to
some extent. Despite these changes, it appears that most
native secondary structure elements remained present until
the end of the simulation. As shown in Figure 8, the structure
of LGA-docked complex was looser than that of LRDPSO-
docked complex due to unfolding at 500K simulation.

At the higher temperature (600K) simulation, the dom-
inant structural change was that regular structures quickly
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Figure 7: Changes in the hydrogen bond number with respect to simulation time at four different temperatures. Red represents the
LRDPSO-docked complex and blue represents the LGA-docked complex. (a) 300K. (b) 400 K. (c) 500K. (d) 600K.
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became disordered, which was accompanied by a loss of
molecular contacts. In the LRDPSO docking complex,
three β-sheets (LEU270-GLU276, ALA412-CYS417, and
TYR484-VAL486) and three helixes (ALA110-GLY116,
ALA375-ALA377, and PRO423-SER425) maintained stabil-
ity until the end of simulation. In the LGA docking complex,
two β-sheets (TYR274-GLU276 and ALA412-ALA414) and
four helixes (SER107-TYR109, LEU370-ILE376, PRO423-
ASN428, and ASN437-LYS442) were present. Among these
helixes, ASN437-LYS442 was reformed by a loop after un-
folding of the structure. In other words, the unfolding process
generated new 3–10 helixes and α-helixes, which originated
from areas that were initially coils and loops. +e most im-
portant point is that the ligand is completely out of the
binding position due to the unbinding of ligand and protein in
LGA-docked complex.

4. Conclusion

In this article, molecular docking and molecular dynamic
simulations were performed to provide insights into the
structural and dynamic characteristics of OppA-peptide
binding interactions. +e analysis results reflected the re-
action differences between proteins and ligands in the two
dockingmethods.+e results showed that although the types
of hydrogen bonds in the two complexes were nearly the
same, the occupancy time of the same hydrogen bonds was
different in the different complexes. For salt bridges, there
were two significant salt bridges in the LRDPSO docking
result, which were ASP419-LYS1 and GLU229-LYS3. In the
LGA-docked structure, there was only one stable salt bridge
ASP419-LYS1 located in the binding region. Based on these

findings, the electrostatic and van der Waals energy were
lower for the ligand docked by LRDPSO than for the ligand
docked by LGA. For structural variation under thermal
stress, the complex docked by LRDPSO was more stable
than the complex docked by LGA at high temperatures.
+is study provided a concrete difference in OppA-peptide
binding based on the two docking methods. It revealed that
nonbonded interactions are a significant driving force in
biomolecular interactions and stability. It also showed that
the contribution of electrostatic interactions is an important
factor in binding affinity differences. +is study provides a
useful guide for drug design and protein engineering and
future design studies with the OppA system.
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Figure 8: Snapshots from the thermal unfolding simulations for both complexes: (a) LRDPSO-docked complex; (b) LGA-docked complex.
+e receptor protein structure is represented in a new cartoon secondary structure style, and the ligand is represented in a Vdw style.
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