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ABSTRACT

Background. Many tilapia species or varieties have been widely introduced and have
become an economically important food fish in China. Information on the genetic
backgrounds of these populations is deficient and requires more research, especially
for red tilapia strains.

Methods. In the present study, displacement loop (D-loop) sequences were used to
evaluate the genetic relationship and diversity of seven tilapia populations that are
widely cultured in China; this was done specifically to speculate on the maternal ancestry
of red tilapia strains. Three red tilapia varieties of Oreochromis ssp., Taiwan (TW), Israel
(IL), and Malaysia (MY) strains and other populations, including O. aureus (AR), O.
niloticus (NL), O. mossambicus (MS), and the GIFT strain of O. niloticus, were collected
and analyzed in this study.

Results. A total of 146 polymorphic sites and 32 haplotypes of D-loop sequences
were detected among 332 fish and four major haplotypes were shared among the
populations. The TW and NL populations had a greater number of haplotypes
(20 and 8, respectively). The haplotype diversity (Hd) and nucleotide diversity ()
of each population ranged from 0.234 to 0.826, and 0 to 0.060, respectively. The
significant positive Tajima’s D value of neutral test were detected in the NL, IL, and MY
populations (P < 0.05), which indicated these populations might have not experienced
historical expansion. According to the pairwise F-statistics, highly significant genetic
differentiations were detected among populations (P < 0.01), with the exception of
the IL and MY populations (P > 0.05). The nearest K2P genetic distance (D =0.014)
was detected between the MS and TW populations, whereas, the farthest (D =0.101)
was found between the GIFT and AR populations. The results from the molecular
variance analysis (AMOVA) showed that there was an extremely significant genetic
variation observed among the populations (P < 0.01), which contained 63.57% of
the total variation. In view of the genetic relationship of red tilapia strains with other
populations, TW and IL were detected with more similar genetic structures related to
MS, and MY was more genetically similar to GIFT (or NL), which could provide more
genetic evidence for the red tilapia strains maternal ancestry.
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INTRODUCTION

Tilapia as a common name has been applied to various cichlids from three distinct genera,
which include Oreochromis, Sarotherodon, and Tilapia (Trewavas, 1983). The farmed tilapia
production worldwide was over 5.8 million tons annually in 2017 and China is the largest
tilapia producer in the world (FAO, 2019). Red tilapia is a name used for several different
man-made tilapia variants that have an attractive red coloration. These variants are the
result of continuous selective breeding (Wohlfarth et al., 1990). Many farmers prefer to
cultivate red tilapia since it is sought after in certain markets. Because of their high protein
content, large size, high feed conversion rate (FCR), rapid growth and palatability, red
tilapia is the focus of major farming efforts in China (Romana-eguia ¢ Eguia, 1999).

In recent years, due to the increasing demand in the market, many red tilapia populations
have been imported and cultured in Chinese farms. However, genetic introgression of those
varieties is commonly detected because of their inter-population hybridization breeding.
Growth and color separation often occurs in this practice, which greatly affects the
promotion and marketing of red tilapia. In China, the genetic diversity studies of the
tilapia populations based on molecular markers were carried out in the tilapia populations
using TRAP (Ma, 2012), microsatellites (Zhang et al., 2010) and ISSR (Zhong et al., 2012).
Research on tilapia in other countries has mainly focused on growth and development
(Lith et al., 2005), culture (Muendo et al., 2006), and breeding (Fujimura & Okada, 2010).
The information on genetic diversity and the genetic ancestries of red tilapia is lacking.
The origin of the red tilapia was generally thought to be attributed to the cross-breeding
of the mutant reddish-orange O. mossambicus and other populations including O. aureus,
O. niloticus, and O. hornorum (Wohlfarth et al., 1990; Sandeep et al., 2012), but the specific
source of the certain strains is ambiguous and the ancestries of the three strains widely
cultivated in China are uncharted (Zhu et al., 2017).

The D-loop sequences are non-coding regions of mitochondrial DNA (mtDNA), with a
high rate of evolution and no recombination, which becomes one of the most commonly
used mtDNA sequences for addressing the evolutionary relationship of close relatives
and/or subspecies (Murgra et al., 2002). At present, the D-loop sequences have been widely
used in genetic analyses for aquaculture species, especially related to the genetic structure
(Ryota & Akira, 2002), genetic differentiation (Brown ¢ Thorgaard, 2002), species validities
(Tang, Hu ¢ Yang, 2007), phylogeny and molecular differentiation (Ekerette et al., 2018).
In this study, D-loop sequences were used to evaluate the genetic diversity of seven tilapia
populations and to further estimate the maternal ancestry of three strains of red tilapia.

MATERIALS AND METHODS

Sample collection

The sampling scheme and experimental protocols were approved by the Bioethical
Committee of Freshwater Fisheries Research Center (FFRC) of the Chinese Academy
of Fishery Sciences (CAFS) (BC2013863, 9/2013). Experimental fish were sampled from
seven populations, including the three red tilapia strains of Oreochromis spp., Chinese
Taiwan (TW), Israel (IL), and Malaysia (MY) strains, and other populations of tilapia,
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including the GIFT strain of O. niloticus, O. aureus (AR), O. niloticus (NL), O. mossambicus
(MS). The TW and IL populations were transferred from Fujian Province, China in 2014,
and the MY population was introduced from Malaysia in 2009 (Yang et al., 2015). All tilapia
populations were domesticated and bred in an experimental aquaculture farm in Wuxi
(Jiangsu Province, China). The methods for handling the animals and the experimental
procedures conducted were in accordance with the guidelines for the care and use of
animals for scientific purposes set by the Ministry of Science and Technology, Beijing
China (No0.398, 2006). Forty-eight fin clips were sampled from each population and soaked
in absolute ethanol until the DNA was extracted.

DNA extraction and amplification

Genomic DNA was extracted using the phenol-chloroform method (Sambrook ¢ Russell,
2001). The integrity was detected by 1% agarose gel electrophoresis. The purity and
concentration of the DNA was detected using the NanoDrop spectrophotometer. The
DNA concentration of each sample was adjusted to about 20 ng/iwL and kept under —20 °C
until ready to use.

Primers of the D-loop were designed according to the complete sequences of tilapia
mtDNA (Accession NO: NC_014060) from the National Center for Biotechnical
Information (NCBI). The D-loop sequences of 867 bp was amplified using a primer
pair (sense primer: 5-CTACTTCTTCCTCTTCCTTGT-3/, anti-sense primer: 5'-
TCCGTCTTAACATCTTCAGT-3'), which was synthesized by Sangon Biotech (Shanghai)
Co.Ltd. The PCR amplification was performed on an Eppendorf Mastercycler Pro 384
PCR thermocycler (Eppendorf, Hamburg, Germany). Amplifications were performed in a
volume of 50 L, containing 5 pL 10x PCR Buffer, 3 nL MgCl,(0.25 mM), 4 nL dNTPs
(2.5 mM), 1 pL Taq polymerase (2.5 U/pL), 1 wL of each primer (10 uM), 2 nL genomic
DNA (20 ng/nL), and 33 wL DNase/RNase-free deionized water. PCR amplification
was performed under the following conditions: pre-denaturing for 2 min at 94 °C, 35
cycles of denaturing for 40s at 94 °C, annealing for 55s at 55 °C, prolonging 1 min at
72 °C; final prolonging for 10 min at 72 °C; and then held at 12 °C. Subsequently, the
reaction products were detected using 1% agarose gel electrophoresis, and the bidirectional
sequencing was carried out with the ABI3730XL sequencing instrument of the Shanghai
Majorbio Company.

Sequence arrangement and data analysis

The sequences were edited using the BioEdit version 7.0.9 software (Hall, 1998). To
ensure accuracy, all DNA fragments were sequenced in two directions, and the assembled
sequences were manually checked to prevent the ambiguity of the base or sequencing error.
After the completion of the splicing, all sequences were used for homologous alignment
and length determination by the BioEdit version 7.0.9 software.

After comparing and sorting the D-loop sequences, the fuzzy sequences were deleted
and 332 homologous sequences were obtained upon completion. Genetic variation
parameters were calculated by the DnaSP 5.1 software (Librado ¢ Rozas, 2009), including
polymorphic (segregating) sites (S), number of haplotypes (h), haplotype diversity (Hd),
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nucleotide diversity (), average number of nucleotide differences (k) and Tajima’s D.
For phylogenetic analysis, MEGA 5.05 software (Kinura, 1980; Tamura et al., 2011) was
utilized to calculate the Kimura 2-parameter (K2P) distance among populations, and to
construct unweighted pair group methods with an arithmetic (UPGMA) dendrogram
set with 1,000 replications of bootstrapping. Arlequin 3.5 software (Excoffier ¢ Lischer,
2010) was used to analyze the nucleotide composition, F-statistics (Fsr) and the analysis of
molecular variance (AMOVA) among seven tilapia populations. The Network 4.6 software
(Polzin & Daneshm, 2003) was used to construct the network for haplotypes of D-loop
sequences.

RESULTS

Variation and haplotype distribution of D-loop sequences in tilapia
The nucleotide frequencies of the seven tilapia populations were consistent, and clearly,
the rate of A + T (the average value is 64.3%) was higher than in C + G (the average
value is 35.7%). By sequence alignment, a total of 32 haplotypes were found in the
D-loop sequences and deposited in the GenBank database under the accession numbers
MH515150-MH515185 (except for MH515152, MH515172, MH515175, and MH515182).
Different numbers of haplotypes (from 1 to 20) were detected among the populations
(Table 1). Four of these haplotypes were shared haplotypes (Hap_2, Hap_22, Hap_23, and
Hap_24), of which 2 haplotypes were composed of NL and GIFT populations (Hap_22,
Hap_23), while the others were unique to each population. The 4 dominant haplotypes in
all individuals were Hap_2, Hap_22, Hap_24, and Hap_26 accounting for 34.90%, 12.30%,
14.50%, and 14.50%, respectively.

Genetic diversity and genetic distance among seven tilapia
populations

The genetic diversity parameters of the tilapia populations based on D-loop sequences are
shown in Table 2. A total of 146 polymorphism sites were found, the overall haplotype
diversity (Hd) of the tilapia populations was 0.817, and each population ranged from 0
to 0.834. The average number of nucleotide differences (K =0 —47.32) and nucleotide
diversity (m = 0—0.060) were determined. Among them, the AR population had the lowest
genetic diversity (Hd =0, m =0), the TW and NL populations had a higher haplotype
diversity (Hd = 0.834, 0.826, respectively), and the highest nucleotide diversity (;r) was
detected in the NL population (7 = 0.060). Tajima’s test indicated that the Tajima’s D
value of the TW, GIFT, and MS populations were negative, and other populations were
positive. Among them, NL and MS reached a significant level (P < 0.05), GIFT, IL and MY
populations reached extremely significant levels (P < 0.01).

The pairwise genetic distance was calculated using the Kimura 2-parameter (K2P) model
among seven tilapia populations (Table 3, below diagonal). The inter-population distances
among seven populations ranged from 0.014 to 0.101. The closest inter-population distance
(0.014) was between the MS and TW populations, while the furthest inter-population
distance (0.101) was between the GIFT and AR populations. In this study, the UPGMA tree
based on the K2P genetic distance was shown in Fig. 1. According to the phylogenetic tree,
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Table 1 Distribution of the D-loop haplotypes in tilapia populations.

Haplotype Accession Wild-type or breeding populations Red tilapias Sum
NL AR MS GIFT ™ MY IL
Hap_1 MH515150 1 1
Hap_2 MHS515151 5 46 1 18 18 28 116
Hap_3 MH515153 1 1
Hap_4 MH515154 1 1
Hap_5 MH515155 1 1
Hap_6 MH515156 7 7
Hap_7 MH515157 1 1
Hap_8 MH515158 1 1
Hap_9 MH515159 3 3
Hap_10 MH515160 1 1
Hap_11 MHS515161 1 1
Hap_12 MH515162 1 1
Hap_13 MH515163 1 1
Hap_14 MH515164 1 1
Hap_15 MH515165 1 1
Hap_16 MH515166 1 1
Hap_17 MH515167 1 1
Hap_18 MH515168 2 2
Hap_19 MH515169 1 1
Hap_20 MH515170 2 2
Hap_21 MH515171 1 1
Hap_22 MH515173 9 32 41
Hap_23 MH515174 14 17
Hap_24 MH515176 29 19 48
Hap_25 MH515177 1 1
Hap_26 MH515178 48 48
Hap_27 MH515179 1 1
Hap_28 MH515180 15 15
Hap_29 MH515181 3 3
Hap_30 MH515183 8 8
Hap_31 MH515184 3 3
Hap_32 MH515185 1 1

the haplotype was obviously divided into two branches (the AR population was separated

from other six populations). In addition, the MS and TW populations were clustered and

then clustered with the IL population; GIFT and MY populations were clustered and then

clustered with the NL population.

Genetic differentiation among tilapia populations
The results of the analysis of molecular variance (AMOVA) were shown in Table 4.

Based on the results of the genetic differentiation analysis, the variance percentage of

genetic variation among populations in total variance was 63.57%, and a high degree of
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Table 2 Genetic diversity parameters of mtDNA D-loop sequence of seven tilapia populations.

NL AR MS GIFT ™ MY IL Sum
S 116 0 6 70 101 71 74 146

8 1 2 3 20 3 3 32
Hd 0.826 0 0.043 0.457 0.834 0.504 0.513 0.817
b4 0.060 0 0.0003 0.004 0.024 0.039 0.040 0.054
k 47.32 0 0.255 3.380 20.50 33.55 34.38 45.36
Tajima’s D 2.374 0 —2.094 —2.784" —0.464 3.874" 3.754" 2.523

Notes.

S, polymorphic sites; h, haplotypes; Hd, haplotype diversity; 77, nucleotide diversity; k, average number of nucleotide dif-

ferences.

*means significant (P < 0.05).

“means extremely significant (P < 0.01).

Table 3 Pairwise K2P genetic distances (below diagonal) and fixation indexes (Fsr, above diagonal)
among seven tilapia populations using D-loop.

NL AR MS GIFT ™ MY IL
NL - 0.612" 0.639" 0.333" 0.463" 0.181" 0.263"
AR 0.070 - 0.999 " 0.978" 0.876 0.800 " 0.794"
MS 0.076 0.093 - 0.971" 0.128" 0.612" 0.379"
GIFT 0.045 0.101 0.078 - 0.798 " 0.395" 0.571"
™ 0.073 0.095 0.014 0.070 - 0.369" 0.133"
MY 0.057 0.097 0.050 0.034 0.049 - 0.079
IL 0.064 0.095 0.032 0.050 0.036 0.042 -

Notes.

“means extremely significant (P < 0.01).

—L
TW red tilapia

IL red tilapia

NL

GIFT strain of O.niloticus

— v rediapia

AR

0.04 0.03

0.02

0.01 0.

00

Figure 1 The UPGMA tree based on the D-loop sequences of seven tilapia populations. The numbers
above the scale line indicate the K2P genetic distances among populations.
Full-size &l DOI: 10.7717/peer;j.7007/fig-1

inter-population differentiation was observed among populations (Fst = 0.636, P < 0.01).

The seven populations were divided into two groups consisting of wild-type or breeding

populations, and red tilapia. The genetic differentiation index among populations within
groups accounted for 0.633 (P < 0.01). The pairwise F-statistics values (Fst) of the

seven tilapia populations (Table 3, upper right corner) showed that the pairwise genetic

differentiations among the populations were very significant (P < 0.01), except among the
MY and IL populations (P > 0.05).
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Table 4 Analysis of molecular variance (AMOVA) of seven tilapia populations based on D-loop se-

quences.

Source of variation d.f. Sum of Variance Percentage Fixation
squares components of variation Index

No group

Among populations 6 5848.14 20.31 63.57 0.636

Within populations 325 3781.13 11.63 36.43

Total 331 9629.27 31.94

Two groups (Red tilapia and others)

Between groups 1 900.47 —0.5567 —1.760 0.639"

Among populations within groups 5 4947.67 20.62 65.06 0.633"

Within populations 325 3781.13 11.63 36.70 —0.018

Total 331 9629.27 31.70

Notes.
d.f., degrees of freedom.
“means extremely significant (P < 0.01).

Haplotype network of D-loop sequences in tilapia populations

The median-joining (M]) network diagram of D-loop haplotypes was described in Fig. 2.
The M] network presented a star-like profile, which was linked to many haplotypes from
different regions, and the shared haplotypes and dominant haplotypes were clearly defined.
Obviously, three shared haplotypes were composed of two populations (GIFT and NL,
MY and IL), one shared haplotype was composed of six populations (except AR) and a
dominant haplotype was composed of an AR population.

Maternal ancestry of red tilapia strains

According to the genetic distances among the tilapia populations (Table 3, below diagonal),
it was calculated that TW, IL red tilapia, and MS populations had the closest genetic distance,
which were 0.014 and 0.032, respectively. The genetic distance between MY red tilapia and
the GIFT population was the closest (0.034). Moreover, the UPGMA tree clearly divided

the tested samples of red tilapia into two independent branches. TW and IL were clustered
into one branch, and then clustered with MS, while MY divided into another branch and
clustered with GIFT and NL.

DISCUSSION

Genetic diversity and population dynamics

In the present study, the content of A+T (64.3%) in tilapia D-loop sequences was higher
than the content of G+C (35.7%), which was in line with the distribution characteristics of
the base content in the D-loop (control region) of many fishes (Broughton, Milam ¢ Roe,
2001). In D-loop sequences of seven tilapia populations, 146 polymorphic (segregating)
sites (S) and 32 haplotypes were detected, suggested that D-loop sequences could be

an effective marker for genetic diversity analysis for tilapia populations. Overall, the
tilapia populations showed high haplotype diversity and nucleotide diversity in this study,
indicating the populations that contain an abundance of genetic resources for further use in
breeding or practice. Specifically, NL had the higher genetic diversity (Hd >0.5, = >0.005),
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H_32

Figure 2 The haplotypes network of the D-loop sequences for seven tilapia populations. Different pop-
ulations indicated with different color; the pie sizes mean the distribution frequencies of haplotypes in
populations.

Full-size & DOLI: 10.7717/peerj.7007/fig-2

which was consistent with other research using microsatellite markers (Romana-eguia et
al., 20045 Yang et al., 2011), and isozymes (Zhao et al., 1997). It was speculated that the
original NL population introduced in China was larger and it had a potential for further
selective breeding. The genetic diversity of the red tilapia populations (TW, IL, and MY)
was higher than the other tilapia populations, probably due to its genetic background
of cross-breeding. However, the genetic diversity of the AR population was the lowest
(Hd =0, m =0), which was found to be similar to the results of the previous reports
assessed by RAPD (Xia et al., 1999), microsatellite probes (Wang, Xia ¢» Wu, 2000), and
mtDNA restriction enzyme analysis (Cao & Xia, 1997). This may be due to the small
population size introduced in China as well as mass breeding over generations, which
might result in a decline in the genetic polymorphism of the population. The genetic
purity of the AR population was adverse to further selective breeding and it is necessary to
introduce the AR population again in order to improve its genetic diversity and reduce its
depression as a result of inbreeding. In contrast, the purity of this population also could be
used for inhybridization with other populations or strains. The GIFT and MS populations
were also detected with low diversity parameters (Hd < 0.5, w < 0.005), indicating that
its population may have recently experienced a bottleneck or founder effect produced by
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minority populations (Grant & Bowen, 1998). The high purity of the AR, GIFT, and MS
populations has great significance that the excellent economic traits obtained through
long-term multi-generation breeding could insure the stability inherited through the
genetic selection process. Therefore, AR, GIFT, and MS were often used as parents to breed
red tilapia and stabilize the excellent traits in the red tilapia populations. The Tajima’s
D value for some red tilapia (TW) and wild-type or breeding populations (MS, GIFT)
were negative, which is probably due to the population expansion caused by larger scale
breeding after smaller breeder population produced a family selection in the hatchery.

Genetic relationships of tilapia populations

The red tilapia stocks were reported with different genetic sources that originated from
O. mossambicus, O. aureus, or O. niloticus (Wohlfarth et al., 1990; Sandeep et al., 2012). In
this study, four relative tilapia populations were used for exploring the maternal ancestors
for three strains of red tilapia. The MJ network of D-loop sequences for haplotypes in the
tilapia populations, which were divided into three different major regions and red tilapia
populations, presented in two regions. Four dominant haplotypes were shared by the seven
populations, where Hap_24 was a shared by MY and IL populations, Hap_22 and Hap_23
were shared by GIFT and NL populations, and Hap_2 was shared by six populations except
for the AR population. It was suggested that six populations (except AR) may originate
from similar maternal ancestors.

The analysis of molecular variance (AMOVA) by grouping and non-grouping showed
that the main genetic variation was derived from inter-population, which is similar to the
results of Habib et al. (2011), the low variance within the population and high variance
among populations was reported among Channa fishes. The fixation index (Fst) was
commonly used to examine the genetic variation of populations and the contribution of
this variation to genetic differentiation (Holsinger ¢ Bruce, 2009). Significant Fst values
(Fst >0.25, P < 0.01) were found in this study, which demonstrated that a higher level of
genetic differentiation exists among tilapia populations except for red tilapia. The results
indicated that red tilapia populations may have evolved independently after separating
from a common ancestor, but that those three strains of red tilapia were closed.

Analysis of maternal ancestry of red tilapia

While the maternal ancestors of the existing three strains of red tilapia are not well
documented, their derivation is generally attributed to the crossbreeding of the mutant
reddish-orange Oreochromis mossambicus with other species including O. aureus, O.
niloticus, and O. hornorum (Wohlfarth et al., 1990; Sandeep et al., 2012). Mitochondrial
DNA (mtDNA) has the characteristics of maternal inheritance, simple structure, and rapid
evolution. Therefore, the phylogenetic tree constructed by mtDNA can directly reflect the
origin of the maternal ancestry (Cann, Stoneking ¢~ Wilson, 1994).

Based on the K2P genetic distances among seven tilapia populations, two branches
were constructed in the UPGMA dendrogram and it was speculated that these populations
might be derived from two different primary maternal ancestors, which was consistent
with the results of the MJ network. Specifically, three strains of red tilapia might derive
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from different maternal origin, MS and GIFT (or NL) populations, respectively. The TW
and IL populations were closely related to each other and were clustered with MS, which
was confirmed that two strains of red tilapia were produced from local crossbreeding
of the rare, mutant-colored (reddish-orange) female O. mossambicus (Wohlfarth et al.,
1990). The GIFT strain was selected from four O. niloticus strains imported directly from
Africa and four strains widely cultivated in Asia (Eknath et al., 1993). The K2P genetic
distance between MY red tilapia and the GIFT population was relatively small (D = 0.034),
speculating that MY population was probably bred with the GIFT population or that MY
and GIFT populations might come from the similar, artificially selected NL population. In
addition, the degree of genetic differentiation between red tilapia (IL, TW, and MY) and the
breeding source populations (MS, GIFT or NL) were relatively small, demonstrating that
a close genetic relationship was maintained between the breeding varieties and breeding
source populations; this highly homology was related to the characteristics of maternal
inheritance and non-recombination of mtDNA (Mabuchi, Senou ¢ Nishida, 2010).

CONCLUSIONS

In this study, we used the D-loop sequences to estimate the genetic structures of seven
tilapia populations mainly cultured in China. Furthermore, we analyzed the maternal
ancestry of three strains of red tilapia, which provides more basic data for the reasonable
protection and further utilization of tilapia populations in the future. In brief, the IL and
TW red tilapia strains may derive from the O. mossambicus population, whereas the MY
red tilapia was probably derived from GIFT or O. niloticus.
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