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The diagnosis of electrocardiogram (ECG) is extremely onerous and inefficient, so it is necessary to use a computer-aided
diagnosis of ECG signals. However, it is still a challenging problem to design high-accuracy ECG algorithms suitable for the
medical field. In this paper, a classification method is proposed to classify ECG signals. Firstly, wavelet transform is used to
denoise the original data, and data enhancement technology is used to overcome the problem of an unbalanced dataset.
Secondly, an integrated convolutional neural network (CNN) and gated recurrent unit (GRU) classifier is proposed. The
proposed network consists of a convolution layer, followed by 6 local feature extraction modules (LFEM), a GRU, and a Dense
layer and a Softmax layer. Finally, the processed data were input into the CNN-GRU network into five categories: nonectopic
beats, supraventricular ectopic beats, ventricular ectopic beats, fusion beats, and unknown beats. The MIT-BIH arrhythmia
database was used to evaluate the approach, and the average sensitivity, accuracy, and Fl-score of the network for 5 types of
ECG were 99.33%, 99.61%, and 99.42%. The evaluation criteria of the proposed method are superior to other state-of-the-art

methods, and this model can be applied to wearable devices to achieve high-precision monitoring of ECG.

1. Introduction

Heart-related diseases have become the world’s leading
cause of death, according to the World Health Organization
(WHO) [1]. Today, the most effective way to diagnose heart
disease is to take a patient’s electrocardiogram, which can be
read by a doctor to determine if the patient has a heart-
related disease. The process of reading an ECG is time-
consuming and laborious and depends on the subjective
judgment of the doctor. In recent years, the number of peo-
ple diagnosed with electrocardiogram (ECG) has increased
year by year, as has the number of ECGs that need to be
interpreted. However, there are only a limited number of
doctors who can read the ECG images. Therefore, it is
urgent to develop an accurate and efficient ECG diagnosis
algorithm [2].

At present, most cutting-edge algorithms for this problem
divide the MIT-BIH arrhythmia database into 5 categories
according to the American Association for the Advancement
of Medical Devices (AAMI) standard: nonectopic beats (N),
supraventricular ectopic beats (S), ventricular ectopic beats
(V), tusion beats (F), and unknown beats (Q) [3]. Many clas-

sification algorithms have been designed to classify ECG sig-
nals according to these five categories. In recent decades,
machine learning algorithms have made great achievements
in the field of ECG classification, such as random forest [4],
rough set theory [5], support vector machines [6, 7], and neu-
ral network [8, 9]. Among many machine learning algorithms,
the convolutional neural network (CNN) algorithm of convo-
lutional neural network has strong feature extraction and
self-learning ability. Compared with traditional methods,
the CNN algorithm has better classification performance
and does not need feature extraction. It can directly classify
the original ECG signals and eliminate human interference.

Recently, many CNN-related methods have achieved
good results in solving the problem of ECG detection. Jun
et al. converted 1D ECG data into 2D grayer images and
proposed to use the 2DCNN classifier to obtain features of
more ECG signals, which requires much more computa-
tional effort than the use of the 1D neural network [10].
Acharya et al. used data enhancement technology to obtain
a balanced dataset and trained CNN with enhanced data.
Their classifier only used simple convolution operation and
the accumulation of subsamples to construct CNN [11].
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Hannun et al. designed 1IDCNN with a residual structure,
which did have advantages in training efficiency, but did
not extract the long-term dependence contained in ECG
sequences [12]. Thsanto et al. used a neural network to real-
ize the 19 classifications of ECG signals [13].

Although the existing research methods have good per-
formance, they still have the following defects: (1) Most of
the methods simply deepen the number of network layers
without other improvements. (2) The problem of accuracy
distortion caused by an unbalanced dataset is not solved.
(3) In many methods, the original signal is directly input
into the classifier, and the noise part of the signal will inter-
fere with the final classification effect. (4) Many algorithms
simply pick out certain categories in the dataset for classifi-
cation, and there is no specific standard for unified classifica-
tion, so it is difficult to compare the performance of various
algorithms.

In addition, it should be noted that ECG signals reflect
the time series of cardiac activity through a series of complex
mapping relations. Although the classification effect of CNN
is very good, it lays more emphasis on the calculation of spa-
tial structure, so it is more suitable for spatial data such as
pictures, while the recurrent neural network (RNN) can
extract the time characteristics in time series. In recent years,
RNN have achieved success in several applications involving
sequential or temporal data. For example, it has been widely
used in speech recognition, natural language processing,
machine translation, and other fields. The gated recurrent
unit (GRU), as a new type of RNN, shows good performance
in long sequence applications. It can achieve a better feature
extraction effect in the case of saving computation and is
very suitable for such a long time series of ECG signals. Con-
sidering such factors, a new classifier combining CNN and
GRU was proposed, and a good classification effect was
achieved on the MIT-BIH arrhythmia database.

Although the knowledge of ECG interpretation con-
tinues to evolve, automatic classification of ECG remains a
significant challenge due to the need for high safety in the
medical field and the diversity and variability of ECG types.
In this study, the goal is to design an ECG classifier with
high accuracy for the above problems. Firstly, a preprocess-
ing scheme is designed for denoising and equalization of
ECG data. Then, a new deep learning classifier is proposed
by combining GRU and CNN technologies. Finally, the per-
formance of the model is verified by using the MIT-BIH
database. The proposed method uses shallow layer networks
to achieve excellent classification results.

The main contributions of this work are the following:

(1) By using the prior knowledge of frequency domain
and time domain of ECG data, the idea of using
the CNN structure to extract data features and using
the GRU structure to extract data time features is
proposed

(2) A featureless lightweight convolutional neural net-
work is designed to represent and recognize ECG
signals. The CNN model can well explore the wave-
form features, morphological characteristics, and
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time domain features of ECG signals, by the combi-
nation of convolution blocks and gate recurrent
unit (GRU)

(3) The well-known MIT-BIH arrhythmia database was
used to validate the model performance and com-
pare the experimental results with the scientific liter-
ature reviewed. The results show that the proposed
model is more efficient than the current technology
in terms of accuracy

The remainder of this paper is organized as follows. In
Section 2, the methods designed and the techniques used
are described. Experiments, evaluation, and result compari-
son are presented in Section 3. The conclusion is given in
Section 4.

2. Materials and Methods

In this part, the datasets used in the study and the data pro-
cessing steps are first introduced, and then, the proposed
CNN model and the selection of optimizer activation func-
tions used in the proposed method are described.

2.1. Data Description. For this experiment, the MIT-BIH
arrhythmia database was used to verify the performance of
the proposed model [15] (the MIT-BIH arrhythmia database
can be downloaded from https://physionet.org/content/
mitdb/1.0.0/https://physionet.org/content/mitdb/1.0.0/).

The database consisted of 48 sets of ECG signals from 47
patients in the arrhythmia laboratory, with a duration of
30 minutes, and each signal is then digitized at 360 Hz.
The ECG signal from the MIT-BIH database consists of a
“HEA” text header file, a “DAT” binary data file, and an
“.ATR” annotation file in which the ECG specialist records
the diagnostic information of the corresponding ECG signal.
The header file specifies detailed information, including
sample number, sampling frequency, ECG signal format,
type of ECG conductance, patient history, and detailed clin-
ical information. In binary files, the signal is stored in 212
format and binary comment files consist of beat comments
[15, 16]. The WEFDB-Python tool is used to read the ECG
data into an array based on the contents of the annotated
file. In our experiments, only data from the MLII lead were
used. Based on the information available in the database,
the signal is segmented into heartbeats centered on each R
peak, and its corresponding type is recorded. Each heartbeat
consisted of 186 sample points (85 samples before R peak
and 100 samples after R peak). The AAMI standard is used
to classify the MIT-BIH dataset, and the specific description
of this standard can be seen in Rajesh and Dhuli’s [14] study.
According to AAMI recommendations, 109,446 ECG signals
are classified into five categories, as shown in Table 1.

2.2. Preprocessing. To achieve the optimal performance of
the proposed model, the original data need to be prepro-
cessed first. The data preprocessing part mainly includes
the following four steps.
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TaBLE 1: Summary of the heartbeats. Reproduced with permission
from Rajesh and Dhuli [14].

The AAMI heartbeat

L Annotations of MIT-BIH heartbeats
class description

Normal beats
Left bundle branch block beats
Right bundle branch block beats
Nodal (junctional) escape beats

Nonectopic beats (N)

Atrial escape beats
Aberrated atrial premature beats
Supraventricular Supraventricular premature beats
ectopic beats (S) Atrial premature contraction
Nodal (junctional) premature beats

Ventricular flutter wave
Ventricular ectopic

beats (V) Ventricular escape beats

Premature ventricular contraction
Fusion of ventricular and normal
Beats
Paced beats
Unclassifiable beats

Fusion beats (F)

Unknown beats (Q)
Fusion of paced and normal beats

2.2.1. Wavelet Denoising. Noise in the ECG signal includes
human EMG signals, electrical noise signals of acquisition
equipment, and baseline drift [17]. Wavelet transform can
decompose the signal containing noise into the basis func-
tion of time and scale, so it can achieve better denoising
effect while retaining the edge and details of the original sig-
nal [18, 19]. The original signal was decomposed into 9
wavelet components by wavelet 6 (db6). Wavelet compo-
nents of levels 3-9 are used to reconstruct the signal. The sig-
nal before and after denoising is shown in Figure 1.

2.2.2. Heartbeat Signal Extraction. Each beat is extracted
according to the R peak position marked by the annotation
file in the MIT-BIH database. Each beat signal is composed
of 85 sampling points before the annotation position and
100 sampling points after the annotation position.

2.2.3. Normalization. The value range of each sampling
point of the ECG signal is normalized to between 0 and 1.
Normalizing the initial input of the model can improve the
convergence speed in the process of model training, and its
essence is to speed up the calculation speed of gradient
descent. At the same time, the normalization process makes
the data between different dimensions have better compari-
son, so normalization has the benefit of improving the accu-
racy of the model [20].

2.2.4. Data Augmentation. Large and balanced datasets are
the guarantee for training excellent models [21]. However,
in the MIT-BIH database, the number of category N ECG
signals is far greater than that of category F ECG signals. If
such a dataset is directly used to train the model, the model
will tend to predict the sample as the category with a large

number of samples. Therefore, resampling, scaling, clipping,
and other operations are used for data enhancement of S, V,
Q, and F, while N types of data are randomly selected so as
to be similar to the number of other types of data [22].

The following methods are used for data augmentation.

Resampling: the original data is subsampled and zeroed
at the end of the data to make it the same length as the orig-
inal data.

Scaling: the mean value of two adjacent data points was
inserted between each two adjacent data points, the length
of the data was expanded, and then, the obtained data was
cropped to make its length the same as the original data.

Clipping: some data from both sides of the data were
randomly deleted and the cropped part with zeros was
supplemented.

2.3. Architecture of Proposed Model. After the preprocessing
is completed, this part introduces the network model and its
design ideas. Generally speaking, there are two main criteria
for detecting abnormal ECG signals: abnormal ECG pulse
shape and the difference in the occurrence time of abnormal
ECG fluctuations. If a model can handle the above two con-
ditions, it needs (1) good feature extraction ability to recon-
struct as many ECG waveforms as possible and (2) the
ability to analyze time series data. In the field of deep learn-
ing, there are two widely used networks, namely, CNN and
GRU. CNN focuses on feature extraction, and GRU focuses
on time series analysis [23]. Existing good studies either use
stacked GRU or use deep CNN alone for electrocardiogram
classification. However, we have discovered that when
designing ECG classifiers based on GRU alone, learning
the local features of the input data will become a huge chal-
lenge and ultimately an almost infinite training time. On the
other hand, a single CNN structure can effectively extract
the local features of data. However, CNN was originally used
to classify data that did not include time information such as
images, and the single CNN structure would lose the time
information of the data. Therefore, it is natural for us to con-
sider combining CNN and GRU to solve the problem of
electrocardiogram classification.

2.3.1. Architecture Overview. Based on the previous analysis
of the characteristics of ECG signals and CNN, a deep
learning algorithm framework is proposed, as shown in
Figure 2, which is used to extract and classify ECG signals
and is mainly composed of CNN and GRU. Firstly, the
original data was automatically extracted by CNN, and
then, the extracted sequence features were input into GRU
to extract time-dependent characteristics. Finally, the Dense
layer and Softmax layer were used to classify the ECG
signals.

2.3.2. Description of the CNN Module. The proposed CNN
model structure is shown in Figure 2. Considering that
ECG signals in the MIT-BIH dataset are all time series, the
one-dimensional convolutional neural network can best
extract the features of the original signals. Therefore, the
one-dimensional CNN model is used to carry out a one-
dimensional convolution layer and filter on the input data.
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F1GURE 1: Signal before and after denoising comparison. There is a noise interference signal in the original signal, and this process reduces

the influence of the noise signal on the classification process.

First, a convolutional layer is used to propose preliminary
features of the original data, and then, a feature extraction
module composed of two convolutional layers, a batch nor-
malization (BN) operation, a rectified linear unit (ReLU),
and a pooling layer is used to extract deeper features of
ECG signals. Six feature extraction modules are superim-
posed to form the backbone of the model, which achieves
the best classification effect. Adding ReLU and BN to each
LFEM can add nonlinear factors in the operation process
and improve the training speed [24]. The convolution layer
extracts the local features of the data through the convolu-
tion operation [25]. The process of the convolution layer
can be described by

HDES

ieM

x=f cw + by |, (1)

where M, is the effective range of the convolution kernel, x}
represents the output of the kth neuron in layer [, b, repre-
sents the bias of the kth neuron in layer I, w; represents
the convolution kernel between the ith neurons in layer !
and the kth neurons in layer /-1, and f(-) represents the
ReLU activation function.

The subsampling layer can reduce the computation
while ensuring the extraction of good features in the training
process [26]. Max-pooling is adopted to obtain the maxi-
mum value in the data neighborhood to replace the features
of the network of the upper layer. The operation process is
shown in

x, = subsample (xk lmr) (2)
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FIGURE 2: The architecture of the proposed model.

where x! represents the output of the kth neuron of layer I,
subsample represents the subsampling operation, and
xi1  represents the kth output cluster of layer / — 1.

rluster

The input and output structures of the main modules of
the proposed model are shown in Table 2. The size of the
convolution kernel of the first convolution layer is 9, and
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TaBLE 2: The output shape of the main module.

The name of the module Output
Input 186 = 1
Conv 186 * 32
LFEM1 93 * 64
LFEM2 47 % 64
LFEM3 24 % 128
LFEM4 12 % 128
LFEM5 6 % 256
LFEM6 3 %256
Reshape 1 %768
GRU 1 %768
Dense 96

Softmax 5

the number of convolution kernels is 32. In the following 6
feature extraction modules, the convolution kernel of the
convolution layer in each feature extraction module is 3 * 1
, and the number of convolution kernels is 64, 64, 128,
128, 256, and 256, respectively. The filter of all the pooling
layers used in the method is 2 * 1, and the step size is 2.
The method of using multiple small convolution kernels
instead of a single large convolution kernel is used to set net-
work parameters, and the network designed with this idea
obtains a better classification effect [27, 28].

2.3.3. Description of the GRU Module. As shown in Figure 3,
the features extracted by CNN are input to the GRU layer.
From the structure of CNN in equation (1), the sample pro-
cessing of ordinary CNN is calculated independently at
every moment. It pays more attention to the spatial correla-
tion of features, which makes it difficult to extract all the fea-
tures of the time series only by using the CNN structure
[29]. From the internal structure of GRU shown in
Figure 4, the output of each neuron layer in GRU affects
the output at subsequent moments, so it can be used to
describe time series and solve the problems of gradient dis-
appearance and gradient explosion in long sequence training
[30, 31]. Also, note that the GRU uses two gating units to
determine how the new information is combined with the
previous information and how much of the previous infor-
mation is retained to calculate the new state, which greatly
saves computation in the time feature extraction process.
Equations (3), (4), (5), and (6) are the state of the cell in
Figure 4 and the output of each layer at every moment:

ri=0(WL -x,+ Wl 0., +b,), 3)
z, = U(WL X+ WL o+ b,) (4)
o,=tanh (W}, -x,+ Wi - (r,®0,,) +b,), (5)
0,=2,80, 1+ (1-z,)®0, (6)

Q Q, Q

I |

GRU — GRU

] |

X1 X2 Xt

—b «« — GRU

FiGUre 3: GRU model.

Q
Qi X +
1- I
X X
‘_l Ty Z | 6t
o o Tanh
1 J
X,

F1GURE 4: The internal structure of GRU.

where W, W, W, represents the weight matrix of the
corresponding vector, W ., W, W ; represents the weight
matrix of the previous moment, and b,,b,, b; represents
the deviation.

2.4. Architecture of Proposed Model. The selection of loss
function and optimizer is as important to the accuracy as
the construction of a network structure [32]. This section
describes the optimizer and loss function in the proposed
method.

2.4.1. Cost Function. The loss function is used in model
training to show the gap between the predicted effect and
the actual data. The smaller the loss function is in the train-
ing process, the more accurate the classification effect of the
model will be. The cross-entropy function is selected as the
cost function in this work, which can overcome the short-
coming of slow parameter updates of the traditional loss
function [33]. Equation (7) shows its principle:

]z_%b}n log (7,) +(1-y,)log (1-7,)], (7)

where ] is the total cost, N is the number of training data, y,
is the expected output, and y,, is the actual output generated
by the network.

2.4.2. The Optimizer. In 2014, Kingma and Leiba proposed
the Adam optimizer, which combines the advantages of
Adagrad and Rmsprop and calculates the update step size
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TaBLE 3: Comparison of accuracy of different CNN structures.

The types of CNN structures D1 D2 D3 D4 D5 S1 S2 S3 S4 S5
Average accuracy after 10 training sessions (%) 9633  97.45 98.84 9873 9878 9499 9578 96.73 9721 97.15
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FiGure 5: The proposed data enhancement technique and the influence of GRU on sensitivity.

by using gradient first-order moment estimation and
second-order moment estimation [34]. The Adam optimizer
can automatically adjust the learning rate with a small
amount of computation, and usually, there is no need to
adjust the learning rate; it is well suited to the datasets with
large samples [35, 36].

3. Results

In this section, the training method of the model is intro-
duced first. Then, the experimental results were mainly stud-
ied, and the effects of each step of the experiment on the
classification performance were compared.

3.1. Setup. The dataset is randomly divided into the training
set and test set in the order of 8:2. The training set is input
into the proposed network to train the classification model,
and the classification effect of the test set is used to evaluate
the performance of the model.

The proposed network is implemented using the Keras
framework, and the convolutional neural network is coded
using Python. The experiment was set up on an Intel Core
i5-9600@3.10 GHz CPU; the GPU was Radeon520. The
trained model is stored in the HDF?5 file.

3.2. Evaluation. To evaluate the effectiveness of the model,
accuracy, sensitivity, and Fl-score were used to evaluate
the model performance. Accuracy is the most common stan-

N - 0.002 0.001 0.001 0.0
s 4 0.0013 0.003 0.0 0.0
_ v 0004 0.0 0.002 0.001
2
=
©
2
=
F - 0003 0.0 0.002 0.0
Q- 0005 0.0 0.004 0.0
T T T T T
N S \% F Q

Predicted label

FiGure 6: Confusion matrix for the proposed model.

dard for evaluating model performance, representing the
proportion of correctly predicted samples to the total sam-
ples. Precision reflects the proportion of true positive exam-
ples judged as positive examples by the classifier. Sensitivity
represents the proportion of correctly classified true positive
samples to all true positive samples. F1-score (balanced aver-
age) is the calculation result of integrating model sensitivity
and precision, and its value is more inclined to the index
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FiGure 7: The ROC of the proposed model.
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with a smaller value. Definitions of accuracy, sensitivity, and
F1-score are shown in formula (8), (9), (10), and (11):

TP +TN (8)
accuracy = ,
Y= (TP +TN) + (FP + FN)
TP
sensitivity = recall = TPIEN’ 9)
TP

precision = 75—, (10)
Fl-score = 2precision - recall (11)

precision + recall’

where TP represents the number of true positive samples,
TN represents the number of true negative samples, FP rep-
resents the number of false positive samples, and FN repre-
sents the number of false negative samples.

3.3. Experiment. Different structures of CNN have different
feature extraction capabilities. With the deepening of the
convolutional layer, the classification performance of the
CNN classifier will become stronger. However, when the con-
volutional layer deepens to a certain threshold, the perfor-
mance of the classifier is no longer strong, and the training
time will be longer. It should also be noted that the mapping
relationship between the heartbeat category and its waveform
is very complex, and the LFEM of the double-convolutional
structure has higher accuracy than the feature extraction mod-
ule of the single convolutional layer. To find the most suitable
classification model, 10 kinds of CNN structures were used for
evaluation on the MIT-BIH database. Table 3 shows the clas-

sification accuracy of each structure, D1-D5 represent the
classification results of CNN built by 2, 4, 6, 8, and 10 LFEMs,
and S1-S5 represent the classification results of CNN built by
2,4, 6, 8, and 10 convolutional layers. Due to the data length
limitation, we remove the pooling layer of the seventh and
eighth feature extraction modules, respectively, in the two
10-layer convolution structures. Among these ten convolu-
tional structures, the number of convolutional kernels at 1-
10 layers is 64, 64, 128, 128, 256, 256, 256, 256, 256, and
256, respectively. The size of the convolutional kernels is 3
# 1, and the step size is 1. The filters for all pooling layers
used in this method are 2 * 1, and the step size is 2.

As can be seen from Table 3, for the CNN classifier with
the same number of layers, the classifier with LFEM is gen-
erally better than the classifier stacked with a single convolu-
tional layer. It can also be seen from Table 3 that when the
depth of the CNN model with LFEM reaches 6 layers, deep-
ening the number of network layers cannot further improve
the classification performance of the model. This indicates
that the number of neural network layers in the D3 structure
can best extract features from the MIT-BIH database. There-
fore, D3 was chosen as the final CNN structure.

The data enhancement technology and GRU were added
to the proposed method. As can be seen from Figure 5, the
model has a significantly better ability to classify S and F
beats with a small number of beats after the use of the data
enhancement technology.

The confusion matrix obtained by using the proposed
method for MIT-BIH arrhythmia database classification is
shown in Figure 6. It can be seen from the confusion matrix
that the overall performance of the proposed method is very
good. Observe the diagonal value of the matrix, and it shows
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that the correct sample proportion reaches more than 99%.
Figure 7 shows the receiver operating characteristic (ROC)
curve for the proposed model, the diagonal is a random clas-
sification model of the ROC curve, and the ROC curve to the
left upper corner of the near axis represents better results
[37]. The Area Under Curve (AUC) represents the size of
the area under the ROC curve, and it represents the proba-
bility that a positive example is predicted to be ahead of a
negative example [38]. As can be seen from Figure 7, the
AUC of the proposed ECG detection method is close to 1.

The training accuracy and loss curves obtained when 200
epochs were trained by this method are shown in Figures 8
and 9. The accuracy curve is observed, and the training accu-
racy and testing accuracy of the model are stable at more
than 99% after 130 epochs, indicating that the model has a
good classification effect on the MIT-BIH database. The pre-
cision curve and the loss function curve of the whole train-
ing process are relatively stable, and the loss function is
stable between 0 and 0.2; it shows that the cross-entropy
function has good performance.
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TaBLE 4: Accuracy comparison between CNN-LSTM and CNN-
GRU.

Classifier Accuracy (%)  Sensitivity (%)  Fl-score (%)
CNN-LSTM 99.02 99.05 98.87
CNN-GRU 99.61 99.33 99.42

TaBLE 5: Comparison of the proposed network and state-of-the-art
methods.

Work Accuracy (%) Sensitivity (%) F1-score (%)
Jun et al. [10] 97.55 97.05 97.44
Acharya et al. [11] 93.50 93.35 93.41
Hannun et al. [12] 94.95 95.46 9491
Thsanto et al. [13] 99.02 76.32 80.97
Proposed model 99.61 99.33 99.42

To evaluate the performance of the CNN-GRU model, a
CNN-LSTM model that only changes GRU to the LSTM
structure is compared with the proposed model. The
detailed information of the classification performance of
CNN-GRU and CNN-LSTM models is shown in Table 4.
The accuracy, sensitivity, and Fl-score of the CNN-LSTM
model reached 99.02%, 99.05%, and 98.87%, and the accu-
racy, sensitivity, and F1-score of the CNN-GRU model was
99.61%, 99.33%, and 99.42%, respectively. After summariz-
ing Table 4, it can be seen that the overall performance of
the CNN-GRU network is better than that of the CNN-
LSTM network.

3.4. Compare the Proposed Method with Other Existing
Methods. Table 5 provides a comparative analysis of the
existing and proposed methods. Four state-of-the-art models
were used to classify the MIT-BIH database and compare the
accuracy, sensitivity, and Fl-score with the proposed net-
work. Compared with the proposed network whose perfor-
mance is more than 99% in accuracy and sensitivity, Jun
et al’s [10], Acharya et al’s [11], Hannun et al.’s [12], and
Thsanto et al.’s [13] models had much lower accuracy, sensi-
tivity, and F1-score. This is due to the use of effective denois-
ing and data segmentation technology in the preprocessing
stage and a reasonable method in the design of the network;
the use of a local feature extraction module of the double-
convolutional structure is also an important reason to
achieve excellent results.

4. Discussion

In this paper, a new classification method based on the
characteristics of ECG signals is proposed. Firstly, the noise
and artifacts in the signals are removed through wavelet
decomposition and reconstruction, and the data enhance-
ment technology is designed to expand the dataset. Then,
the dual convolution structure is used to construct the local
feature extraction module, and the CNN structure which can
better extract the characteristics of complex ECG signals is
designed. Finally, GRU is introduced in combination with

CNN to help the classifier obtain the ability to extract the
time dependence when classifying ECG sequences, which
can improve the classification performance of the classifier.
The total classification accuracy of the model in the MIT-
BIH database can reach 99.61%, the average sensitivity and
F1-score can reach 99.33% and 99.42%, and the experiments
show that the model has a strong learning ability. In addi-
tion, compared with Hannun et al.’s method, the proposed
method achieves a better classification effect with a shallower
network. The proposed network can also be applied to other
one-dimensional signals.

Data Availability

The MIT-BIH arrhythmia database used to support the find-
ings of this study can be obtained from the following con-
nection: https://physionet.org/content/mitdb/1.0.0/.
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