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Antimicrobials, and particularly antimicrobial peptides (AMPs), have been thoroughly
studied due to their therapeutic potential. The research on their exact mode of action
on bacterial cells, especially at under sublethal concentrations, has resulted in a better
understanding of the unpredictable nature of bacterial behavior under stress conditions.
In this review, we were aiming to gather the wide yet still under-investigated knowledge
about various AMPs and their subinhibition effects on cellular and molecular levels.
We describe how AMP action is non-linear and unpredictable, also showing that
exposure to AMP can lead to antimicrobial resistance via triggering various regulatory
systems. Being one of the most known types of antimicrobials, bacteriocins have dual
action and can also be utilized by microorganisms as signaling molecules at naturally
achievable sub-inhibitory concentrations. The unpredictable nature of AMP action and
the pathogenic response triggered by them remains an area of knowledge that requires
further investigation.
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INTRODUCTION

Antimicrobial peptides (AMPs) are protective molecules of innate immunity in living organisms
(Zasloff, 2002).

In general definition, antimicrobial peptides are a diverse group of naturally derived or
synthetically obtained molecules, which have antimicrobial properties because of their specific
physical properties (antivirus and/or antitumor properties, in several cases). Attempts to classify
antimicrobial peptides interfere with the structural diversity of existing substances. In a general,
there are two ways in which peptides are synthesized; this fact underlies their structural and
functional diversity. Natural-derived AMPs can be formed by ribosomal synthesis and can be
produced from non-ribosomal peptide synthesis. Ribosomally synthesized peptides are produced
by almost all organisms, their classification is based on the secondary structure formed in aqueous
solutions. Thus, distinguish α-helical, β-sheet, peptides with extended/random-coil structure
(Hancock and Chapple, 1999; Bahar and Ren, 2013; Mahlapuu et al., 2016).

In turn, the greatest diversity is inherent in microbial antimicrobial peptides, since
microorganisms are capable not only of non-ribosomally synthesis (Hancock and Chapple, 1999),
but also of post-translational/co-translational modifications (Arnison et al., 2013). Extensive
post-translational modifications give peptides additional properties, for example, better recognition
of targets and increased stability, which expands their functionality as compared to ribosomally
synthesized peptides of animals (Arnison et al., 2013). These peptides have been classified within
the bacteriocins, the most recent classification of which is given in review (Acedo et al., 2018).
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As of now, the nature of antimicrobial peptides has been
thoroughly investigated. All data accumulated to date can be
summarized in simple statistics. For instance, upon a query, an
antimicrobial peptide database (October 2018) returns extracted
data on three thousand peptides with annotated structures
(Wang et al., 2016).

In addition, the number of articles dedicated to the
study of antimicrobial peptides exceeds 350,0001. Such a
heightened interest in this topic does not seem unreasonable,
since antimicrobial peptides remain an attractive alternative
to conventional antibiotics. AMPs have a unique ability to
overcoming pathogenic virulence and defense, primarily by
targeting highly conserved structures of the microbial cell
(Brogden, 2005; Omardien et al., 2016). Due to the unique
properties of AMPs, they can and should be used for the
benefit of humanity in the face of the antibiotic resistance
catastrophe (Ventola, 2015). Existing efforts of scientific research
are directed toward searching for more effective bactericides
and studying of their mode of action (Cytryńska and Zdybicka-
Barabas, 2015). Even though such investigations are necessary,
there are some aspects of this problem that are poorly addressed
by research. This includes the under-investigated effects of
sub-inhibitory concentrations (sub-MIC) of AMPs on the
physiology of the bacterial cells. Often, produced peptides dilute
in the environment medium. Thus, it appears that the peptide
concentration necessary for bactericidal of fungicidal effect is not
always achievable in natural conditions.

Regarding conventional antibiotics, their effects at
sub-inhibitory concentrations have been studied for a
substantially long period of time (Lorian, 1975; Andersson
and Hughes, 2014). It has been shown that sub-inhibitory
concentrations of antibiotics can trigger unexpected reactions
from the bacterial population. For example, fluoroquinolones
can stimulate bacterial adaptation to different stresses, including
effects of antibiotics (López and Blázquez, 2009).

By the way the AMP’s action on eukaryotic cells also have
concentration dependent features (Baindara et al., 2017).

Generally, the antimicrobial action of peptides is exhibited
via compromising the integrity of the microbial cell’s barrier
structures. However, other intracellular targets for peptides
are known (Hale and Hancock, 2007), which leads to the
conclusion about peptide’s multifunctional nature (Le et al.,
2017). In this review, we are summarizing the currently
available data on the sub-inhibitory concentrations effects
(sub-MIC effects) of antimicrobial peptides on bacteria. Our
main interest is directed toward peptides’ ability to trigger
various effects on subcellular (expression of virulence genes)
and cellular (phenotypic manifestation of the response) levels.
It is important to note that the response of a bacterial
population to AMP’s treatment can be both positive and
negative for humans. Positive effects include changes in
the morphofunctional properties of bacteria that, lead to a
decrease in their pathogenicity. Negative effects are comprised
of increased bacterial aggression after being exposed to
antimicrobial peptides.

1www.pubmed.gov

The remaining questions are as follows:

1. What are the triggering mechanisms behind
sub-MIC effects?

2. Is it possible to predict the nature of the bacterial response
to sub-MIC action of an AMPs?

3. How exactly does AMP structure determine its
sub-MIC action?

Given the therapeutic potential of antimicrobial peptides
in addition to the known data on the sub-MIC effects of
conventional antibiotics, this review aims to encourage the
investigation on the non-killing effects of antimicrobial peptides.

SUB-INHIBITION CONCENTRATION
EFFECTS OF AMPs AT SUBCELLULAR
LEVEL

The Molecular Mechanisms of Peptide
Reception and Response to
Sub-Inhibitory Action
Antimicrobial peptides have physical and chemical properties
necessary to be able to interact with bacterial membranes
(Datta et al., 2015). Interaction of cationic peptides is
promoted through electrostatic interaction, while interaction
of anionic peptides is driven by hydrophobicity (Phoenix
et al., 2013; Travkova et al., 2017). Membrane damage is
the main cause of cell death, since it disrupts the work of
many subsystems, associated with the membrane’s integrity. If
membrane damage is not fatal, the cell is able to respond to
external stress.

Bacterial genomic machinery responds with the expression
of various genes within several minutes after the moment
of exposure to stress factors. One of the first works on
sub-MIC effects of AMPs was dedicated to cecropin A and
E. coli cells (Table 1). It was found that cecropin A caused
a significant change in the transcript levels for 26 bacterial
genes (Hong et al., 2003); the sub-MIC of colistin altered
expression of 30 genes of P. aeruginosa (Cummins et al., 2009);
LL-37 affected expression of several 100 genes of P. aeruginosa
(Overhage et al., 2008).

Thus, antimicrobial peptides in the non-killing concentration
has a strong restructuring effect on of a genome’s functionality.

Can the Direct Peptide-DNA Interaction
Affect Bacterial Transcriptome?
What is the mechanism of signal reception and transmission?
It may be a direct interaction of the peptide molecule with
bacterial DNA. It is known that many AMPs have a dual
mode of action (Table 2). At high peptide concentrations
they cause damage to cell membranes, eventually breaking
it down, but at lower concentrations, peptides translocate
to the cytoplasm and electrostatically interact with DNA or
ribosome (Gottschalk et al., 2015; Polikanov et al., 2018).
For example, a number of synthetic peptides can interact
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TABLE 1 | The physico-chemical properties of antimicrobial peptides described in the review.

Peptide Mol. weight,
Da1

Type of structure Charge2 µHrel2 GRAVY1 The sources of the
structural data

LL-37 4490.6 Alpha-helix conformation +6 0.499 −0.72 www.anaspec.com

Cecropin A 4004.82 Alpha-helix conformation +6 0.202 −0.07 www.anaspec.com

Indolicidin 1700 Random coil +4 0.190 −1.07 www.anaspec.com

Fallaxin analog FL9 2717 Alpha-helix +2 0.275 0.51 Nielsen et al., 2007

C18G 2043 Alpha-helix +7 0.604 −0.19 Kohn et al., 2018

α-defensin HNP-1 3448 β-strand, β-turn +3 0.028 0.30 www.anaspec.com

β-defensin hBD-1 3934 Alpha-helix and triple-stranded
antiparallel β-sheet

+4 0.348 −0.27 www.anaspec.com

β-defensin hBD-2 3885.9 Alpha-helix and triple-stranded
antiparallel β-sheet

+6 0.246 −0.10 http://bpsbioscience.
com/bd-2-90107-b

Bovicin HC5 3525 +2 0.163 0.28 http://bactibase.
hammamilab.org

Subtilosin A 3425 Cysteine sulfur to α-carbon
bridges

−2.2 0.08 0.69 Acedo et al., 2018,
http://bactibase.
hammamilab.org

Plantaricin A 2683 Alpha-helix conformation +5 0.321 −0.24 http://bactibase.
hammamilab.org

Subtilin 3465 Fivefold-stranded antiparallel
β-sheet and alpha-helices

+2 0.151 0.19 http://bactibase.
hammamilab.org

Nisin Z 3475 Alpha-helices and β-turn +3 0.084 0.41 http://bactibase.
hammamilab.org

Polymyxin B 1203.50 Cyclic +5 ND ND Fernández et al., 2012

Colistin 1156.0 Cyclic +5 ND ND Fernández et al., 2012

Hemoglobin-derived Hbg-1 2495 Random coil +1 0.053 −0.56 Merriman et al., 2014

Hemoglobin-derived Hbg-2 2495 Random coil +1 0.220 −0.56 Merriman et al., 2014

Dipeptides cyclo(L-Phe-L-Pro) 245.35 ND ND ND ND Li et al., 2011

1The properties were calculated using the web-tool, which is available at https://www.thermofisher.com/ru/ru/home/life-science/protein-biology/peptides-proteins/
custom-peptide-synthesis-services/peptide-analyzing-tool.html. The grand average of hydropathicity (GRAVY) of a peptide is the sum of the hydropathy values of all
the amino acids divided by the number of residues in the peptide or protein sequence. 2The properties were calculated using the web-tool, which is available at
http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py. The relative hydrophobic moment (µHrel) is the hydrophobic moment of a peptide relative to that of a perfectly
amphipathic peptide.

with DNA and induce a SOS-response. During this process,
peptide’s action increases the expression of the α-haemolysin
(Gottschalk et al., 2015). A similar effect was shown for
indolicidin, which disturbed a membrane at MIC and induced
the SOS-response at sub-MIC (Vasilchenko et al., 2017). The
direct mutagenic effect of the cationic peptide is known (Limoli
et al., 2014). However, it should be noted that mutagenesis
and SOS-response are observed only at concentrations
close to MIC, whereas a change in the transcriptome
is usually observed at doses that are many times smaller
(Farris et al., 2010).

Thus, changes in gene expression caused by the DNA-peptide
interaction should be considered exceptional and not
as a general rule.

Recently a novel approach for precisely prevention of
pathogenicity of Gram-negative bacteria was described,
which is based on blocking a specific gene transcription
by cationic peptide. The authors designed and synthesized
cationic hydrocarbon stapled alpha-helical peptides based
on a DNA-interacting a helix of σ54. The treatment of
bacteria with synthesized peptides blocked the interaction
between endogenous σ 54 and its target DNA sequence
(Payne et al., 2018).

Thus, deciphering the molecular mechanisms of interaction
of peptides with intracellular targets is a bridge between
the fundamental knowledge and the practical use of the
knowledge gained.

Peptide Sensing?
In addition to nucleic acids, there are other intracellular
targets for antimicrobial peptides. In particular, the bacterial
cell envelope contains a variety of sensory regulatory systems,
which sense environmental signals and regulate a genes
expression accordingly.

Two-component systems (TCS) are widely distributed
among bacteria and are diverse in structure and function.
The presence of about one hundred thousand identified
and classified TCS allows bacterial cells to recognize
many different stressors and respond to them (Tiwari
et al., 2017). In general, a TCS is comprised of a sensor
protein (histidine kinase) and its corresponding response
regulator. The sensor kinase attaches to the bacterial
cytoplasmic membrane that has a sensing domain on its
extracellular side.

Antimicrobial peptides can have an effect on bacterial
genomes both indirectly and directly. Indirect action
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TABLE 2 | The mode of action and sub-inhibitory effects of peptides described in the review.

Peptide The cell’s targets Negative sub-MIC effects∗ Positive sub-MIC effects∗ References

LL-37 Membranes
permeabilization;
direct DNA binding

Promote mucoidy phenotype in
Gr-bacteria; overproduction of
virulence factors; promote
resistance to antimicrobials

Inhibites biofilm formation
P. aeruginosa and S. aureus

Fernández et al., 2010; Dean
et al., 2011; de la
Fuente-Núñez et al., 2012;
Strempel et al., 2013; Limoli
et al., 2014

Cecropin A Membranes
permeabilization

Unknown Unknown Silvestro et al., 2000; Hong
et al., 2003; Rangarajan et al.,
2013

Indolicidin Membranes
permeabilization;
direct DNA binding

Promote resistance to
antimicrobials

Prevent biofilm development of
MRSA S. aureus

Fernández et al., 2010, 2012;
Mataraci and Dosler, 2012

Fallaxin analog FL9 Membranes
permeabilization;
direct DNA binding

Increase production of
α-haemolysin

Unknown Gottschalk et al., 2015

C18G Membranes
permeabilization

Increased expression of the
virulence factor of
S. typhimurium

Unknown Yu and Guo, 2011

α-defensin HNP-1 Membranes
permeabilization; lipid II
binding; target the
ExPortal of
S. pyogenes

Unknown inhibition of secretion of SpeB
cysteine protease and the
streptolysin O

Vega and Caparon, 2012

β-defensin hBD-2 Membranes
permeabilization

Unknown Regulatory of gut homeostasis Marzani et al., 2012; Dicks
et al., 2018

Bovicin HC5 Membranes
permeabilization

Unknown Prevents biofilm formation of
S. aureus

Mantovani et al., 2002;
Pimentel-Filho Nde et al., 2014

Subtilosin Membranes
permeabilization

Unknown Prevents biofilm formation of
Gram-negative bacteria

Algburi et al., 2017

Plantaricin A Membranes
permeabilization at high
(in vitro) concentration
and pheromone at low
(in natural)
concentration

Unknown Involved in the formation of a
sustainable animal microbiome

Anderssen et al., 1998; Hauge
et al., 1998; Kristiansen et al.,
2005; Sturme et al., 2007;
Calasso et al., 2013

Nisin Membranes
permeabilization;
inhibites peptidoglycan
sintesis; pheromone

Unknown Inhibites bacterial biofilm
formation

Mahdavi et al., 2007; Shin
et al., 2015

Polymyxin B Membranes
permeabilization

Promote resistance to
antimicrobials

Inhibites of secretion of SpeB
cysteine protease and the
streptolysin O

Fernández et al., 2012; Vega
and Caparon, 2012

Colistin Membranes
permeabilization

Resistance; promote biofilm
formation; pyocyanin
production

Cummins et al., 2009;
Fernández et al., 2012

Hemoglobin-derived
peptides (Hbg-1, 2 and
other)

Membranes
permeabilization

Promote S. aureus surface
colonization

Inhibites production of TSS
toxin-1, enterotoxin C, α, δ

hemolysin of S. aureus

Schlievert et al., 2007;
Pynnonen et al., 2011

Dipeptides
cyclo(L-Phe-L-Pro)

Unknown Unknown Inhibites production of TSS
toxin-1

Li et al., 2011

∗ Is meant the reactions of the bacterial population, which has a final positive or negative effect on macroorganism (animal, plant, etc.).

occurs in response to a violation of the structural integrity
of cell barriers (Table 2). For example, Rcs regulon
controls the expression of many specific virulence factors
in bacteria belonging to the Enterobacteriaceae family.
According to a model proposed by Farris et al. (2010),
the sensory molecule RcsF is anchored to the outer
membrane, sequestered from its signaling partners in the
“off state.” During the cellular envelope disorganization,

conformational or spatial change promote direct non-
covalent interaction of RcsF with periplasmic domains of
signaling constituents, leading to Rcs activation. A more
detailed molecular mechanism is described in the review
(Guo and Sun, 2017; Figure 1).

Interaction of antimicrobial peptides with bacterial
membranes in some cases led to an indirect activation of several
genes regulated through “Quorum Sensing” (QS). It is known that
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FIGURE 1 | Diagram showing the main receptors of antimicrobial peptides and the relationship between them. The mechanisms of signal transmission from the
activated receptor to the corresponding genes are shown. Antimicrobial peptides is capable to direct (PhoQ, PmrAB, and other) or indirect (RcsF) activation of the
histidine kinase sensors, which led to regulation of activity of appropriated genes. At the same time, the expression of some genes can simultaneously be under the
positive and/or negative regulation of different TCS. For example, the effect of polymyxin B on the bacterial outer membrane can activates the RcsF sensors, what
leads to inhibition of expression of virulence genes in srfABC operon. Interestingly, the same operon is activated by another TSC PmrAB, for which “Peptide Sensing”
was revealed (for example, for LL-37).

some hydrophobic QS-autoinducers such as PQS are trafficked
between cells via membrane vesicles (Mashburn-Warren et al.,
2008). In this case, the peptide’s membrane-permeabilizing
action releases accumulated PQS molecules, which can triggers
the expression of the virulence genes associated with quorum
sensing (Cummins et al., 2009; Figure 1).

Another example of TCS being indirectly activated by AMPs
is the PhoQP two-component system, which controls the
development of resistance to AMPs. The periplasmic domain of
the PhoQ sensor is in conjunction with Mg2+ cations. Reducing
the available amount of magnesium leads to electrostatic
repulsion between PhoQ and the inner membrane domain (Cho
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et al., 2006). The resistance of Salmonella to polymyxin B is
formed through this mechanism, since this AMP is able to
displace Mg2+ cations from their binding site in the PhoQ sensor
(Santos et al., 2017; Figure 1).

The majority of antimicrobial peptides have cationic
properties that allow them to interact directly with the
extracellular loop of sensors activating them (Li et al., 2007b;
Gryllos et al., 2008). The possibility of such direct interaction
was convincingly demonstrated in the study examining the
ability of the LL-37 to activate the expression of streptococcal
virulence factors, which are under control of the CsRS (CovRS)
two-component system (Gryllos et al., 2008). Streptococci have
cell surface-associated histidine kinases CsrS that can directly
sense peptide molecules (Tran-Winkler et al., 2011). It turned
out that a 10-amino acid residue fragment of the LL-37 did not
exhibit any antimicrobial activity, but it determined the direct
interaction of the LL-37 molecule with the sensory part of CsrS,
according to the principle of ligand-receptor interaction (Velarde
et al., 2014). Presumably, such interactions are determined by
electrostatic forces, since the sensor domain of a two-component
system has periplasmic loops which are usually negatively
charged (Fernández et al., 2010).

Thus, there is strong evidence for the fact that bacteria have
some kind of “Peptide Sensing.” It is only left to find out how
sensitive is the “Peptide Sensing.” Does the “Peptide Sensing”
recognize the specific structure of a peptide or does it responds
to peptides as stress agents in the whole? These questions are not
easy to answer, and more research is still needed. However, it is
already clear that bacteria have sensory systems and mechanisms,
which respond specifically to positively charged amphiphilic
molecules with a certain amino acid composition.

Qualitative and Quantitative Response of
Sensory Regulatory Systems on
Antimicrobial Peptides
Sensory systems can be categorized depending on their ability
to recognize peptide structural features. The sensory systems are
triggered by molecules with cationic and amphiphilic properties
and constitute the first level of defense, since the primary result
of their activation is the development of resistance to AMPs.
For example, Rcs phosphorelay systems are activated through
outer membrane disturbance only by hydrophobic substances
like most antimicrobial peptides (Farris et al., 2010). In turn, the
sensory part of the aps three-component system of staphylococci
can recognize a variety of cationic, but not anionic AMPs
(Li et al., 2007a).

The second level consists of sensory systems, which are
possibly activated with a wide range of different peptides.
Their quantitative properties are crucial. For example, the
PhoQP TCS is activated by peptides with various structures,
but the more charged and hydrophobic the peptide is,
the greater activation is achieved by the exposure to it
(Shprung et al., 2012). Thus, it was shown that LL-37, but
not polymyxin B, activates the expression of virulent genes,
which are under the control of PhoQP/PmrAB (Shprung
et al., 2012). The used peptide’s sub-MIC concentrations are

also important for the final result. For example, sub-MIC
effect of LL-37 on Pseudomonas aeruginosa PAO1 at
4 µg/mL was down-regulation of QS-gene (pqsE) and
other (production of rhamnosyltransferase, phenazine, etc.)
(Overhage et al., 2008), but increase its expression at 20 µg/mL
(Strempel et al., 2013).

It would be an interesting attempt to circumvent the
undesirable sub-inhibitory effects by tuning of physic-chemical
properties of designed synthetic peptides. Unfortunately, today
there is no complete understanding to predict which of TCS
will be activated. Various TCS have a different susceptibility
to AMPs. Thus, using a bioluminescent reporter strain,
it was shown that ParRS TSC was activated after being
treated with colistin/polymyxin B and indolicidin, while
other cationic peptides (including LL-37) did not activate it
(Fernández et al., 2012). Additional experiments with 19 peptides,
different in charge and hydrophobicity, did not reveal a clear
correlation between peptides’ properties and their activation
ability (Fernández et al., 2012). New targeted researches aimed to
study the sub-inhibitory effects of AMPs in the structure-function
aspect, with appropriate mathematical processing, would allow
answering many questions.

Thus, these facts allow us to conclude that different sensory
systems have different levels of sensitivity and the ability
to recognize specific stressors. Ultimately, this determines
the various responses of bacterial cells to different AMPs.
However, it can be assumed that the main reaction of bacterial
genome and its metabolic apparatus is developing resistance,
while all other effects may be secondary. Probably, in stress
conditions, this is the most adequate response of bacteria to
the antimicrobial action of peptides, which, however, can be
followed by others.

Bacterial Defense Network Is Activated
by AMPs
Numerous different genes that are directed toward following
a forming network and regulate a comprehensive strategy
of protection and response to external influences are under
the control of one master regulator. The GraSR TCS of
S. aureus, which are involved in AMPs resistance, and
are indirectly associated with pathogenesis, control pathways
through connections with Agr signal transduction network
(Kraus et al., 2008; Falord et al., 2011). Bacterial Rcs phosphorelay
is a well-known signaling system that regulates virulence and
persistence of Enterobacteriaceae (Erickson and Detweiler, 2006).
The Rcs, simultaneously with PhoQP and PmrAB TCS, is
involved in regulation of several genes, whose expression
maintained integrated resistance of bacteria to polymyxin B
(Llobet et al., 2011; Figure 1).

There is a large number of similar examples, which shows
a close interweaving of different ways of signal transmission
and responding. Often, stress activates a variety of regulatory
systems that overlap closely. Thus, while being surrounded by
antimicrobial peptides, bacterial cells experience stress, the first
response to which will be self-protection.

Concerning the peptides themselves, there is no doubt
that their exclusive physicochemical properties are important.
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However, a more detailed investigation of structure-function
relationships still needs to be conducted.

EFFECTS OF SUB-INHIBITORY
CONCENTRATIONS OF ANTIMICROBIAL
PEPTIDES AT CELLULAR LEVEL

When used in their non-lethal concentration, antimicrobial
peptides have a powerful effect on the functioning of a bacterial
genome, which ultimately leads to a change in the entire behavior
of the bacterial population, provoking negative or positive effects
for interrelated living organisms.

The bacterial envelope is the first protective structure on
the pathway of antimicrobial peptides. AMP’s interaction with
bacterial shells changes their surface architecture provoking
undesirable effects. Thus, Shigella flexneri can use cationic
proteins produced by neutrophils to increase self-adhesion and
promote invasion inside epithelial cells (Eilers et al., 2010; Ni
et al., 2015). LL-37 at sub-inhibitory concentration was proven
to change Streptococcus pyogenes surface architecture, provoking
the formation of extracellular vesicles, which contain numerous
factors of streptococcal virulence (Uhlmann et al., 2016).

In Gram-positive bacteria, some virulence factors are
assembled and attached to the cell wall by sortase enzymes,
which are localized on one or two sides in the cell membrane.
Several antimicrobial peptides can interact with focal sites and
disrupt the localization of some proteins necessary for secretion
and virulence factor assembly (Kandaswamy et al., 2013). For
example, polymyxin B and HNP-1 at sub-MIC concentrations
can bind to the anionic lipids of so-called ExPortal. It leads to
structural disorder and effects cysteine protease and cytolysin
secretion (Vega and Caparon, 2012).

The process of a microorganism’s conquest of a new habitat is
accompanied by an appropriate reorganization of its metabolic
processes. The presence of antimicrobial peptides at this point
can either trigger the secretion of virulence factors that enhance
the aggressiveness of the pathogenic microorganism, or decrease
the metabolic activity and the appearance of persisters aimed
surviving under the stress.

AMP-dependent sequential activation of PhoQP >
PmrAB > ArnC leads to modification of lipid A (development
of AMP-resistance) and at the same time, increased expression
of the virulence factor PagC, necessary for bacterial persistence
within macrophages (Yu and Guo, 2011; Tsai et al., 2016).
The presence of LL-37 at sub-MIC led to the diversification
of the P. aeruginosa population to the mucoid type, which
increased their persistence and subsequently promoted chronic
infection (Limoli et al., 2014). A similar result was revealed for
P. aeruginosa population, growing in sputum of cystic fibrosis
under sub-inhibitory concentrations of colistin (Wright et al.,
2013). Another example of bacterial persistence is the induction
of protective substances the function of which is inactivation of
host defense antimicrobial proteins. For example, the human
serum has numerous antimicrobial peptides and proteins,
including lysozyme. The inhibition of lysozyme activity is one of
the main causes of bacterial persistence (Bukharin et al., 1987).

It was proven that the ability for induction of the main lysozyme
inhibitor proteins Ivy and MliC is widespread in bacterial
world and is under control of Rcs-regulon (Callewaert et al.,
2009; Figure 1).

In addition, a good illustration of non-linearity and
unpredictability of AMPs’ effects is the inhibition of toxin
production in bacteria. S. aureus is one of the main pathogens
of nosocomial infections, and methicillin-resistant strains are
a serious problem in antimicrobial therapy. S. aureus is able
to secrete a set of different virulence factors that allow it to
colonize a different habitat. However, it has been observed
that staphylococci growing on a blood-containing medium
did not produce any toxins (Schlievert et al., 2007). It was
hypothesized that human blood contains a factor that suppresses
toxin-production. Today, it is known that animals’ blood is
a source of various peptides including hemocidins, which
are the cationic peptide fragments derived from hemoglobin
(Mak et al., 2000; Arroume et al., 2008; Vasilchenko et al.,
2016). Further studies of the antitoxic effects of hemoglobin
showed the ability of globin chains to inhibit all known types
of Agr-quorum sensing systems of S. aureus. Surprisingly,
downregulation of agr-genes allows S. aureus to colonize nasal
passages (Liu et al., 2013). It turned out that S. aureus cells reduce
production of some Agr-regulated proteases to avoid generation
of hemoglobin-derived antimicrobial peptides.

Finally, it is worth noting cases when the change in gene
expression does not lead to the expected phenotypic changes.
For example colicin M induces an envelope stress response of
E. coli which upregulated numerous biofilm-associated genes.
Nevertheless, the induction of neither biofilm formation nor
of colonic acid production was observed (Kamenšek and Žgur-
Bertok, 2013). Inducing the expression of virulence genes, did
not cause any expected phenotypic changes indicating that
several cellular targets were affected. So, colicin M induced the
up-regulation of numerous biofilm-associated genes of E. coli.
At the same time, it promoted the hydrolysis of lipid II,
which limited its availability for exopolysaccharide biosynthesis,
including colanic acid (Liu et al., 2013).

ANTIMICROBIAL PEPTIDES AS
SIGNALING MOLECULES

Dual Function of Small Oligopeptides:
Antimicrobial QS-Autoinductors
A shift in AMP’s function from antibiotic to signaling is one
of the side-effects of diluting to sub-inhibitory concentrations.
It is known that β-lactam antibiotics in sub-MIC have
quorum-inducing activities, which triggers the synthesis of
quorum sensing-dependent pathogenicity factors (Liu et al.,
2013; Deryabin and Inchagova, 2017). However, the reverse
scenario is also possible, when the autoinducer exhibits
bactericidal properties (Qazi et al., 2006).

The quorum sensing-dependent process of regulation of gene
expression usually takes place in four stages, one of which receives
the signal molecule, which provide a possibility to interference

Frontiers in Microbiology | www.frontiersin.org 7 May 2019 | Volume 10 | Article 1160

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01160 May 24, 2019 Time: 16:22 # 8

Vasilchenko and Rogozhin Sub-Inhibitory Effects of Antimicrobial Peptides

between cognate and non-cognate autoinducers (Ji et al., 1997).
It makes sense, since autoinducers work not only within a
single population, but are also involved in interspecies signal
transduction (Lowery et al., 2008).

Among the various existing autoinducers, within the
framework of this review, the most interesting group are
small autoinducing peptides molecules (AIP). The chemical
structure of AIPs is diversified into several types, such as
small oligopeptides and cyclic lactone/thiolactone peptides
(Singh et al., 2016). Thus, cyclic oligopeptides often combine
an antimicrobial and a signal activity (Prasad, 1995). Some
Lactobacilli produce a variety of antimicrobial small dipeptides,
which inhibit the viability of bacteria, fungi and viruses, while
also suppressing the production of bacterial exotoxins (Kwak
et al., 2017). In particular, the culture filtrate of Lactobacillus
contained numerous dipeptides including cyclo (L-Phe-L-Pro)
having antifungal activity (Kwak et al., 2014). The ability of
such molecules to suppress exotoxin production is related to
their interference with cognate QS-autoinducers. It was shown
that cyclo (L-Phe-L-Pro) dipeptide suppress the production of
staphylococcal exotoxins (TSST-1) by interfering with the agr
QS-system (Li et al., 2011).

This class of substances is relatively poorly studied, and
aggregated information concerning they biological activity can
be found in remarkable reviews devoted to precisely these
substances (Prasad, 1995).

Dual Function of High-Molecular-Weight
Peptides: Antimicrobial Pheromones
As for ribosomally synthesized antimicrobial peptides,
considering their role in signal transduction, it is first of
all worth considering bacteriocins. Many bacteriocins are
synthesized in a quorum-dependent manner (Kleerebezem and
Quadri, 2001; Quadri, 2002). It is also known that co-incubation
of several different strains significantly enhances production of
bacteriocins (Maldonado et al., 2004). Apparently, the induction
of bacteriocin synthesis in a mixed culture is widespread in
nature, however, the role of inducers is usually taken by proteins
or peptides that do not themselves have antimicrobial properties
(Chanos and Mygind, 2016).

Can bacteriocins affect production of defense peptides in
other species? To date, several bacteriocins that combine both
antimicrobial and signaling properties are known, since their own
biosynthesis is a quorum-dependent bacteriocin (Kuipers et al.,
1995; Kleerebezem et al., 2004). The most studied one in this
respect is plantaricin A (Hauge et al., 1998). The mechanisms
of plantaricin A’s function as a pheromone and antimicrobial
are different. The pheromone action of plantaricin A is initiated
by electrostatic interaction with membrane lipids. Subsequent
events include the spatial arrangement of the plantaricin A
molecule in the lipid/aqueous phase interface, which allows
the N-terminal residues to engage in a chiral interaction
with its histidine kinase receptor (Kristiansen et al., 2005).
Bactericidal activity of plantaricin A is realized when plantaricin’s
concentration is increasing, which leads to a rearrangement into
a alpha-helical conformation and penetration of a bacterial cell

wall (Di Cagno et al., 2010). Nevertheless, the main function
of plantaricin A is signaling, because concentrations, which are
exhibited required for antimicrobial action are not achieved in
nature (Dicks et al., 2018).

As expected, the spectrum of processes which are activated
by bacteriocin’ autoinducers includes only synthesis pathways.
However, proteomic studies of bacteria co-incubated with
bacteriocin (plantaricin A, nisin) revealed a change in the
production of proteins and peptides, which are involved in
increasing the adaptive capacity of the strain in a multi-species
community (Calasso et al., 2013; Mukherjee and Ramesh,
2015) and overcome a bacteriocin-containing environment
(Miyamoto et al., 2015).

In addition, bacteriocin production stimulates the synthesis
of human-defensin-2 (HBD-2) by the cells of the host intestine
(Marzani et al., 2012), which also increases the colonization
potential of certain species and provides ability for intra- and
interspecies competition (Anderssen et al., 1998; Dicks et al.,
2018; Figure 2). Thus, bacteriocins of one species can initiate
the production of their own bacteriocins in another similar
species. However, it seems that this induction of synthesis is
caused by indirect action, since even insignificant structural
differences between bacteriocins are critical for ligand/receptor
interaction. Thus, subtilin does not interact with the histidine
kinase NisK, which normally senses nisin, due to the differences
between these bacteriocins in the structure of their N-terminal
part (Spieß et al., 2015).

Describing the role of bacteriocins in microbial communities,
it is necessary to mention the ability of bacteria to form biofilms.
Biofilm is one of the characteristic forms of the existence of
the multimicrobial community in nature (Sutherland, 2001). In
nature, microbial cells exist in the attached state more often
than in a free-floating planktonic state. Biofilms are structured
by masses of microorganisms embedded in the matrix of
polysaccharides, proteins, extracellular DNA and other molecules
(Gillor, 2007). The development of bacterial biofilm is a quorum
dependent phenomenon that ensures the viability of a bacterial
population under adverse conditions.

It is known that bacteriocins have an important role in biofilm
development. Bacteriocins inhibit the fixing of bacterial cells and
the development of biofilms of competitive species when high
local concentration is achieved (Gillor, 2007). At sub-inhibitory
bacteriocin concentration a similar goal is also achieved, but in a
slightly different way. For example, biofilm formation of S. aureus
was abolished at sub-inhibitory concentrations of bovicin HC5
and nisin, because normal expression of genes associated with
quorum sensing was affected (Pimentel-Filho Nde et al., 2014).
Taken at sub-inhibitory concentration, subtilosin reduced biofilm
formation of a conditionally pathogenic species C. violaceum. It
was shown that subtilosin acts as a proton pump inhibitor in
Gram-negative bacteria, which prevents efflux of a synthetized
QS-autoinducer (Algburi et al., 2017). For more information
about anti-biofilm properties of bacteriocins, the readers can be
addressed to the recent review (Mathur et al., 2018).

There is an interesting point related to the fact that
the action of bacteriocins, unlike most eukaryotic AMPs, is
mediated through interaction with the corresponding receptors
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FIGURE 2 | Demonstration of the signaling role of bacteriocins in the formation of a sustainable mammalian gut microbiome. The Lactobacillus strain producing
plantaricin A triggers the expression of genes and the production of metabolites that enhance the colonizing ability (adhesion and biofilm formation) of another
Lactobacillus strain. The occupied econish is no longer available for pathogenic and conditionally pathogenic microorganisms (S. aureus and S. typhimurium). In
addition, certain (PlnC) activators of bacteriocin production (Plantaricin EF, for example) and some component of the agr QS-system (AgrB) are launched in
susceptible to PlnA Lactobacilli cells, which has a certain antagonistic effect on the competitor species. Also plantaricin A triggers the production of human
β-defensin 2 of the intestinal epithelium, which potentially has an antagonistic effect on a number of pathogenic and conditionally pathogenic microorganisms.

(Cotter, 2014). Numerous receptors, such as lipid II, are universal
for a wide range of bacteriocins. In turn, certain molecules are
receptors only for certain bacteriocins. Thus, lasso bacteriocin
streptomonomicin interacts with WalR, a response regulator
involved in cell wall metabolism and cell division (Acedo
et al., 2018). Some thiopeptides interfere with protein synthesis
either by binding to the 50S ribosomal subunit or elongation
factors (Acedo et al., 2018). It is not yet clear what reactions
can be triggered at the genome or secretome level when
exposed to sub-inhibitory concentrations of such bacteriocins.
Although it is known some antibiotics that inhibit protein
biosynthesis in sub-inhibitory concentrations induce biofilm
formation (Hoffman et al., 2005). There is also evidence
that sub-inhibitory concentrations of glycopeptide vancomycin
[cellular target is lipid II (De Moura et al., 2015)] change the
expression of a several genes associated with virulence E. faecalis
(Breukink and de Kruijff, 2006).

Thus, the main conclusions are:

1. Only cognate bacteriocins-pheromones can interact with
appropriated receptors of regulatory systems.

2. The main function of such pheromones is the initial
production of its own bacteriocins, and their antimicrobial
properties is an additional feature.

3. However, it is possible that the range of biological effects
initiated by bacteriocin-pheromones can be significantly
wider than the production of its own bacteriocins (Xu
et al., 2014). This presents a productive possibility for
future research.

CONCLUSION

In view of the above, the basic mechanisms for regulation of
bacterial virulence factors have become more understandable.
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However, it is not yet possible to say exactly what happens with
bacterial cells when sub-inhibitory doses of AMPs are exposed.
Bacterial reaction on sub-MIC of AMPs can be non-linear. Yes,
peptides are able to inhibit the production of any toxins, but
it turns out that, subsequently, this ability is either restored, or
one toxin is replaced by the production of another. Hemocidins
reduce intracellular amounts of TSST-1, hemolysins, and lipase
for S. aureus cells. However, the production of the virulence factor
protein A is increased (Schlievert et al., 2007).

The presence of a multitude of sensory systems that are
intertwined with each other allows bacteria to adapt to any stress.
Thus, the reaction of bacterial pathogens to protective peptides
consists of two parts: on one hand, the initial presence of a certain
amount of AMP reduces the production of aggression factors and
various exotoxins. On the other hand, a decrease in the microbe’s
enzymatic activity provokes their persistence.

Throughout their evolutionary pathway bacteria have
demonstrated a highly adaptive potential compared to other
living organisms. In part, this has been the cause behind the
current problem of antibiotic resistance, against which the
efforts of many scientific groups are directed. Previously, it was
believed that bacteria are significantly less resistant to the action
of antimicrobial peptides than to conventional antibiotics, but
today it is known to be not entirely true. Bacterial populations
often respond to stressful effects unpredictably, and peptide
action can both weaken the virulent potential of microbes
as well as substantially increase it. The specific scenario will

depend on the peptide’s properties and its local concentration.
These factors are very poorly studied. For the realization of
antimicrobial peptides’ potential as therapeutic agents, it is
necessary to study their non-lethal effects on the physiology and
behavior of microorganisms in the same way as the mechanisms
of lethal action.
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