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Abstract: Background: Stuttering is characterized by dysfluency and difficulty in speech production.
Previous research has found abnormalities in the neural function of various brain areas during speech
production tasks. However, the cognitive neural mechanism of stuttering has still not been fully
determined. Method: Activation likelihood estimation analysis was performed to provide neural
imaging evidence on neural bases by reanalyzing published studies. Results: Our analysis revealed
overactivation in the bilateral posterior superior temporal gyrus, inferior frontal gyrus, medial frontal
gyrus, precentral gyrus, postcentral gyrus, basal ganglia, and cerebellum, and deactivation in the
anterior superior temporal gyrus and middle temporal gyrus among the stutterers. The overactivated
regions might indicate a greater demand in feedforward planning in speech production, while the
deactivated regions might indicate dysfunction in the auditory feedback system among stutterers.
Conclusions: Our findings provide updated and direct evidence on the multi-level impairment
(feedforward and feedback systems) of stutterers during speech production and show that the
corresponding neural bases were differentiated.
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1. Introduction

Human communication is facilitated by fluent speech activity. However, approxi-
mately 1% of the population worldwide have dysfluent speech production, such as repe-
titions, hesitations, prolongations or blocks [1,2]. Stuttering is a developmental disorder
that occurs at between the ages of 2.5 and 6 years old. In comparison with people who
do not stutter (PWNS), people who stutter (PWS) usually have abnormal prosody and
disfluency when producing long words or complex sentences [3]. Stuttering affects an
individual’s development of language and cognition, as well as self-cognition, emotion and
social experiences [4–6]. Much interest has been received from various disciplines.

Researchers proposed the three-factor causal model [7] (also known as the P&A model)
to account for the causes of stuttering from three perspectives: (1) impaired neural function;
(2) triggers (e.g., variable syllabic stress and linguistic complexity); and (3) modulating
factors (e.g., physiological arousal or individual readiness). Among the three factors,
impaired neural function plays a vital role in stuttering. The multifactorial dynamic
pathways (MDP) model was recently proposed [8], which considers that genetic/epigenetic,
motoric, linguistic, emotional, and neural factors interact and, thus, lead to the onset or
persistence of stuttering from preschool years onwards.

For stuttering intervention in early childhood, researchers have proposed the demands
and capacities model (DCM), which takes into account that many factors are involved in
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the onset and development of stuttering, and none of them are pathological [9,10]. This
model aims to train parents on how to decrease the relevant motoric, linguistic, emotional
or cognitive demands on the child that might trigger their stuttering, thus resulting in the
multi-domain capacities of the child being built to improve speech fluency [11,12].

In the past few decades, numerous studies have provided evidence on impaired
neural function in speech production among PWS [13–22]. An ALE meta-analysis on
the distinct brain activation patterns of persistent developmental stuttering revealed a
right lateralization, with overactivation in the motor areas and cerebellum and decreased
activation in the auditory areas [23]. Researchers also found that, in comparison with
fluent speakers, PWS among adults had an abnormal volume of planum temporale and
that its volume was positively related with the severity of stuttering [24–27]. Moreover,
the supplementary motor area (SMA) has also been associated with stuttering, due to its
function in the preparation and control of complex sequence motor planning [28]. Before
articulation, the planned lexico-semantic and phonological representations are encoded
into phonetic forms and motor sequences [29]. As a consequence, PWS might not execute
syllabication and articulation successfully due to dysfunction in the SMA [28]. This view is
consistent with the covert repair hypothesis [30], which considers that phonetic and motor
planning failure would induce self-repairing, but unsuccessful repairing would lead to
dysfluency [31–34].

A neurocomputational model—directions into velocities of articulators (DIVA)—
specified the relationship between the behavioral and neural underpinnings of stutter-
ing [35,36]. This model proposes that speech production contains feedforward and sensory
feedback control processes. The former system is formed by the articulation circuit and
initiation circuit. The two circuits are responsible for generating timed and coordinated
muscle motor programs and turning this motor program on and off at the appropriate
instances in time, respectively [37]. In the framework of the DIVA model, the initiation
circuit involves the cortico-basal ganglia-thalamocortical loop, and the primary impairment
among stutterers is dysfunction in the cortico-basal ganglia-thalamocortical loop. For the
feedback process, the corticostriatum projection between the striatum and the auditory and
motor cortices plays a critical role. The striatum detects a mismatch when the auditory
feedback violates the expectation of the produced speech, thus leading to more competition
between the motor programs and dysfluency [35–37]. Similarly, the state feedback control
(SFC) theory proposes that the premotor regions are associated with generating forward
models and receiving sensory feedback across the time course of speech production [38,39].
Online feedback control is internally learned and maintained based on previously pro-
cessed associations between motor planning and sensory outcomes, and this feedback
system can, in turn, correct the prediction mismatch errors [40]. Previous neuroimaging
research has provided solid evidence for these two theories. In a picture naming study [19],
deactivation in the superior temporal gyrus (STG) was found among stutterers; thus, the
connections between the bilateral posterior superior temporal gyrus (pSTG) and putamen
and thalamus among stutterers were weaker than those among non-stutterers.

To our knowledge, the most recent ALE meta-analysis on the neural bases of stuttering
was published in 2017, in which, the trait (being a PWS) from the state of stuttering (the act
of stuttering) was differentiated. Trait stuttering was characterized by right lateralization
in the language processing areas and state stuttering was associated with overactivation in
the right larynx and lip motor cortex [41,42]. However, PWS not only have disorders in
speech production, but also in speech perception [15,43–46], which might, in turn, reflect
the dysfunction of the auditory feedback system. Previous studies have shown that PWS
exhibited more activation in the left anterior cingulate gyrus, left inferior frontal gyrus
(IFG), and bilateral cerebellum in speech perception or comprehension tasks [18,20,44,46],
even after therapy [47,48]. However, a previous meta-analysis did not differentiate whether
the feedforward or feedback system was impaired in PWS and the neural bases for the
two systems. Thus, it is necessary to perform an updated analysis to investigate this issue.



Brain Sci. 2022, 12, 1030 3 of 16

In the current meta-analysis, we tried to determine the fundamental brain activity
patterns among PWS and PWNS by including up-to-date neuroimaging studies. We
hypothesized that the meta-analysis would reveal evidence in the neurocomputational
models, for instance, the decreased activity in the auditory regions and increased activity
in the striatum.

2. Methods
2.1. Literature Search

Papers for analyzing contrasts between stutterers and non-stutterers in language pro-
cessing were searched in Web of Science (www.webofscience.com) and PubMed
(https://pubmed.ncbi.nlm.nih.gov/) databases (accessed on 15 February 2022). The search
included papers published between January 1980 and February 2022. Search terms were
“word production” OR “speech production” OR “language production” AND “stutter” OR
“stutterer” AND “fMRI” OR “functional magnetic resonance imaging” OR “neuroimaging”
OR “functional MRI” OR “functional imaging” OR “functional magnetic imaging”. This
yielded 137 articles, which were then carefully reviewed and coded by two authors (N.Z
and Y.Y) and were included in the meta-analysis if they met the following criteria: (1) the
utilization of a task-related fMRI or PET method, not a fNIRS, ERP or MEG method, etc.;
(2) reporting peaks of significant activation in standard stereotactic coordinates (Talairach
or MNI space; those reporting only functional connectivity or correlation results were not
included); (3) articles written in English; (4) performance of a language production task
in the participants’ native language (not in a second language); (5) each study recruited
two groups of healthy adult participants, (i.e., not children or adults with neurological or
psychiatric disorders); and (6) not case studies (these were excluded). The two independent
coders separately reviewed and coded the studies, and then, their coding was compared.
Different coding for the same article was reviewed again to ensure no varied coding was
generated. A final set of 24 articles was included in the meta-analysis.

The protocol for this systematic review was registered on the Prospective Register
for Systematic Reviews (PROSPERO; registration ID: CRD42022336594). Identification,
screening, eligibility, and inclusion procedures followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram. Figure 1 shows the
flow diagram for the identification and selection of studies.

Figure 1. Flow diagram for identification and selection of studies.

www.webofscience.com
https://pubmed.ncbi.nlm.nih.gov/
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A minimum of 17 experiments were needed to be surpassed or achieved by the
volume of a data set for each ALE meta-analysis, and a quantity lower than that would fail
to promise a stable performance of the ALE algorism or reliable results [49]. Since one study
may report experimental contrasts suitable for different conditions or may only report
a contrast between two groups, contrasts were retrieved and re-categorized to achieve
enough experiments for the following analysis. Some studies reported the results of the two
groups independently, while some studies only reported a contrast between PWNS > PWS
and PWS > PWNS. We combined the results of the PWNS group and PWNS > PWS as
set A, and the PWS group and PWS > PWNS as set B. The two sets contained 21 and
26 experiments, and 326 and 355 participants, respectively (see Table 1 for details).

Table 1. Details of experiments included in the ALE analysis of PWS and PWNS group.

First Author of
Publication

Comparison # Subjects # Foci
PWS PWNS PWS PWNS

Braun [13]
Orolaryngeal motor task > Rest

Dysfluent language > Motor
Fluent language > Motor

18 20 46 22

de Nil [43] Oral reading > silent reading 10 10 4 4
Fox [14] Speech-motor positive correlations with syllable rate 10 10 31 12

de Nil [44] Oral reading > silent reading
Pre-, post- and 1-year after treatment (3 exp) 13 10 33 8

Neumann [15] Overt reading
After therapy > before 5 16 35 9

Preibisch [16] Overt reading > viewing meaningless signs 16 16 13 3
de Nil [18] Repeating words > passive listening 15 15 19 15

Watkins [50] Production with fluency or auditory feedback 10 10 11 21
Chang [51] Speech production > non-speech production 20 20 27 59

Kell [47] Overt > covert reading 26 13 32 0
Lu [19] Covert picture naming > passive viewing 9 9 46 46

Sakai [52] Speech production with auditory feedback > passive reading
Speech production with auditory feedback > delayed feedback 8 10 14 18

Toyomura [53] Reading sentences with auditory stimulus (rhythm/chorus) > solo 12 12 33 8
Howell [54] Producing rising or falling tones 9 9 14 2

Ingham [55] Overtly reading texts > monologue
Monologue > overtly reading texts 18 12 17 20

Toyomura [56] Oral reading > listening
Oral reading > rest 10 10 22 9

Ward [20] Picture describing > rest
Sentence reading > rest 17 17 38 6

Lu [46] Picture naming > rest 13 13 1 0

Neef [57] Covert speaking > rest
Covert humming a melody > rest 15 17 3 6

Lu [58] Post-intervention > pre-intervention 26 13 3 0
Yang [59] Stutter state anxiety > rest 19 19 19 2

Connally [60] Speech production > rest 17 17 30 16

Neumann [61] Linguistic prosody > neutral prosody
Emotional prosody > neutral prosody 26 13 36 0

Sares [62] Shifted pitch > unshifted pitch 13 15 0 3

2.2. Activation Likelihood Estimation

ALE analyses were performed on the two foci sets of the non-stutter and stutter groups
independently using GingerALE (version 3.0.2, The Brainmap Project, San Antonio, TX,
USA, www.brainmap.org, accessed on 15 February 2022) [63–65]. The Talairach coordinates
were transformed into MNI space using the icbm2tal tool provided by GingerALE [66]. Each
activation peak is modelled as a probability distribution centered on the peak coordinates,
generated by Gaussian smoothing. Statistical analysis of the transformed foci was validated
using the Monte Carlo simulation (1000 permutations) with a cluster-forming voxel-level

www.brainmap.org
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threshold at uncorrected p < 0.001 combined with cluster size correction using family-wise
error (FWE) at p < 0.05 [49].

Conjunction and contrast analyses were performed using the contrast studies function
in GingerALE to determine whether the non-stutter and stutter groups yielded discrepant
patterns of neural underpinnings in language cognition. The two ALE maps of the two
groups were pooled and subtraction analyses were conducted. The threshold of the results
of the subtraction analyses was set to p < 0.001, with p-value permutations set to 10,000,
and the minimum volume of clusters set to 200 mm3.

The resulting ALE maps were displayed using multi-slice views generated using
Mango software (developed by Jack L. Lancaster, Ph.D. and Michael J. Martinez, San
Antonio, TX, USA, http://ric.uthscsa.edu/mango/, accessed on 15 February 2022) and
the high-resolution MNI-space Colin 27 template provided by GingerALE (version 3.0.2,
The Brainmap Project, San Antonio, TX, USA, www.brainmap.org, accessed on 15 Febru-
ary 2022).

The current study was approved by the Institutional Review Board of the Institute
of Psychology, Chinese Academy of Sciences, and was conducted in accordance with the
ethical principles of the Declaration of Helsinki.

3. Results
3.1. PWNS Group

The ALE analysis of the PWNS group revealed significant clusters in the left hemi-
sphere of the brain, with the Broca′s and Wernicke′s areas being located the most notable
cluster (Figure 2, Table 2). Other regions included the remaining parts of the frontal lobe:
left precentral gyrus and middle frontal gyrus (MFG); temporal lobe: left STG and middle
temporal gyrus (MTG); parietal lobe: left postcentral gyrus; occipital lobe: left lingual
gyrus; sub-lobar areas: left insula, claustrum and putamen; and part of the cerebellum:
bilateral declive, left fastigium, culmen, uvula and tonsil.

Figure 2. Activation likelihood maps for analyses of PWNS group (red), PWS group (blue) and their
overlap (green) (uncorrected p < 0.001).

http://ric.uthscsa.edu/mango/
www.brainmap.org
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Table 2. PWNS clusters found by ALE analysis. L: left; R: right; BA: Brodmann area.

Cluster Volume (mm3)
Weighted

Center (X,Y,Z)
Maximum ALE
Value (X,Y,Z)

ALE Value
(10−2) Anatomical Label BA

1 31,928 −50.8, −9.3,
14.7 −54, −16, 2 2.39 L Superior Temporal Gyrus 22

−48, −4, 32 1.67 L Precentral Gyrus 6
−50,−4,42 1.43 L Precentral Gyrus 4
−32, 20, −2 1.34 L Claustrum /
−42, 24, 16 1.26 L Middle Frontal Gyrus 46
−54, 8, 22 1.46 L Inferior Frontal Gyrus 9
−58, −34, −4 0.92 L Middle Temporal Gyrus 21
−48, 20, −12 0.90 L Inferior Frontal Gyrus 47
−54, −36, 22 0.84 L Insula 13
−54, −22, 22 0.84 L Postcentral Gyrus 40
−30, −12, 8 0.71 L Putamen /
−66, −44, −12 0.66 L Middle Temporal Gyrus 20

2 10,616 −3.5, −73.2,
−14.5 12, −76, −14 1.20 R Cerebellum Declive /

−8, −82, −14 1.11 L Cerebellum Declive /
−10, −66, −20 1.06 L Cerebellum Fastigium /
−22, −64, −26 0.99 L Cerebellum Culmen /
−22, −74, −26 0.94 L Cerebellum Uvula /
−6, −94, −4 0.91 L Lingual Gyrus 17
−20, −64, −38 0.66 L Cerebellum Tonsil /

3.2. PWS Group

For the PWS group, the ALE analysis revealed more regions than the PWNS group
(Figure 2, Table 3). The most notable clusters included brain areas in the right hemisphere:
the right postcentral and precentral gyrus, IFG, STG, MTG, transverse temporal gyrus,
insula, putamen, claustrum, caudate, and inferior parietal lobule (IPL). Other clusters
included the remaining parts of the frontal lobe: left IFG, left superior frontal gyrus,
bilateral medial frontal gyrus, left precentral gyrus, and right paracentral lobule; temporal
lobe: left STG, MTG, and left fusiform gyrus; parietal lobe: left postcentral gyrus and left
IPL; sub-lobar areas: left insula, putamen, thalamus, cingulate gyrus, and parahippocampal
gyrus; cerebellum: bilateral culmen, left declive, uvula, culmen, and cerebellar lingual.

Table 3. PWS group clusters found by ALE analysis.

Cluster Volume (mm3)
Weighted

Center (X,Y,Z)
Maximum ALE
Value (X,Y,Z)

ALE Value
(10−2) Anatomical Label BA

1 47,408 46.1, −2.5, 10.2 56, −2, 28 2.70 R Postcentral Gyrus 6
46,22,10 1.95 R Inferior Frontal Gyrus 45

60, −6, −2 1.92 R Superior Temporal Gyrus 22
50, 6, 8 1.79 R Precentral Gyrus 44

20, −2, −2 1.65 R Globus Pallidus /
46, −26, 12 1.55 R Transverse Temporal Gyrus 41
42, −6, 14 1.54 R Insula 13

18, 12, −14 1.76 R Putamen /
66, −2, 20 1.51 R Precentral Gyrus 4

14, 8, 2 1.38 R Caudate /
42, −14, −6 1.38 R Claustrum /
50, 16, −10 1.23 R Inferior Frontal Gyrus 47
44, −18, 44 1.22 R Postcentral Gyrus 3
54, −4, −14 0.94 R Superior Temporal Gyrus 38
56, −32, 0 0.94 R Middle Temporal Gyrus 21

58, −30, 32 0.83 R Inferior Parietal Lobule 40
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Table 3. Cont.

Cluster Volume (mm3)
Weighted

Center (X,Y,Z)
Maximum ALE
Value (X,Y,Z)

ALE Value
(10−2) Anatomical Label BA

2 36,528 −46.8, −9.2, 15 −52, −8, 30 2.53 L Precentral Gyrus 6
−56, −4, 20 1.73 L Precentral Gyrus 4
−24, 2, 6 1.62 L Putamen /

−66, −20, −2 1.56 L Superior Temporal Gyrus 22
−48, −42, 20 1.43 L Superior Temporal Gyrus 13
−38, 20, 4 1.43 L Insula 13
−12, −16, 10 1.41 L Thalamus /
−58, −32, 12 1.37 L Superior Temporal Gyrus 42
−46, 26, 4 1.32 L Inferior Frontal Gyrus 13
−52, 36, 2 1.23 L Inferior Frontal Gyrus 46
−56, 8, 24 0.99 L Inferior Frontal Gyrus 9
−52, −16, 46 0.84 L Postcentral Gyrus 2
−50, −26, 32 0.83 L Inferior Parietal Lobule 40
−58, −48, 22 0.77 L Supramarginal Gyrus 40
−50, 24, 14 0.70 L Inferior Frontal Gyrus 45

3 11,744 −0.2, 6.2, 48.8 −6, 4, 52 2.02 L Medial Frontal Gyrus 6
0,4, 48 1.76 L Cingulate Gyrus 24
6, 4, 50 1.59 R Medial Frontal Gyrus 6

6, −8, 48 1.05 R Paracentral Lobule 31
−14, 20, 48 0.93 L Superior Frontal Gyrus 6
0, −14, 48 0.77 R Paracentral Lobule 31

4 11,664 −16.9, −61.7,
−17.6 −6, −66, −18 2.00 L Cerebellum Declive /

2, −38, −8 1.20 L Cerebellum Culmen /
−36, −72, −26 1.18 L Cerebellum Uvula /
10, −52, −18 1.16 R Cerebellum Culmen /
−44, −72, −12 1.05 L Fusiform Gyrus 19

8, −48, −10 0.89 R Cerebellum Cerebellar
Lingual /

−14, −36, 0 0.85 L Parahippocampal Gyrus 27

3.3. Overlap between PWNS and PWS Group

Maps for the overlap between the two groups were generated after we delineated
the maps for each group independently. The results showed that significant overlapping
regions included the left precentral gyrus, IFG, pSTG, insula, and declive and fastigium
in the cerebellum (Figure 2, Table 4). Moreover, conjunction analysis also revealed that
the PWS group activated more brain areas than the PWNS group at the bilateral putamen,
bilateral insula, bilateral precentral gyrus, right IFG, right STG, left postcentral gyrus, right
caudate, right claustrum, right cingulate gyrus, and right claustrum. However, the results
also revealed more deactivation in the left pSTG and MTG among the PWS group.

Table 4. Overlapping clusters between PWNS and PWS group found by ALE analysis.

Cluster Volume (mm3)
Weighted Center

(X,Y,Z)
Maximum ALE
Value (X,Y,Z)

ALE Value
(10−2) Anatomical Label BA

1 6536 −50, −5.9, 28 −14, −36, 0 1.56 L Precentral Gyrus 6
−56, 8, 22 0.98 L Inferior Frontal Gyrus 9

2 2600 −59.6, −31.2, 12.2 −58, −34, 12 1.57 L Superior Temporal Gyrus 22
−62, −34, 18 1.27 L Superior Temporal Gyrus 42

3 1152 −8.9, −66.4,
−19.2 −10, −66, −20 1.01 L Cerebellum Fastigium /

4 368 −34.4, 19.5, 4 −34, 20, 2 1.00 L Insula 13

5 248 −26.4, −67.7,
−17.3 −26, −68, −16 0.67 L Cerebellum Declive /
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4. Discussion

In the current study, we re-investigated the neural bases of stuttering using an ALE
meta-analysis. In comparison with previous meta-analyses [23,42], up-to-date results were
presented. For non-stutterers, a general speech production network was found, including
the left IFG, STG, MTG, precentral gyrus, postcentral gyrus, lingual gyrus, and insula.
In comparison, overactivation in the right hemisphere including the IFG, pSTG, bilateral
striatum, insula, precentral and postcentral gyrus, and cerebellum, and deactivation in the
left aSTG and MTG were found among the PWS group.

The neural mechanism of speech production among PWS was different from that
of non-stutterers. In the following, we discuss our results from the perspectives of the
general network of speech production, the uniqueness of the neural mechanism of speech
production among PWS and the role of the cerebellum in speech production.

4.1. General Network of Speech Production

The most notable findings were that the left IFG, STG and MTG were significantly
activated brain areas among the two groups. These three areas, according to numerous
studies, play vital role in speech production. Spoken word production involves a series
of planning stages, i.e., conceptual preparation, lexical selection, phonological encoding,
phonetic encoding, and articulation [29]. The left STG may be associated with semantic
retrieval, but the anatomical regions in the STG might differ from the posterior STG, which
is responsible for the retrieval of sematic representations, as well as the anterior STG, which
is associated with primary auditory processing [67,68]. The left IFG may be associated with
both sematic processing and post-phonological processing, e.g., syllabication and motor
planning for articulation [67,68]. More importantly, these areas are overlapped with the
domain general cognition network, suggesting that word production is a process which
involves a large network of different areas.

In the language production model [29,67], semantic retrieval and phonological encod-
ing are the two core processes in the planning stage before articulation. Previous fMRI
studies on word production used different tasks or paradigms, in which different pro-
cessing phases were involved. For instance, picture naming involves visual recognition
before semantic retrieval, and the reading aloud task involves visual word recognition
and grapheme to phoneme encoding. However, the shared processing of word produc-
tion by differing tasks remained the same. Previous researchers performed a series of
meta-analyses and systematic reviews on the neural bases of word production [67–69]. We
discuss the brain areas responsible for different processes separately.

For semantic retrieval, previous studies found consistent results for activation of the
left pSTG associated with semantic retrieval. de Zubicaray et al. [70] investigated word
production using the picture–word–interference paradigm, in which a related word was
presented on the picture (for instance, the word “apple” was presented on a picture of a
banana), and the speaker was required to name the picture and ignore the distractor word.
The results found overactivation in the left pSTG under semantically related conditions
compared to neutral (non-related) conditions. Similar findings provided solid and consis-
tent evidence for the role of the left pSTG in semantic retrieval [71–73]. Our results showed
activation in the left pSTG in both groups, which provided direct evidence for its vital role
in word production. Moreover, activation of the frontal cortices was also reported to be
associated with semantic processing. The left IFG was reported to have stronger activation
under semantic interference conditions [70,74–76]. Specifically, Abel and colleagues found
that the activation level of IFG was positively correlated with the level of semantic interfer-
ence [74,77]. The results of the current study are consistent with previous findings in that
the left IFG and the pSTG were contained in the most notable cluster, which provided solid
support for the crucial role of these regions in word production.

For phonological encoding, de Zubicaray and colleagues [78,79] investigated the
phonological facilitation effect in word production (i.e., faster reaction time when naming
a picture with a phonologically related distractor than an unrelated one), and the results
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showed stronger activation in the left aSTG. Similarly, Abel et al. [74,77] found stronger
activation in the bilateral aSTG for the phonological facilitation effect. These findings
suggest that the aSTG is a crucial region associated with phonological encoding. Moreover,
activation in the left insula, bilateral supramarginal gyrus, and inferior parietal lobe was
also found to be associated with phonological retrieval [80–82]. After the retrieval of
phonological representation, motor planning and articulation proceed. The precentral
gyrus was associated with articulation planning [67,68]. Rizio et al. [83] considered that the
retrieval of the motor sequence of phonological representations, i.e., phonetic encoding,
activates the precentral gyrus and its activation level is associated with phonetic encoding
difficulty. The aSTG and precentral gyrus were involved in the most notable cluster in the
current meta-analysis, which provided evidence on the significant role of the two regions
in phonological encoding and motor planning [67–69,84].

In addition, domain general processes also play vital roles before the target lemma is
selected and articulated. For instance, to solve the semantic interference, the non-targets
had to be inhibited to ensure the target could be selected successfully. Therefore, the anterior
cingulate cortices, orbitomedial prefrontal cortex, and inferior parietal lobe are activated
due to their functions in conflict detection, task demand detection and updating, and
inhibition of conflict response, respectively [70]. In the study by Criaud and Boulinguez [85],
the go/no-go task elicited stronger activation of the insula, dorsal PFC, IFG, IPL and basal
ganglia, which were the core nodes of the frontal-striatal network and were responsible for
response inhibition. In addition, the basal ganglia are functionally connected to the medFG
as part of the neural circuit associated with preparation and execution of movement [86].
These regions were found to be significantly activated in the current meta-analysis, which
provided evidence that domain general cognitions are involved in word production.

4.2. Distinct Neural Underpinnings in PWS

Our results in the PWS group revealed greater activation in both the cortical and
sub-cortical regions in word production than PWNS, among which, the STG and MTG, IFG
and medial frontal gyrus, precentral and postcentral gyrus, insula, and basal ganglia were
significantly involved.

The cognitive functions of MTG, pSTG and aSTG, as mentioned previously, were
associated with phonological encoding and semantic retrieval in speech production and
primary auditory processing, respectively. For activation in the aSTG, previous research
has shown that bilateral aSTG is involved in auditory attention and conscious awareness
of auditory stimuli [87–90]. In speech production, part of the self-monitoring is to receive
the auditory input of produced speech. In comparison with PWNS, the dysfluent speech
of PWS would cause more activation of the bilateral aSTG due to the cognitive load. For
MTG, the left and right homologue might have varied cognitive functions. In comparison
with primary auditory processing in the aSTG, researchers considered MTG to be related
with higher level processing of auditory stimuli [91–93]. Previous research found greater
activation in the bilateral MTG in both speech comprehension and production tasks [18,62],
which suggested that the recruitment of the left MTG might reflect a higher level auditory
processing of feedback, especially in terms of sensory integration [62]. In the current study,
significant activation in the left MTG was detected in the PWNS, but no activation in this
region was detected in the PWS. This finding suggests distinct mechanisms in auditory
feedback processing among the two groups, with PWS being less proficient, which might
be the crucial reason for stuttering.

A previous meta-analysis found deactivation of the STG among the PWS group [41],
which is also a neural signature of stuttering. The anatomical pathway between auditory
areas and the IFG was found to be reduced bilaterally in PWS, which suggested a dysfunc-
tion in feedforward processing during speech production [51,60,94]. However, since the
STG could be subdivided into anterior and posterior regions, and the two regions were
associated with different cognitive functions, it is necessary to specify the relationship
between the deactivation in the different parts of the STG and stuttering. In the current
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study, as Figure 2 shows, overactivation in the pSTG and deactivation in the aSTG were
found in the PWS group, which provided solid support for the distinct functions in the
two parts of the STG. The cognitive demand in speech production among the PWS group
might be higher than among non-stutterers, resulting in the overactivation of these regions
as compensations. It can be inferred that the stutterers could retrieve the semantic and
phonological representations with greater difficulty but still successfully, which indicated
successful feedforward processing. In comparison, the deactivation in the aSTG might
suggest a failure in feedback processing. Together with the finding of deactivation in the
MTG among the PWS group, our results provide evidence for the dysfunction in auditory
feedback processing in PWS.

The feedback processing recruits not only the aSTG and MTG—previous studies have
found that PWS activates more brain areas in the right hemisphere as compensation [23,42].
According to the models of stuttering proposed by Giraud [48], when PWS could not speak
fluently and made repetitions or blocks, the auditory system would send a feedback to
suppress this activity, i.e., feedforward suppression from the motor cortex (precentral gyrus)
to the aSTG. Moreover, for the speaker, a mismatch of prediction induced by the actual
auditory inputs that were not the planned speech elicits greater activation of the IFG, since
part of its cognitive functions is feedback monitoring and the release of speech plans [95].
Meanwhile, due to the impaired connection between the left IFG and precentral gyrus, the
right homologue of the IFG and precentral gyrus would be activated as compensation [48].
According to previous reviews [23,42], activation of the right IFG and insula has been
considered as “neural signature” of stuttering. One of the explanations of the overactivity
of the right hemisphere is that it is associated with an inhibitory or stopping process [57].
Since the left IFG might not fulfill the feedback of suppressing, the right homologue
shoulders the demand. Further investigation is still needed to provide more evidence.

Another important finding was that PWS recruited more basal ganglia in speech
production than PWNS. Dysfunction in the basal ganglia might affect timing in speech
production [96]. Execution of the motor sequences of speech requires exact timing of
each muscular movement. Previous studies found that PWS would speak more fluently
when speaking to the pace of a metronome, i.e., the rhythm effect [22,53]. The study of
Lehéricy [97] found that the activity of the caudate was decreased in the planning stage of
speech production but was increased when required to maintain the speed in execution.
Similarly, Giraud [48] found a positive correlation with stuttering severity in the activity of
the caudate and a trend of negative correlation in the speech naturalness. In addition, as
mentioned in the previous section, the connectivity between the basal ganglia and medFG
was associated with the preparation and execution of movements. As a consequence
of dysfunction in motor execution, greater activity in the basal ganglia and medFG was
shown, which was consistent with previous findings. Studies in music perception also
found activation of the basal ganglia in rhythm or beat perception [98–100]. These findings
provide evidence that the basal ganglia play a vital role in the domain general functions,
and that language and music processing shared similar mechanisms, especially in terms of
timing cognition.

It is worth noting that the activation of the postcentral gyrus in the PWS group was
stronger than that in the control group. Previous studies have found close associations
between basal ganglia (mostly caudate) and postcentral gyrus in both healthy subjects [48]
and PWS [101,102]. A meta-analytic functional connectivity study [103] showed that the
caudate has a strong connection with the bilateral precentral gyrus and postcentral gyrus in
action and perception behavior. Still, the exact function of the connection between the basal
ganglia, and the precentral and postcentral gyrus need further research and elucidation.

In summary, our results have updated the findings of previous meta-analyses in that
the two regions in the STG were distinct in terms of activity patterns in the PWS group, and
that the deactivation of the aSTG and MTG serves as crucial evidence of the dysfunction in
auditory feedback processing among the PWS group.



Brain Sci. 2022, 12, 1030 11 of 16

4.3. The Role of Cerebellum in Speech Processing

The cognitive functions of the cerebellum in language processing have attracted much
attention over the past few decades. Systematic reviews have been updating related find-
ings [104–107]. Studies on language processing have found activity in the cerebellum
across various linguistic components: phonological [108–110], lexico-sematic [111,112],
semantic [113,114], syntactic [115,116], and discourse [117]. In a study [111] where partic-
ipants were required to finish a word-stem completion task, greater activity in the right
cerebellum was found when the word-stem had fewer completions (higher task difficulty
condition). Moreover, besides its association with language processing, research has found
that cerebellar activity may reflect the involvement of working memory, execution func-
tions, visuospatial processing, emotional regulation, etc. [118]. This suggests that the role
of the cerebellum might not be associated with domain-specific processing, but more with
domain general functions.

The cerebellum is considered a fundamental site for motor control [119–122]. Re-
searchers have assumed that the circuit between the cerebellum and motor cortex plays
a vital role in motor learning and execution [121,123,124]. Courchesne and Allen [125]
proposed that “the cerebellum predicts and prepares the internal conditions required for
sensory, motor, autonomic, memory-related, attention-related, or linguistic operations,
by acquiring the predictive relationships among temporally ordered multidimensional
sequences of exogenously and endogenously derived neural activities”. A rest state func-
tional connectivity study found that PWS showed abnormal connectivity between the
cerebellum and the motor and prefrontal areas [126], which might lead to difficulty in
lexical retrieval and motor executions of articulation.

It can be seen that the cerebellar functions are far more complicated and might work
within varied networks with other brain areas. Our results were consistent with previous
findings in that PWS showed greater activity in the cerebellum during language processing.
However, further connectivity research is needed to specify the exact functions of the
networks of the cerebellum and other areas.

4.4. Limitations and Future Directions

The current research focused on the neural bases of stuttering by performing an ALE
meta-analysis of previously published neuroimaging studies, and the most notable results
provided evidence for the dysfunction of auditory feedback processing among the PWS
group. Since previous neuroimaging studies have recruited various types of participants,
the individual differences (for instance, severity of stuttering, age, whether they received
therapy and languages, etc.) might affect the results. However, a meta-analysis could not
differentiate these effects. In addition, the studies included in the analysis varied in their
quality. The number of foci varied across the studies, which had an effect on finding the
clusters of the meta-analysis. By checking the results, it was found that different studies
contributed a varied number of foci to finding the clusters, and there was even one study
with no contribution of any foci. Future research should formulate uniform inclusion and
exclusion criteria for ALE meta-analysis studies.

Moreover, another limitation of the current meta-analysis is the risk of bias. Firstly,
we were unable to access data from unpublished research or studies that did not report
all of the activated brain regions, especially those excluded studies reporting functional
connectivity and correlation results. Secondly, studies that were not published in English
were not able to be included. Thirdly, there is a trend that researchers choose not to publish
studies without significant results, and this “bias against null results” plays a vital role in
revealing the neural mechanism of human behavior [127]. While it is not easy for these
problems to be solved currently, pre-print reports and promotion of open science may help
with this issue.

Still, our findings presented a relatively clear picture of the neural underpinnings of
stuttering, which provided applicative value in the intervention of stuttering. With the help
of mature and precision medical technology, for instance, transcranial magnetic stimulation
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(TMS) and deep brain stimulation (DBS), it might be possible to intervene and modify the
brain activity patterns of stutterers to improve their speech fluency.

5. Conclusions

The current study provided updated information on the shared and distinct neural
bases of speech production between stutterers and non-stutterers using an ALE meta-
analysis. Consistent with previous findings, this study revealed overactivity in the bilateral
IFG, pSTG, basal ganglia, insula, precentral and postcentral gyrus, and cerebellum, and
deactivation in the left aSTG and MTG among the PWS group. Based on the directions into
velocities of articulators model and state feedback control theory, our findings provided
support for the greater demand in the feedforward system in speech production. More
importantly, solid evidence was provided for the dysfunction in the auditory feedback
system, which might be the crucial cause of stuttering. These findings suggest that abnormal
neural underpinnings of PWS were a result of dysfunction in various cortical–subcortical–
cerebellar networks.
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