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To explore the relationships between Toll-like receptors (TLRs) and the activation and
differentiation of T-cells in Takayasu’s arteritis (TAK), using real-time fluorescence
quantitative polymerase chain reaction, mRNA abundance of 29 target genes in
peripheral blood mononuclear cells (PBMCs) were detected from 27 TAK patients and
10 healthy controls. Compared with the healthy control group, the untreated TAK group
and the treated TAK group had an increased mRNA level of TLR2 and TLR4. A sample-to-
sample matrix revealed that 80% of healthy controls could be separated from the TAK
patients. Correlation analysis showed that the inactive-treated TAK group exhibited a
unique pattern of inverse correlations between the TLRs gene clusters (including TLR1/2/
4/6/8, BCL6, TIGIT, NR4A1, etc) and the gene cluster associated with T-cell activation
and differentiation (including TCR, CD28, T-bet, GATA3, FOXP3, CCL5, etc). The dynamic
gene co-expression network indicated the TAK groups had more active communication
between TLRs and T-cell activation than healthy controls. BCL6, CCL5, FOXP3, GATA3,
CD28, T-bet, TIGIT, IkBa, and NR4A1 were likely to have a close functional relation with
TLRs at the inactive stage. The co-expression of TLR4 and TLR6 could serve as a
biomarker of disease activity in treated TAK (the area under curve/sensitivity/specificity,
0.919/100%/90.9%). The largest gene co-expression cluster of the inactive-treated TAK
group was associated with TLR signaling pathways, while the largest gene co-expression
cluster of the active-treated TAK group was associated with the activation and
differentiation of T-cells. The miRNA sequencing of the plasma exosomes combining
miRDB, DIANA-TarBase, and miRTarBase databases suggested that the miR-548 family
miR-584, miR-3613, and miR-335 might play an important role in the cross-talk between
TLRs and T-cells at the inactive stage. This study found a novel relation between TLRs and
T-cell in the pathogenesis of autoimmune diseases, proposed a new concept of TLR-co-
expression signature which might distinguish different disease activity of TAK, and
highlighted the miRNA of exosomes in TLR signaling pathway in TAK.

Keywords: T-cell activation, Toll-like receptor, Takayasu’s arteritis, disease activity, co-stimulatory molecule,
immune checkpoint, biomarker, miRNA - microRNA
org January 2022 | Volume 12 | Article 7929011

https://www.frontiersin.org/articles/10.3389/fimmu.2021.792901/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.792901/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.792901/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lijing6515@pumch.cn
mailto:xiaofeng.zeng@cstar.org.cn
https://orcid.org/0000-0003-2504-1629
https://orcid.org/0000-0002-3883-2318
https://orcid.org/0000-0002-2710-848X
https://orcid.org/0000-0003-3962-1894
https://orcid.org/0000-0002-1511-7952
https://doi.org/10.3389/fimmu.2021.792901
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.792901
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.792901&domain=pdf&date_stamp=2022-01-20


Tian et al. TLRs and T-Cells in TAK
INTRODUCTION

Toll-like receptors (TLRs) are a type of pattern recognition receptor
that can initiate multiple immune responses by combining with
pathogen-associated molecular patterns (PAMPs) and damage-
associatedmolecular patterns (DAMPs). A growing number of
studies have been demonstrated that TLRs take part in the
pathogenesis of many kinds of autoimmune diseases (AIDs)
through several mechanisms (1–3). Recently, NI-0101, an anti-
toll-like receptor 4monoclonal antibodywasused inRA,whichwas
thefirst clinical trial to targetTLRs to treat autoimmunediseases (4).
The dearth of knowledge on the role of TLRs in the pathogenesis of
Takayasu’s arteritis (TAK) is especially notable when compared to
the relatively higher number of studies on their role in that of
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),
and multiple sclerosis (MS).

TAK is a primary large vessel vasculitis mainly affecting the
aorta and its major branches. Patients with onset TAK are
typically female, and more than 90% of them are under 30
years old. Annual TAK incidence rates are estimated to be 1.5
cases per million in Japan, and 0.2~2.6 cases per million in
Europe and North America (5). The autoimmune inflammation
of TAK appears to be dominantly driven by T-cells (6). Studies
have shown that there are numerous associations between TLRs
and the activation and differentiation of T-cells. For instance,
TLRs expressed in innate immune cells, such as DCs and
macrophages, can regulate the activation and differentiation of
T-cells. On the other hand, TLRs expressed in T-cells can
influence T-cells more directly. For instance, TLR1 and TLR9
are highly expressed in CD4+ T cells, and CD8+ T cells have
abundant TLR3 and TLR4 expression (7). TLR7-mediated
suppression of Th17 cells does not require dendritic cell
involvement (8), TLR2 signaling alters the transcriptional
program of differentiating and increases the proliferation of
Th17 cells (9), TLR8 signaling suppresses glucose uptake and
metabolism in Treg cells (10), and TLR2 signaling enhances the
movement of Treg cells (11), which all act on T-cell directly.
Thus, we hypothesized that TLRs regulate the activation and
differentiation of T-cells in TAK. However, there have been only
two studies in the literature on TLRs in the pathogenesis of TAK
in PubMed database (12, 13). Kabeerdoss et al. found that the
higher mRNA expression of TLR4 and its ligand S100s in
peripheral blood mononuclear cells (PBMCs) of TAK patients
compared to healthy controls and that after being stimulated
with TLR4 ligand (12), PBMCs from TAK patients had a higher
mRNA expression of IL-1b and IL-1R2 compared to that of HC
(13). Taken together, it has been currently unknown whether
TLRs are related to the disease activity or the activation and
differentiation of T-cells in the pathogenesis of TAK.

In organisms, genes form molecular networks, these
molecular networks tend to be modular, and similar modules
combine to function (14–16). If a network has a high clustering
coefficient, it suggests the presence of local cliques or clusters of
connected molecules (17). Genes with high expression similarity
or linked by the shortest path are often involved in the same
biological pathway or are subjected to shared regulatory
pathways (18–21). The identification of stable and reliable gene
Frontiers in Immunology | www.frontiersin.org 2
co-expression networks is essential to unravel the interactions
and functional correlations between genes (22). Analysis of the
gene co-expression network is one of basic approaches currently
adopted by research on the relations between two clusters of
genes (14, 15).

Additionally, in this study, we defined ‘co-stimulatory
molecules’ as both negative and positive co-stimulatory
molecules (23). After T cell receptor (TCR) activation, the fate
of the T cells is controlled by signals from T cell co-stimulatory
molecules and cytokines largely.

The aim of this study was to determine whether a relation
exists between TLRs and the activation and differentiation of T-
cells in TAK and to analyze the key molecules that play an
important role in this regulation. This study may provide
experimental evidence for targeting TLRs in the treatment
of TAK.
METHODS

Figure 1 Summarized the basic workflow of this study.

Gene Function Annotation
Universal Protein Resource (UniProt) SwissProt database was
used to annotate gene functions (24).

Functional Enrichment Analysis
Functional enrichment analysis was performed by the Metascape
webserver (25) (https://metascape.org/), and the pathway
databases consisted of Gene Ontology (GO) (26), KEGG (27),
and WikiPathways (28). Enrichment analysis was performed by
using a hypergeometric test with a p-value cutoff of 0.01. The
enrichment results were visualized using the R Package ggplot2,
the R Package Circlize, and Cytoscape V. 3.8.2.

Networks Based on Public Databases
The gene co-expression network was constructed using the
COEXPEDIA database (29) (www.coexpedia.org), and the
protein-protein interaction (PPI) networks were constructed
using the STRING database (30) (https://www.string-db.org/).

Patients
Treated TAK patients fulfilling the 1990 ACR criteria (31) were
enrolled. And we assessed the disease activity of TAK by the 1994
NIH criteria (32), which included the following.

1. Systemic features, such as fever, musculoskeletal (no other
cause identified).

2. Elevated ESR.
3. New onset or aggravated features of vascular ischemia or

inflammation, such as claudication, diminished or absent
pulse, bruit, vascular pain (carotodynia), asymmetric blood
pressure in either upper or lower limbs (or both).

4. Typical angiographic features.

If a TAK patient had two or more features, he was defined
as “active TAK patient”; otherwise, we diagnosed the patient was
January 2022 | Volume 12 | Article 792901
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FIGURE 1 | The basic workflow of this study. (A) mRNA abundance of 29 target genes in PBMCs was measured using RT-qPCR, and these genes were highly
enriched in TLR signaling pathways and the function of the activation and differentiation of T-cells by functional enrichment analysis. (B) Sample clustering
analysis suggested that TAK patients had a different expression pattern of the selected genes from the healthy controls. Gene expression differential analysis
demonstrated the upregulation of TLR signaling pathway in TAK, but no substantial difference in TLR signaling pathway was found between the inactive-treated
TAK patients and the active-treated TAK patients. (C) Correlation analysis showed that the inactive-treated TAK group exhibited a unique pattern of inverse
correlations between the TLRs gene cluster and the gene cluster associated with T-cell activation and differentiation, while the active-treated TAK group did not.
And TLRs and their correlation cluster could distinguish active patients from inactive patients in TAK. (D) Dynamic gene co-expression network was constructed.
TLR-co-expression signature of different stages was observed, and the degree of functional association between the other genes with TLRs was assessed.
(E) To account for the co-expression in the greatest cluster of the inactive-treated TAK group, functional enrichment analysis, miRNA database prediction, and
miRNA sequencing of plasma exosomes was performed, which indicated that miRNAs might play an important role in the cross-talk between TLR and T-cell in
TAK patients.
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at remission stage, and the patient was defined as “inactive
TAK patient”.

A patient that never received any TAK medication was
defined as “untreated TAK patient”, and a patient that was
under treatment was defined as “treated TAK patient”. Both
the untreated and the treated patients were classified into the
inactive group and the active group.

Written informed consent was obtained from all participants
and the study was performed in accordance with the Declaration
of Helsinki. And this study was approved by the Institutional
Review Board of Peking Union Medical College Hospital,
Beijing, China (S-478).

Collection and Processing of Human
Blood Samples
PBMCs were isolated from patients by density-gradient
centrifugation. Total RNA was prepared from the PBMCs
using Trizol reagent (15596026, Thermo Fisher Scientific) (33).
The RNA samples were diluted in RNase-free water, denatured at
65°C for 10 min. RNA concentration and purity were determined
spectrophotometrically, and the RNA integrity was verified by
denaturing RNA gel electrophoresis.

Real-Time Fluorescence Quantitative
Polymerase Chain Reaction (RT-qPCR)
RNA was reverse transcribed using the PrimeScript™ RT reagent
Kit with gDNAEraser (RR047A, Takara). Genomic DNA (gDNA)
was eliminated at 42°C for 2 min. Reverse transcription was
performed using the following conditions: 37 °C for 15min, 85 °
C for 5 sec. RT-qPCR reactions were performed with the iTaqTM
Universal SYBR®Green Supermix (725124, Bio-Rad) and primers
were listed in Supplementary Table 1. The temperature cycle
parameters in an Applied Biosystem 7900HT1 were: 95°C for 30
sec and 40 cycles of 95°C for 30 sec, 56°C for 30 sec and 72°C for
40 sec followed by a hold at 72°C for 40 sec. Gene expression was
calculated using the 2−DDCq method. Melting curve analysis was
performed from 65 to 95 °C.

The Targeted Genes
Total 29 genes were selected which were confirmed closely
related to TLR signaling pathways and the function of the
activation and differentiation of T-cells by GO and KEGG
enrichment analysis, including BCL6, CCL5, CD28, CD3
(CD247), CD40, CD40L (CD40LG), CD83, CTLA4, FOXP3,
GATA3, IkBa (NFKBIA), LAG3, NR4A1, P50 (NFKB1), P65
(RELA), PD-1 (PDCD1), PD-L1 (CD274), PD-L2 (PDCD1LG2),
RORC, T-bet (TBX21), TCR (TRA), TIGIT, TIM3 (HAVCR2),
TLR1, TLR2, TLR4, TLR6, TLR8, and TNF.

The Selection of Reference Genes
A list of 9 genes previously reported that were stably expressed in
human PBMCs from the literature was compiled, including
ACTB, b-glucuronidase, B2M, GAPDH, HPRT1, PGK1,
RPL13A, SDHA, and YWHAZ. We Assessed the gene
expression stability and selected the most appropriate
housekeeping genes for each analysis using the geNorm (34),
the NormFinder (35), and the BestKeeper software (36). As a
Frontiers in Immunology | www.frontiersin.org 4
result, B2M and YWHAZ were used as the internal reference
genes for the comparison of healthy controls and untreated TAK
patients, B2M and SDHA were used for the comparison of
healthy controls and treated TAK patients and the comparison
of the active-treated and the inactive-treated TAK patients, and
HPRT1 and YWHAZ were used for the comparison of the
untreated and the treated TAK patients and correlation analysis.

Dynamic Gene Co-Expression Network
We constructed the gene co-expression network of the healthy
control group, the untreated TAK group, the treated TAK group,
the inactive-treated TAK group, and the active-treated TAK
group based on the qPCR dataset, respectively. The Pearson
correlation has an advantage in predicting the interaction of
molecules and is widely used as a measure of gene co-expression
in many public databases (37, 38), so it was adopted the main
approach in the network analysis and the results were available in
the main text. However, Spearman correlation has an advantage
in revealing the functional associations, so it was adopted as a
complementary approach and the results are available in the
Supplementary Information (39). Statistical analysis was
performed using IBM SPSS statistic V.23 (Armonk, New York,
USA). A p-value of less than 0.05 was considered significant.
Cytoscape V. 3.8.2 was used to edit the networks.

Unsupervised Hierarchical Clustering
Analysis and the Co-Expression Cluster
Samples were clustered based on the Pearson correlation
coefficient for the profile of those 29 genes using the R package
ggcorrplot. Hierarchical clustering of samples was carried out
using Pearson correlation and Spearman correlation respectively
(38). Data were partitioned into five clusters by cutting the
clustering tree at the height of 1.0 and the co-expression
clusters were defined which consist of similarly expressed
genes. The clustered heatmap and hierarchical clustering trees
were performed using the R package ggcorrplot and the R
package ggplot2 by R V.4.1.0. A p-value of less than 0.05 was
considered significant.

Scoring System for the Assessment of
Disease Activity
The disease activity score was calculated using the algorithm as
published before (40). To assess the disease activity of TAK,
highly co-expressed gene pairs (defined as |r| > 0.73, p < 0.01) of
the inactive-treated were selected. Regression equations were
calculated by linear least squares. To qualify how well the data of
an individual sample fit a regression line, we calculated the
relative error (RE) as the ratio of the absolute error (AE) and
the observed value of gene expression level. The AE is the
absolute value of the difference between the predictive value
and the observed value.

M-value was introduced which was equal to the RE:
M = j   (ypredictive   value − yobservation)=yobservationj : (40)
Qualified the data of each sample to fit every regression line

one by one. The M-value of each active or inactive patient was
calculated. Then the patients were ranked by M-value. The
threshold was set using the Youden index and was adjusted
January 2022 | Volume 12 | Article 792901
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when appropriate. A score of 1 was given if a patient had an M-
value less than the threshold, 0 if a patient had an M-value
greater than the threshold. The total score of a patient was the
sum of each score of M-value. The threshold of the total score
was set using the Youden index. Detailed protocols are available
in ref.

Evaluate the Closeness of Gene-to-Gene
Functional Relationships Between TLRs
and the Other Genes
To predict the functional relationship between TLRs and the
other genes through quantification, the following metrics were
employed, and its rationale has been published (19–21, 41–43).
Take BCL6 for an example.

1. The number of TLR-genes that were co-expressed with BCL6.
2. The number of common neighborhoods with TLRs. In the

metric, all TLRs were processed as a whole-body
corresponding to one gene.

3. The number of TLRs in the co-expression cluster that
consisting of BCL6, which cluster was cut at the height of 1.0.

One gene of each metric was counted as one point. Calculated
the total score of each gene assessed.

miRNA-Gene Network Prediction
The pipeline was composed of three major steps:

1. miRNAs targeting each gene were obtained from the
miRDB database, which is a miRNA target prediction
database (44, 45).

2. Counted the number of genes of each miRNA listed in (i),
and the miRNA which targets more than one gene was
selected.

3. Mapping according to the miRNA-gene pair list acquired in
(ii). In this step, the miRNAs were pooled for miRNA families
if there were more than one miRNA belonging to the same
miRNA family.

4. Ranked the miRNAs or the miRNA family according to the
number of genes targeted.
Plasma Preparation
Whole blood was collected from controls and TAK patients in
ethylenediaminetetraacetic acid (EDTA) tubes and stored at 4°C.
Plasma was isolated immediately from the whole blood by
centrifugation (4°C, 800 × g for 10 min) in 4 hours. Then, the
collected plasma was isolated by further centrifugation (4°C,
3,000 × g for 15 min) to remove cellular debris and large vesicles.
Plasma samples were stored at −80°C until analysis.

Exosome Isolation and Quantification for
miRNA Sequencing
Plasma samples were thawed at 37°C and filtered through a
filtration membrane (0.8 mm). Next, the plasma was diluted 1:1.5
in filtered 0.01 M phosphate-buffered saline (PBS). Exosomes
were purified by consecutive steps of size exclusion
chromatography (SEC) on size exclusion columns and
Frontiers in Immunology | www.frontiersin.org 5
ultrafiltration tubes (100 kDa cutoff, Amicon). Successful
exosome isolation was confirmed as follows.

1. Immunoblotting analysis revealed negative calnexin
(Proteintech), positive CD63 (SanTAK-Cruz), positive CD9
(Proteintech), and positive TSG101(Absin).

2. Immuno-electron microscope analysis and nanoparticle
tracking analysis (NTA) revealed that the isolated exosomes
were 30~150 nM in diameter.

RNA was isolated using miRNeasy Mini Kit (Qiagen) from
exosomes. All the RNA samples met the following RNA
quality threshold.

1. The ratio of OD260/280 was between 1.8 and 2.0.
2. The RNA concentration was greater than 300 pg/mL.
3. The Cq value of miRNA-130b was less than or equal to 23.
4. 16S rRNA (-).
miRNA Sequencing
Small RNA libraries were prepared with the QIAseq miRNA
Library Kit (QIAGEN). The quality of the libraries was validated
on an Agilent Bioanalyzer 2100 and qPCR. Pair-end sequencing
was performed on Illumina HiSeq2500.

Statistical Analysis
Normality was assessed with a Kolmogorov–Smirnov. Normally
distributed continuous variables were provided as mean ±
standard deviation and non-normally distributed continuous
variables as median (interquartile). A Chi-square test was used
for reporting associations between two categorical variables.
Differences of continuous variables between groups were
analyzed by the Mann–Whitney test. The correlation between
gene expression levels was represented by the Pearson
correlation coefficient. The models were otherwise validated by
examining standardized residuals for normal distribution.
Statistical analysis was performed using IBM SPSS statistic
V.23 (Armonk, New York, USA). A p-value of less than 0.05
was considered significant.
RESULTS

Demographic Data, Clinical Features, and
Laboratory Findings of Patients
Twenty-seven TAK patients were included. Based on the definition
described above, 7 patients were classified into the untreated TAK
group, and 20 patients were classified into the treated TAK group.
Among them, 15 patients were assessed for remission, and 12 were
assessed as being at the active stage following the NIH criteria
described previously. Besides, 10 healthy subjects served
as controls.

The demographic data and laboratory findings of patients
were listed in Supplementary Table 2, and the individual patient
data were seen in Table 1. There was no significant difference
between the inactive-treated TAK group and the active-treated
TAK group in age (p=0.82), sex (p=0.35), disease duration
January 2022 | Volume 12 | Article 792901
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(p=0.1), erythrocyte sedimentation rate (ESR) (p=0.33), IL-6
(p=0.1), tumor necrosis factor (TNF)-a (p=0.66), and the dose
of corticosteroid (p=0.37). The active-treated TAK group had a
higher hypersensitive-C reactive protein (hs-CRP) level than the
inactive-treated TAK group (p=0.02).

Functional Enrichment Analysis and
Interaction Analysis of Selected Genes
The function of the selected genes according to UniProt was
summarized in Supplementary Table 3. To gain further insight
into the function of the 29 selected genes, we performed a
functional enrichment analysis based on GO, KEGG, and
WikiPathways databases. The functional enrichment analysis
results confirmed that the 29 selected genes were closely
related to this research topic. Figure 2A showed these genes
were highly enriched in TLR signaling pathways and the function
of the activation and differentiation of T-cells. Figure 2B showed
the one-to-one correspondence between the genes and some GO
terms and KEGG pathways which were closely related to this
research topic, including positive/negative regulation of T-cell
activation, I-kappaB kinase/NF-kappaB signaling, and Toll-like
receptor signaling pathway., and other functions or pathways
Frontiers in Immunology | www.frontiersin.org 6
that are crucial to the pathogenesis of AIDs, such as B-cell
mediated immunity, regulation of interleukin production,
external side of plasma membrane, NAD+ nucleosidase
activity, DNA-binding transcription repressor activity, RNA
polymerase II-specific, NOD-like receptor signaling pathway,
RIG-I-like receptor signaling pathway, PI3K-Akt signaling
pathway, and MAPK signaling pathway. The detailed
enrichment results were seen in Supplementary Table 4.

Next, to characterize possible molecular interactions across
these selected genes, we built a protein-protein interaction (PPI)
map using the STRING database. Figure 2C showed the PPI
network clustering-based K-means (k = 3). The 3 clusters were
each labeled with a different color, in which the proteins were
functionally related. The genes labeled as red coded the first
signaling molecule of T-cell activation or co-stimulatory
molecules except FOXP3, the genes labeled as blue coded key
subset transcription factors, and most genes labeled as green
belonged to TLR signaling pathway. Notably, NR4A1 was in the
same cluster as RELA, NFKB1 and, NFKBIA. In addition to PPI
networks, we also identified gene interaction using gene co-
expression network (16). Figure 2D showed the gene co-
expression network based on Coexpedia database, indicating
TABLE 1 | Demographic data and clinical features of patients with Takayasu’s arteritis.

Age (years) Gender Disease duration (months) ESR (mm/h) hs-CRP (mg/L) Interleukin 6 (pg/mL) TNF-a (pg/mL) Prednisone

(ref. range, 0~20) (ref. range, 0~8.00) (ref. range, <5.9) (ref. range, <8.1) (mg/d)

Treated TAK patients (n=20)
Inactive (n=11)
# 1 32 F 3 5 1 4.4 8.8 24
# 2 51 F 12 21 2.86 3 7.5 10
# 3 39 F 88 11 2.92 2 6.4 0
# 4 34 F 51 12 0.84 2 4 5
# 5 49 F 34 9 0.17 2 6 7.5
# 6 28 F 40 7 0.91 2 6.1 7.5
# 7 26 F 5 17 0.31 2 11 45
# 8 59 F 43 12 0.44 2 4 35
# 9 37 F 44 13 0.21 2.4 5.6 10
Active (n=9)
# 10 36 F 133 16 0.77 2 7.8 40
# 11 32 F 132 33 5.4 5.8 6.1 10
# 12 50 F 380 19 14.7 5.7 8 15
# 13 40 F 11 38 7.8 9.3 7.6 15
# 14 25 F 19 16 23.7 7.5 4 10
# 15 38 F 118 12 3.64 – – 10
# 16 34 F 58 6 0.34 2 5.2 45
# 17 39 F 13 23 – 2.1 5.9 44
# 18 49 F 7 5 0.55 2.8 9.5 10
# 19 40 F 314 1 5.85 3.5 24.5 10
# 20 50 M 200 16 8.51 2 5.6 0
Untreated TAK patients (n=7)
Inactive (n=3)
# 21 34 F 176 7 0.34 2 4.3 0
# 22 27 F 5 14 0.16 25.7 4 0
# 23 38 F 48 5 0.32 3 4 0
Active (n=4)
# 24 31 M 1 91 140.72 – – 0
# 25 25 F 1 19 11.28 6.3 5.2 0
# 26 23 M 81 71 77.36 6.3 6.2 0
# 27 29 F 4 127 113.62 22.2 8.4 0
January 20
22 | Volume 12 | A
M, male; F, female; ESR, erythrocyte sedimentation rate; hs-CRP, hypersensitive- C reactive protein; TNF-a, Tumor Necrosis Factor-a; ref., reference.
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the strong functional association among these genes. And these
interactions would align with our experimental results later.

Sample Clustering Analysis and Gene
Expression Differential Analysis in TLR
Signaling Pathway
The heat map displayed the expression levels of the selected
genes in individual samples, with red color indicating greater
expression level, which showed a distinct pattern of gene
expression in TAK patients compared with healthy controls, in
untreated patients compared with treated patients, and in
inactive patients compared with active patients (Figure 3A).
Next, to identify the power of the selected genes to distinguish
different sample groups, we performed the unsupervised
hierarchical clustering of different samples based on the gene
Frontiers in Immunology | www.frontiersin.org 7
expression level calculated by Pearson correlation coefficients. A
sample-to-sample matrix revealed that 80% (8/10) of healthy
controls could be separated from the TAK patients by
hierarchical cluster analysis, which suggested that TAK
patients had a different expression pattern of the selected genes
from the healthy controls (Figure 3B).

Among the selected genes, TLR1, TLR2, TLR4, TLR6, TLR8,
CD83, IkBa, p50, p65, TNF, and CCL5 were key genes in TLR
signaling pathway. As gene expression differential analysis
showed, compared with the HC, the untreated TAK patients
had higher mRNA levels of TLR2 (p=0.043), TLR4 (p=0.014),
IkBa (p=0.00021), p50 (p=0.00046), and p65 (p=0.00031), and the
treated TAK patients had higher mRNA levels of TLR2 (p=0.015),
TLR4 (p=0.044), and IkBa (p=0.00016). Compared with the
untreated TAK patients, the treated TAK patients had lower
A B

D

C

FIGURE 2 | Gene enrichment analysis, protein–protein interaction analysis, and gene co-expression analysis. (A) Gene enrichment analysis using multiple databases
including the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the Gene Ontology (GO) database, and the WikiPathways database for targeted genes.
(B) The genes corresponding to the enrichment results of GO analysis and KEGG analysis. (C) The protein–protein interaction (PPI) analysis based on the STRING
database. (D) The gene co-expression analysis based on the COEXPEDIA database. Functional enrichment analysis indicated these genes were closely related to
TLR signaling pathways and the function of the activation and differentiation of T-cells. PPI analysis and gene co-expression analysis indicated that there were strong
associations among these genes, and experimental co-expression relationships would be compared with these database-interactions for newly discovered co-
expression relationships.
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mRNA levels of p50 (p=0.013), and p65 (p=0.021). Compared the
active-treated TAK patients with the inactive-treated TAK
patients, p50 mRNA level (p=0.038) was higher and no increase
in the mRNA level of TLRs was observed. (Figure 3C). Although
there was evidence supporting the upregulation of TLR signaling
pathway in TAK, no substantial differences in TLR signaling
pathway were found between the inactive-treated TAK patients
and the active-treated TAK patients.

TLRs and Their Correlation Cluster
Distinguish Active Patients From Inactive
Patients in TAK
Tomore rigorously evaluate the functional relations among these
genes, we calculated the pairwise Pearson correlation and the
pairwise Spearman correlation between each pair of genes.
Frontiers in Immunology | www.frontiersin.org 8
Although Pearson correlation is better suited for the
establishment regression equations, we adopted Spearman
correlation as a complementary analysis as Spearman
correlation has some advantages in reflecting the functional
associations between genes (39). Due to space limitations, most
of the results based on Spearman correlation were provided in
the supplementary materials, and Pearson correlation coefficient
was presented in the text and adopted in the subsequent
mathematical modeling. The most striking results to emerge
from the data was that the inactive-treated TAK group exhibited
a unique pattern of inverse correlations between the TLRs gene
cluster (including TLR1/2/4/6/8, BCL6, TIGIT, NR4A1, IkBa,
p50, TNF, CD83, PD-1, PD-L1, and TIM3), and the gene cluster
associated with T-cell activation and differentiation (including
TCR, CD28, T-bet, GATA3, FOXP3, CCL5, CD3, CD40L,
FIGURE 3 | The gene expression levels. (A) The heatmap showing gene expression levels with corresponding dendrograms using hierarchical clustering (Euclidean
distance measure). (B) The heatmap of sample clustering using hierarchical clustering (Pearson correlation), suggesting that TAK patients had a different expression
pattern of the selected genes from the healthy controls. (C) Gene expression differential analysis of TLR signaling pathway. Mann–Whitney test. *p < 0.05. **p < 0.01,
***p < 0.001. The red center line represented the mean value of the mRNA level. TAK, Takayasu’s arteritis.
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CTLA4, PD-L2), either performed by Pearson correlation
(Figure 4A) or Spearman correlation analysis (Supplementary
Figure 1A) analysis, while the active-treated TAK group did not
(Figure 4B and Supplementary Figure 1B). To more clearly
demonstrate this feature, Supplementary Figures 1C–F only
showed the high correlations (defined as |r| > 0.73, p < 0.01).

CCL5 is a potent chemoattractant for blood monocytes,
memory T-helper cells, and eosinophils, which is important in
Frontiers in Immunology | www.frontiersin.org 9
recruiting T-cells into inflammatory sites, and also activates the
apoptotic cell death pathway in T cells (46). Among these inverse
correlations, CCL5 was negatively co-expressed with TLR1
(Pearson’s r= -0.675, p= 0.046), TLR2, TLR4 (Pearson’s r=
-0.878, p= 0.002), TLR6 (Pearson’s r= -0.903, p= 0.001), and
TLR8 (Pearson’s r= -0.818, p= 0.007), and T-bet was negatively
co-expressed with TLR4 (Pearson’s r= -0.713, p= 0.031), TLR6
(Pearson’s r= -0.755, p= 0.019), and TLR8 (Pearson’s r= -0.837,
FIGURE 4 | Toll-like receptors (TLRs) and their correlation cluster distinguish active patients from inactive patients in TAK. (A, B) The Pearson correlation between
the expression levels of each gene pair of the inactive-treated TAK group (A) and the active-treated TAK group (B) showed that the inactive-treated TAK group
exhibited a unique pattern of inverse correlations between the TLRs gene cluster and the gene cluster associated with T-cell activation and differentiation, while the
active-treated TAK group did not. (C) The scatter plots, the linear regression, and the receiver operating characteristic curve (ROC) of the TLR4-CCL5 pair, the
TLR6-CCL5 pair, the TLR8-CCL5 pair, and the TLR8-Tbet pair. (D, E) The ROC analysis was used to evaluate the assessment accuracy for the disease activity of
TAK. The total score of each treated-TAK patient (D) and the ROC (E) when assessing the disease activity using the summed scoring system consisting of the
above 4 gene pairs. TAK, Takayasu’s arteritis.
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p= 0.005). We took the TLR4-CCL5 pair, the TLR6-CCL5 pair,
the TLR8-CCL5 pair, and the TLR8-T-bet pair to establish linear
regression models to assess the disease activity, and the values of
AUC/sensitivity/specificity were 0.848/72.7%/100%, 0.818/
63.6%/100%, 0.828/90%/80%, and 0.778/54.5%/100%,
respectively (Figure 4C). We then calculated the total score
from the above 4 gene-pair models for each patient to assess
the disease activity as mentioned in Method, the AUC, the
sensitivity, the specificity, the positive predictive value, and the
negative predictive value were 0.939, 90.9%, 88.9%, 90.9%, and
88.9%, respectively, which had greater diagnostic accuracy than
did the single models (Figures 4D, E). The assessment of
individual patients was shown in Supplementary Table 5. The
above results suggest that TLRs have a potential relationship with
the disease activity of TAK, which requires further explanation.
Topological Analysis of Dynamic Gene Co-
Expression Network Identifies the
Functional Association Between TLRs and
T-Cell Activation in TAK
The More Active Communication Between TLRs and
T-Cell Activation in TAK Compared to Healthy
Control
Gene co-expression network analysis is a useful method to link
tightly co-expressed gene modules to phenotypic traits (47). To
determine gene modules associated with distinct disease stages of
TAK, we constructed a dynamic gene co-expression network for
eachgroup basedon the pairwise Pearson correlations or Spearman
correlations for all genes. (Figure 5 and Supplementary Figure 2).
Unsupervisedhierarchical clusteringwasused toassess the function
of genes. As a result, genes were organized into 5 clusters by cutting
the clustering tree at the height of 1.0, which was indicated by red
frames. Notably, genes belonging to the same cluster were like to
have similar functions and were labeled with the same color. In
active-treated TAK, the 5 clusters were as follows.

1. Cluster No. 1 (cutting the clustering tree at the height of 2.0)
Frontier
a. TLR1, TLR2, TLR4, TLR6, TLR8, and BCL6.
b. CD83,TNF,NR4A1, IkBa, p50,NR4A1,TIM3,andTIGIT.
c. CD40, PD-L1, PD-L2, LAG3, CD3, and p65.
2. Cluster No. 2 (cutting the clustering tree at the height of 2.0)

a. TCR, CD28, CD40L, CTLA4, GATA3, and RORC.
b. T-bet, CCL5, FOXP3, and PD-1
In inactive-treated TAK, the 5 clusters were as follows.

1. Cluster No. 1 (cutting the clustering tree at the height of 2.0)

a. TLR1, TLR4, TLR6, BCL6, and CD40.
b. TLR2, PD-1, TIM3, LAG3, TIGIT, and NR4A1.
2. Cluster No. 2 (cutting the clustering tree at the height of 2.0)

a. TCR, CD28, CD40L, CTLA4, FOXP3, and PD-L2.
b. CD3, CCL5, T-bet, GATA3, RORC, IkBa, and p65.
c. PD-L1, p50, CD83, and TNF.
Comparing the two results, it could be seen that the 29 genes
were divided into two broad categories: (i) TLR signaling
pathway and (ii) the activation and differentiation of T-cells.
s in Immunology | www.frontiersin.org 10
But compared with the inactive group, CD83, TNF, IkBa, p50,
p65 as well as the co-stimulatory molecules (including PD-L1,
PD-L2, and LAG3) were more closely related to TLRs in the
active group. Besides, to present the main framework of the
network clearer, another dynamic network with the observed
value of the Pearson correlation was 0.01 was shown in the right
column of Figure 5 and Supplementary Figure 2. This co-
expression clustering revealed a functional association among
the genes, providing insight into gene functions and networks.

To assess the functional communication among these genes at
distinct stages, we calculated a number of topological network
parameters commonly used to describe the network. Each of
these networks had a short characteristic path length and a large
clustering coefficient, suggesting that they participate in the
biological processes that might be functionally related.
Additionally, compared with the healthy controls, the active-
treated TAK and the inactive-treated TAK showed shorter
characteristic path length (healthy controls vs. active-treated
TAK vs. inactive-treated TAK, Pearson correlation 3.265 vs.
2.362 vs. 2.333, Spearman correlation 4.410 vs. 2.439 vs. 3.392)
and a larger clustering coefficient (Pearson correlation 0.317 vs.
0.581 vs. 0.549, Spearman correlation 0.432 vs.0.489 vs. 0.470),
indicating the more active functional communication among
these genes in TAK groups compared to healthy controls. The
detailed parameters of these networks are shown in Table 2.

TLR-Co-Expression Signature: The Regression
Equation Relating the TLR6 mRNA Level to the TLR4
mRNA Level Serves as a Biomarker of Active
Disease in Treated TAK
There was a tight interplay among TLRs. Figure 6A was the PPI
network based on the STRING database analysis. TLRs function
as a homodimer or heterodimer, such as TLR1/TLR2, TLR2/
TLR6, and TLR4/TLR6. Besides, there is some cross-talk between
TLRs, for example, TLR7 and TLR9 (Figure 6B). Interestingly,
the co-expressed-TLR-pairs in different groups were different
(Figure 6C). The inactive-treated TAK group had high co-
expression of TLR1 and TLR4 (r=0.804, p=0.009) which was
absent in the active-treated TAK group, the untreated TAK
group, or the HC group. The high co-expression of TLR4 and
TLR6 (r=0.892, p=0.001) exist in the HC group (r=0.847,
p=0.002) as well as the inactive-treated TAK group (r=0.892,
p=0.001), while was absent in the active-treated TAK group. The
different co-expressions might mean different functional
relationships between TLRs at different stages.

Studies have found that a heterodimer of TLR4 and TLR6
promote a protracted sterile inflammatory response after being
triggered by oxidized low-density lipoprotein (LDL) and b-
amyloid, which involves the pathogenesis of atherosclerosis
and Alzheimer’s disease (48–50). We found that the regression
equation relating the TLR6 mRNA level to the TLR4 mRNA level
might be a biomarker of active disease in treated TAK. Figure 6D
showed the scatter plots illustrating the difference in the co-
expression of TLR4 and TLR6 between the inactive-treated TAK
and the active-treated TAK. The points of the active-treated TAK
group, except the point presented Patient No. 12, were scattered
around the fitted line of the scatter points of the inactive-treated
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TAK group. The regression model was established and the
threshold of M-value for assessing the disease activity was set
to 0.173 according to the Youden index. Patients with an M-
value of more than 0.173 got one score and were assessed as
being in the active stage. And the AUC, the sensitivity, specificity,
positive predictive value, and negative predictive value
were 0.919, 100%, 90.9%, 100%, and 90%, respectively
(Figures 6E, F). The details of the assessment were shown in
Supplementary Table 6. The results indicated that the inactive
stage of TAK could be characterized from the treated TAK by the
co-expression of several TLR genes.

Genes Key to the Cross-Talk Between TLRs and the
Activation and Differentiation of T-Cell in TAK
To identify genes closely related to TLRs in these genes key to the
activation and differentiation of T-cells, we assessed the degree of
functional association between the other genes were to TLRs, and
the evaluation protocol is described in Method. Specific scores
are shown in Table 3 and the results are detailed below. In
inactive-treated TAK, most of the genes exhibited functional
association with TLRs. The 7 genes with the highest scores were
BCL6 (12), CCL5 (11), FOXP3 (7), GATA3 (7), CD28 (6), T-bet
(6), and NR4A1 (6) according to Pearson correlation analysis,
and the 5 genes with the highest scores were BCL6 (16), TIGIT
(14), IkBa (13), NR4A1 (12), and FOXP3 (11) according to
Spearman correlation analysis. However, in the active-treated
group, the functional association between these genes and TLRs
did not seem to be as strong as the inactive-treated group (Table
3). The 3 genes with the highest scores were BCL6 (7), PD-1 (1),
and LAG3 (1) according to Pearson correlation analysis, and the
5 genes with the highest scores were BCL6 (3), CD40 (3), and
LAG3 (3) according to Spearman correlation analysis.

Due to space restrictions, we only showed the visualized
resu l ts of BCL6 and FOXP3. BCL6 is the master
transcriptional regulator of Tfh cell differentiation, which is
Frontiers in Immunology | www.frontiersin.org 11
required for germinal center formation and antibody affinity
maturation (51). As gene expression differential analysis showed,
compared to the healthy controls, both the untreated TAK group
(p=0.007) and the treated TAK group (p=0.006) had an increased
mRNA level of BCL6 (Figure 7A). In the inactive-treated TAK
group, BCL6 was co-expressed with TLR1 (Pearson’s r=0.700,
p=0.036. Spearman’s r=0.733, p=0.025), TLR2 (Pearson’s
r=0.783, p=0.013. Spearman’s r=0.900, p=0.001), TLR4
(Pearson’s r=0.890, p=0.0013. Spearman’s r=0.817, p=0.007),
and TLR6 (Pearson’s r=0.870, p=0.0023. Spearman’s r=0.900,
p=0.001) (Figure 7B). In the inactive-treated TAK group,
according to Pearson correlation analysis, BCL6 and TLR1/2/4/
6/8 shared 4 co-expressed genes, including FOXP3, CCL5,
NR4A1, and CD28, and according to Spearman correlation
analysis, BCL6 and TLR1/2/4/6/8 shared 8 co-expressed genes,
including FOXP3, IkBa, TIGIT, CCL5, NR4A1, CD28, GATA3,
and TCR (Figures 7C–F).

FOXP3 is a transcriptional regulator which is crucial for the
development and inhibitory function of regulatory T-cells (Treg)
(52). As gene expression differential analysis showed, compared to
the inactive-treated TAK group, the active-treated TAK group had
an increased mRNA level of FOXP3 (p=0.004) (40) (Figure 8A).
In the inactive-treated TAK group, FOXP3 was co-expressed with
TLR1 (Pearson’s r=0.774, p=0.014. Spearman’s r=0.800, p=0.010),
TLR4 (Pearson’s r=0.883, p=0.0002. Spearman’s r=0.883,
p=0.002), and TLR6 (Pearson’s r=0.840, p=0.005. Spearman’s
r=0.917, p=0.001) (Figure 8B). In the inactive-treated TAK
group, according to Pearson correlation analysis, BCL6 and
TLR1/2/4/6/8 shared 4 co-expressed genes, including BCL6,
CCL5, NR4A1, and CD28, and according to Spearman
correlation analysis, BCL6 and TLR1/2/4/6/8 shared 8 co-
expressed genes, including BCL6, IkBa, TIGIT, CCL5, NR4A1,
CD28, CD83, and TCR (Figures 8C–F).

NR4A1 is a key transcription factor that drives T cell
dysfunction and plays an important role in the apoptosis of
TABLE 2 | Parameters of gene co-expression networks.

Healthy control
(n = 10)

Untreated patients with
TAK (n = 7)

Treated patients with
TAK (n = 20)

Treated patients with inactive
TAK (n = 9)

Treated patients with active
TAK (n = 11)

Pearson correlation
Nodes 29 29 29 29 29
Edges 46 42 95 79 72
Average number of
neighbors

3.286 3.154 6.552 5.852 5.263

Network diameter 7 11 4 6 6
Clustering coefficient 0.317 0.285 0.632 0.581 0.549
Characteristic path
length

3.265 4.025 2.155 2.362 2.333

Spearman correlation
Nodes 29 29 29 29 29
Edges 43 22 114 89 66
Average number of
neighbors

3.071 2.222 8.143 6.357 4.714

Network diameter 11 9 4 6 9
Clustering coefficient 0.432 0.213 0.597 0.489 0.470
Characteristic path
length

4.410 4.144 1.910 2.439 3.392
January 202
TAK, Takayasu’s arteritis.
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self-reactive T cells (53, 54). The results suggested that NR4A1 is
likely to be functionally related to TLRs in TAK. Compared to
the healthy controls, the untreated TAK group (p=0.0001) had
an increased mRNA level of NR4A1, and that compared to the
untreated TAK group, the treated TAK group (p=0.000005) had
a decreased mRNA level of NR4A1 (Supplementary Figure 3).

The detai ls of the assessment were provided in
Supplementary Table 7.
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Different Signaling Pathways at Distinct
Stages in TAK
To explore the possible mechanism and signaling pathways, we
summarized the co-expression variations across different conditions,
which reflected changes in the activated signaling pathways
(Figure 9A). Compared with the HC group, the untreated TAK
group had 35 gene co-expression relations uniquely and lost 39 gene
co-expression relations. Comparedwith the untreatedTAKgroup, the
FIGURE 5 | Dynamic gene co-expression networks based on Pearson correlation. Left panel, the gene co-expression networks consisting of correlation with a p-
value less than 0.05. Right panel, to more clearly demonstrate this feature, only the high correlations (defined as |r| > 0.73, p < 0.01) were shown. Middle panel, the
hierarchical clustering trees using complete method. As a result, genes were organized into 5 clusters by cutting the clustering tree at the height of 1.0, which was
indicated by red frames. Genes belonging to the same cluster were like to have similar functions and were labeled with the same color. The negative correlation was
indicated by the yellow edge, while the positive correlation was gray in the networks.
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treated TAK group had 80 gene co-expression relations uniquely and
lost 27 gene co-expression relations. Compared with the inactive-
treated TAK group, the active-treated TAK group had 47 gene co-
expression relations uniquely and lost 54 gene co-expression relations.
As the treated TAK group, the inactive-treated TAK group, and the
active-treated TAK group had so many gene co-expression relations
that the relations with a p-value less than 0.01 were listed only, and the
complete list was shown in Supplementary Table 8. We also built a
Venn diagram to visualize overlapping co-expressions among the five
conditions (Figure 9B). Besides, the newly discovered co-expression
Frontiers in Immunology | www.frontiersin.org 13
relationshipswhichhadnever been reported in STRINGorCoexpedia
database were indicated red in Figure 9A. The results showed the
differences in signaling pathways at distinct stages.

Next, to classify the genes based on function, the heatmaps of
hierarchical clustering based on the Pearson correlation were
conducted (Figure 9C). The heatmap of the treated TAK group
was shown in Supplementary Figure 4. Notably, the five
heatmaps of five groups had different clustering structures. The
two largest clusters of each group for the subsequent analyses are
detailed below.
FIGURE 6 | TLR-expression signature serves as a biomarker of different disease and treatment stages in TAK. (A) The protein-protein interaction network using the
molecular complex detection (MCODE) algorithm performed by Metascape database, indicating the tight relationship among TLRs. (B) The schematic drawing of the
interaction or cross-talk between TLRs. (C) The TLR-expression signature of different disease and treatment stages of TAK and scatter plots, and the different co-
expressions might mean different functional relationships between TLRs at different stages. (D, E) The regression equation relating the TLR6 mRNA level to the TLR4
mRNA level serves as a biomarker of active disease in treated TAK. The scatter plots (D), the linear regression (D), the score for the disease activity assessment of
each treated TAK patient (E), and the receiver operating characteristic curve (ROC) (F) of the TLR4-TLR6 pair. TAK, Takayasu’s arteritis.
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TABLE 3 | Evaluation the closeness of gene-to-gene functional relationships between TLRs and the other genes.

Pearson correlation Spearman correlation

Gene The number of
co-expressed
TLR-genes

The number of
common

neighborhoods with
TLRs

The number of
TLRs in the co-

expression cluster

Score Gene The number of
co-expressed
TLR-genes

The number of
common

neighborhoods with
TLRs

The number of
TLRs in the co-

expression cluster

Score

Treated patients with inactive TAK

BCL6 4 4 4 12 BCL6 4 8 4 16
CCL5 5 6 0 11 TIGIT 4 6 4 14
FOXP3 3 4 0 7 IkBa 4 5 4 13
GATA3 3 4 0 7 NR4A1 2 6 4 12
CD28 2 4 0 6 FOXP3 3 8 0 11
T-bet 3 3 0 6 CCL5 5 5 0 10
NR4A1 3 2 1 6 CD28 3 6 0 9
CD3 1 3 0 4 GATA3 3 4 0 7
CD40 0 0 4 4 T-bet 3 2 0 5
TIGIT 0 3 1 4 TCR 1 4 0 5
TCR 0 3 0 3 CD40L 0 5 0 5
CD40L 0 3 0 3 CD83 1 3 0 4
CTLA4 0 2 0 2 PD-L2 0 3 1 4
PD-1 1 0 1 2 LAG3 0 0 4 4
PD-L2 0 2 0 2 TNF 1 3 0 4
TIM3 0 1 1 2 CD3 0 2 0 2
CD83 0 1 0 1 P50 0 2 0 2
IkBa 0 1 0 1 CD40 0 1 0 1
P50 0 1 0 1 CTLA4 0 1 0 1
RORC 0 1 0 1 PD-L1 0 1 0 1
LAG3 0 0 1 1 P65 0 0 0 0
TNF 0 1 0 1 PD-1 0 0 0 0
P65 0 0 0 0 RORC 0 0 0 0
PD-L1 0 0 0 0 TIM3 0 0 0 0
Treated patients with active TAK

BCL6 2 0 5 7 BCL6 0 1 2 3
PD-1 0 1 0 1 CD40 0 1 2 3
LAG3 0 1 0 1 LAG3 1 0 2 3
CD28 0 0 0 0 PD-L2 0 0 2 2
CD3 0 0 0 0 CD83 1 0 0 1
CD40 0 0 0 0 IkBa 1 0 0 1
CD83 0 0 0 0 P50 0 1 0 1
CTLA4 0 0 0 0 TIGIT 0 1 0 1
FOXP3 0 0 0 0 TIM3 0 1 0 1
GATA3 0 0 0 0 TNF 0 1 0 1
IkBa 0 0 0 0 NR4A1 0 1 0 1
P50 0 0 0 0 CD28 0 0 0 0
P65 0 0 0 0 CD3 0 0 0 0
PD-L1 0 0 0 0 CTLA4 0 0 0 0
PD-L2 0 0 0 0 FOXP3 0 0 0 0
RORC 0 0 0 0 GATA3 0 0 0 0
T-bet 0 0 0 0 P65 0 0 0 0
TCR 0 0 0 0 PD-1 0 0 0 0
TIGIT 0 0 0 0 PD-L1 0 0 0 0
TIM3 0 0 0 0 RORC 0 0 0 0
CCL5 0 0 0 0 T-bet 0 0 0 0
CD40L 0 0 0 0 TCR 0 0 0 0
TNF 0 0 0 0 CCL5 0 0 0 0
NR4A1 0 0 0 0 CD40L 0 0 0 0
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BCL6, BCL6 transcription repressor; CD3, CD247; PD-1, programmed cell death 1, also known as PDCD1; PD-L1, CD274; PD-L2, PDCD1LG2; LAG3, lymphocyte activating 3; CTLA4,
cytotoxic T-lymphocyte associated protein 4; FOXP3, forkhead box P3; GATA3, GATA binding protein 3; IkBa, NFkB inhibitor alpha; NFKB1 NFKB1, nuclear factor kappa B (NFkB)
subunit 1, also known as p50; RELA, RELA proto-oncogene NFkB subunit, also known as p65; PD-L1, CD274; PD-L2, programmed cell death 1 ligand 2 also known as PDCD1LG2;
RORC, RAR related orphan receptor C; T-bet, T-box transcription factor 21, also known as TBX21; TCR, T cell receptor; TIGIT, TNF superfamily member 14; HAVCR2, hepatitis A virus
cellular receptor 2, also known as TIM3; CCL5, C-C motif chemokine ligand 5; CD40L, CD40LG; TNF, tumor necrosis factor;TAK, Takayasu’s arteritis; TLRs, Toll-like receptors.
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1. In the active-treated TAK (Figure 10A).
Frontier
a. Cluster 1 contained 14 genes, including CD274, LAG3,
RELA, PDCD1, CD247, TRA, CD40LG, CD28,
GATA3, CTLA4, FOXP3, TBX21, CCL5, and RORC.

b. Cluster 2 contained 7 genes, including NFKB1,
HAVCR2, TIGIT, NFKBIA, CD83, TNF, and NR4A1.
s in Immunology | www.frontiersin.org 15
2. In the inactive-treated TAK (Figure 10B).

a. Cluster 1 contained 13 genes, including TLR1, TLR2,

TLR4, TLR6, TLR8, BCL6, NR4A1, NFKBIA, LAG3,
HAVCR2, TIGIT, PDCD1, and CD40.

b. Cluster 2 contained 6 genes, including TRA, CD40LG,
CTLA4, PDCD1LG2, CD28, FOXP3.
FIGURE 7 | The close functional relationship between BCL6 and Toll-like receptors (TLRs) in inactive-treated TAK. (A) Gene expression differential analysis. Mann–
Whitney test. **p < 0.01. The red center line represented the mean value of the mRNA level, and the error bar showed the standard deviation. (B) The scatter plots
and the linear regression of the BCL6-TLR1 pair, the BCL6-TLR2 pair, the BCL6-TLR4 pair, and the BCL6-TLR6 pair in the inactive-treated TAK group, indicating
that BCL6 was co-expressed with multiple TLRs. (C)~(F) BCL6 and TLRs shared multiple co-expressed genes. (C) The gene co-expression network consisting of
BCL6 (left panel) or TLRs (right panel) and its/their neighborhoods based on Pearson correlation. (D) Intersections of the neighborhood-gene between BCL6 and
TLRs based on Pearson correlation. (E) The gene co-expression network consisting of BCL6 (left panel) or TLRs (right panel) and its/their neighborhoods based on
Spearman correlation. (F) Intersections of the neighborhood-gene between BCL6 and TLRs based on Spearman correlation. Healthy controls, n=10 people.
Untreated TAK, n=7 people. Treated TAK, n=20 people. Active-treated TAK. n=11 people. Inactive-treated TAK, n=9 people. TAK, Takayasu’s arteritis.
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Additionally, we performed GO enrichment analysis to further
explore the signalingpathways associatedwith the abovementioned
clusters using Metascape database, and visualized the enrichment
results using ClueGO to interrogate functionally grouped gene
ontology. The enrichment results are detailed below. As the
results showed, in the active-treated TAK group, genes in Cluster
Frontiers in Immunology | www.frontiersin.org 16
1were significantly enriched in the signalingpathways related to the
activation and differentiation of T-cells, while genes in Cluster 2
were significantly enriched for the regulation of cytokine
production and response to bacterium and lipopolysaccharide
(Figure 10C). In the inactive-treated TAK group, genes in Cluster
1 were enriched for the regulation of cytokine production, the
FIGURE 8 | The close functional relationship between FOXP3 and Toll-like receptors (TLRs) in inactive-treated TAK. (A) Gene expression differential analysis. Mann–
Whitney test. **p < 0.01. The red center line represented the mean value of the mRNA level, and the error bar showed the standard deviation. (B) The scatter plots
and the linear regression of the FOXP3-TLR1 pair, the FOXP3-TLR4 pair, and the FOXP3-TLR6 pair in the inactive-treated TAK group, indicating that FOXP3 was co-
expressed with multiple TLRs. (C)~(F) FOXP3 and TLRs shared multiple co-expressed genes. (C) The gene co-expression network consisting of FOXP3 (left panel)
or TLRs (right panel) and its/their neighborhoods based on Pearson correlation. (D) Intersections of the neighborhood-gene between FOXP3 and TLRs based on
Pearson correlation. (E) The gene co-expression network consisting of FOXP3 (left panel) or TLRs (right panel) and its/their neighborhoods based on Spearman
correlation. (F) Intersections of the neighborhood-gene between FOXP3 and TLRs based on Spearman correlation. Healthy controls, n=10 people. Untreated TAK,
n=7 people. Treated TAK, n=20 people. Active-treated TAK. n=11 people. Inactive-treated TAK, n=9 people. TAK, Takayasu’s arteritis.
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response to bacterium, peptide, and lipopolysaccharide, the TLR
signaling pathway, the I-kappaB kinase/NF-kappaB signaling
pathway, and the regulation of defense response, while genes in
Cluster 2 were enriched for the regulation of T-cell activation and
the regulation of IL-10 production (Figure 10D).

miRNAs Might Play an Important Role in
the Cross-Talk Between TLR and T-Cell in
TAK Patients
The co-expression in Cluster 1 of the inactive-treated TAK group
was not presently understood, while Cluster 1 of the active-treated
Frontiers in Immunology | www.frontiersin.org 17
TAK group was led by the activation and differentiation of T-cells.
We surmised that the miRNA network might take part in the
expression of these genes, which could account for the co-
expression of Cluster 1 of inactive-treated TAK group. We
predicted the miRNA that targeted TLR1, TLR2, TLR4, TLR6,
TLR8, BCL6, NR4A1, NFKBIA, LAG3, HAVCR2, TIGIT, PDCD1,
andCD40 separately using themiRDBdatabase (44, 45). Except for
LAG3 among these genes, there were multiple miRNAs for each
gene.Wesummarized themiRNA(rather thanmiRNAfamily) that
might regulate two or more genes (Supplementary Table 9) and
visualized the miRNA-gene regulatory network (Supplementary
FIGURE 9 | Characteristic gene co-expressions across different conditions. (A) A list of characteristic co-expressed gene pairs comparing the two adjacent groups,
which reflected changes in the activated signaling pathways. The newly discovered co-expression relationships which had never been reported in STRING or
Coexpedia database were indicated red. Pearson correlation analysis. Untreated TAK Vs. healthy controls, p < 0.05. Treated TAK Vs. Untreated TAK, p < 0.01.
Active-treated TAK Vs. inactive-treated TAK, p < 0.01. **p < 0.01. (B) Overlapping co-expressions among the five conditions. (C) Hierarchical clustering heatmaps of
the target genes with the distance calculated using Pearson correlation. TAK, Takayasu’s arteritis.
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Figure 5), in which miRNAs belonging to the same family were
merged and represented by one node.

Next, to test whether the miRNAs in the miRNA-gene
network were differentially expressed, we sequenced miRNAs
from the plasma exosomes from healthy control and TAK
patients. We found that compared with the healthy controls,
miR-548ad-5p showed a 25.6-fold upregulation (p=0.0012), miR-
3613-5p showed a 2.35-fold upregulation (p=0.0012), and
miR-335-5p showed a 2.07-fold upregulation (p=0.0039); while
miR-335-3p showed a 3.23-fold downregulation (p=0.042)
and miR-584-5p showed a 2.01-fold downregulation
(p=0.0092). The network shown in Figure 11 only consisted of
the miRNA that might regulate three or more genes and two
differentially expressed miRNAs (miR-335-2p and miR-584-3p).
In the network, miR-548 was the node with the highest degree (7
genes), followed by miR-5692 (4 genes), miR-4763 (4 genes), and
miR-520 (4 genes). Figure 11 showed the results. The miR-548
family was associated with 7 genes (7/13) in Cluster 1 of the
inactive-treated TAK group, including TLR1, TLR2, TLR4, TLR6,
TLR8, BCL6, NFKBIA, NR4A1, and TIGIT, which suggested that
the miR-548 family plays an important role in the co-expression
of Cluster 1 of inactive-treated TAK group.

miRNA sequencing identified 29 differentially expressed
miRNAs, 17 of which were increased and 12 were decreased. To
validate whether the TLR signaling pathway might be regulated by
Frontiers in Immunology | www.frontiersin.org 18
these differentially expressed miRNAs, we performed miRNA
sequencing analysis following the workflow in Figure 12A. First,
to identify whether the differentially expressed miRNAs could be
associated with specific functional categories, we performed an
unsupervised hierarchical clustering of miRNA expression level
based on Spearman correlation coefficient and conducted GO
enrichment analysis for each cluster based on DIANA-TarBase,
an experimentally validated database (55). Figure 12B showed
miRNAs were partitioned into three clusters by cutting the
clustering tree at the height of 1.1, and miRNAs belonging to the
same cluster might have a close functional association. Figure 12C
showed the hierarchical clustering heat map. The functional
enrichment analysis was described as follows.

1. In Cluster 1, the most highly significant GO term was cellular
nitrogen compound metabolic process (p-value= 9.44E-20),
followed by small molecule metabolic process (p-value=
8.68E-15) and biosynthetic process (p-value= 9.03E-14).
Notably, twelve ‘TLR signaling pathway’‐related GO terms
were highly enriched in Cluster 1 (from 25th to 66th).

2. In Cluster 2, the most highly significant GO term was
organelle (1.29E-185), followed by cellular nitrogen
compound metabolic process (1.46E-92) and ion binding
(1.07E-66). And twelve ‘TLR signaling pathway’‐related GO
terms were highly enriched in Cluster 1 (from 83rd to 146th).
A B

DC

FIGURE 10 | Enrichment for activated signaling pathways of the inactive-treated and the active-treated TAK patients. (A, B) The two greatest gene clusters of the
active-treated (A) and the inactive-treated TAK group (B). (C, D) Functional enrichment analysis results of the active-treated (C) and the inactive-treated TAK group
(D), revealing the potentially activated signaling pathway at the active or the inactive stage of TAK. TAK, Takayasu’s arteritis.
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3. In Cluster 1, the most highly significant GO term was organelle
(3.89E-189), followed by cellular nitrogen compoundmetabolic
process (9.33E-102) and biosynthetic process (2.21E-67). And
twelve ‘TLR signaling pathway’‐related GO terms were highly
enriched in Cluster 1 (from 51st to 125th) (Figure 12D).

The experimentally validated database analysis indicated that
TLR signaling pathway might be one of the major targets of the
differentially expressed miRNA-mediated regulation, especially
of the miRNAs belonging to Cluster 1.

Next, to validate whether one differentially expressed miRNA
could target multiple selected genes, which might be involved in
the gene co-expression of the inactive-treated TAK group, we
constructed the miRNA-Gene-network based on the interactions
of miRNAs and genes in the miRTarBase database, another
experimentally validated database (56), and the screening
Frontiers in Immunology | www.frontiersin.org 19
condition of “support type” was set to “Functional MTI
(miRNA target-interactions)”. Figure 12E showed the result.
Within the network, we identified 7 genes (including TLR1,
TLR2, TLR4, BCL6, NFKBIA, NR4A1, and RORC) that had been
validated to be regulated by the same miRNA, miR-335-5p, 4
genes (including TLR4, BCL6, FOXP3, and NFKB1) by miR-21-
5p, and 4 genes (including CD40, CD40LG, NFKB1, and TNF)
by miR-34a-5p. The results demonstrated that as follows:

1. In TAK, differentially expressed miRNAs that targeted
multiple selected genes do exist.

2. TLRs, BCL6, and FOXP3 might be regulated by common
miRNAs in TAK.

To sum up, these results suggested that miRNAs might play an
important role in thecross-talkbetweenTLRandT-cell inTAKpatients.
FIGURE 11 | The miRNAs might play an important role in the formation of TLRs-clustering at the inactive stage of TAK. The validation results of miRNA sequencing
of plasma exosomes and the predicted miRNA-gene network (miRDB database) which only included the miRNA with a degree greater than or equal to 3 or the
differentially expressed miRNA. Red and green colors of miRNA indicate upregulation and downregulation, respectively. Healthy controls, n=5 people. TAK patients,
n=10 people. TAK, Takayasu’s arteritis.
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DISCUSSION

There have been a number of studies demonstrating that TLRs
play an important role in the pathogenesis of many AIDs, such as
RA, SLE, and MS, but in TAK, it is currently unclear whether
TLRs are associated with the disease activity (1, 2). T-cell is one of
the major driving forces for the inflammatory response in TAK
progression (6). It has been currently unknown whether TLRs are
related to the disease activity or the activation and differentiation
of T-cells in TAK. In this work, we selected 29 genes that were
functionally enriched for the TLR signaling pathway and the
activation and differentiation of T-cells. Twenty-seven TAK
patients were enrolled which were grouped into the untreated
and the treated group (both were further separated into the
Frontiers in Immunology | www.frontiersin.org 20
inactive and the active group), and 10 adult healthy controls
were included. The relative mRNA level data of PBMCs were
acquired by RT-qPCR. First, differential gene expression analysis
showed that the untreated TAK and the treated TAK had an
increased mRNA level of TLR2 and TLR4 compared to healthy
controls. A sample-to-sample matrix revealed that 80% of healthy
controls could be separated from the TAK patients. These findings
suggested that TAK patients had a different expression pattern of
the selected genes from the healthy controls. Second, we identified
the association between TLRs and the disease activity, as the linear
regression models consisting of the TLR4-CCL5 pair, the TLR6-
CCL5 pair, the TLR8-CCL5 pair, and the TLR8-T-bet pair could
distinguish between active and inactive disease in TAK [the AUC/
sensitivity/specificity, 0.939/90.9%/88.9%]. Third, we identified the
A

B

D

E

C

FIGURE 12 | Toll-like receptor signaling pathway might be one of the major targets of the differentially-expressed-miRNA-mediated regulation. (A) Workflow of
miRNA sequencing analysis. miRNA was from plasma exosomes in Takayasu’s arteritis (TAK) patients (n=10) and healthy controls (n=5). (B) The hierarchical
clustering trees of miRNA expression level based on Spearman correlation coefficient using complete method. (C) The hierarchical clustering heatmaps of miRNA
expression level based on Spearman correlation coefficient. (D) GO enrichment analysis for each cluster based on DIANA-TarBase, an experimentally validated
database. The results indicated that TLR signaling pathway might be one of the major targets of the differentially expressed miRNA-mediated regulation, especially of
the miRNAs belonging to Cluster 1. (E) Differentially expressed miRNAs. The miRNA-Gene-network based on miRTarBase database, an experimentally validated
database, and the screening condition of “support type” was set to “Functional MTI (miRNA target-interactions). Red and green colors of miRNA indicated
upregulation and downregulation, respectively. The results demonstrated that differentially expressed miRNAs that targeted multiple selected genes do exist in TAK,
and TLRs, BCL6, and FOXP3 might be regulated by common miRNAs in TAK.
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association between TLRs and the activation and differentiation of
T-cells in TAK according to the following evidence: (1) As the
dynamic gene co-expression network showed, compared with the
healthy control group, the active-treated TAK group, and the
inactive-treated TAK group had higher network connectivity,
shorter characteristic path length, and a larger clustering
coefficient, indicating the more active communication between
TLRs and T-cell activation in TAK. (2) The inactive-treated TAK
group exhibited a unique pattern of inverse correlations between
the TLRs gene clusters (including TLR1/2/4/6/8, BCL6, TIGIT,
NR4A1, and so on) and the gene cluster associated with T-cell
activation and differentiation (including TCR, CD28, T-bet,
GATA3, FOXP3, CCL5, and so on). Fourth, we explored the
genes key to the cross-talk between TLRs and the activation and
differentiation of T-cell in TAK. In inactive-treated TAK, BCL6,
CCL5, FOXP3, GATA3, CD28, T-bet, TIGIT, IkBa, and NR4A1
were likely to have a close functional relation with TLRs. However,
in the active-treated group, the association between these genes
and TLRs did not seem to be as strong as the inactive-treated
Frontiers in Immunology | www.frontiersin.org 21
group, BCL6, PD-1, LAG3, and CD40 were likely to have a close
functional relation with TLRs. Fifth, we analyzed the activated
signaling pathways in the inactive-treated and the active-treated
TAK group. Last, we predicted the miRNAs that involved the
greatest cluster of the inactive-treated TAK group and validated
that miRNA might play an important role in the cross-talk
between TLR and T-cell in TAK by miRNA sequencing.
Besides, we proposed a new concept of the TLR-co-expression
signature which might distinguish different disease and treatment
stages of TAK, such as the co-expression of TLR4 and TLR6,
which serves as a biomarker of the active stage in treated TAK
(AUC/sensitivity/specificity, 0.919/100%/90.9%). These findings
were schematically summarized in Figure 13.
Elevated Levels of TLR2 and TLR4 in
PBMCs From TAK Patients
An increased level of TLRs in PBMCs has been detected in some
AIDs. For example, comparing SLE patients with healthy
FIGURE 13 | Proposed working model depicting the association between Toll-like receptors (TLRs) and T-cell activation in Takayasu’s arteritis (TAK). (A) ① The
activation of autoreactive T cells contributes to the disease activity of TAK. ② The mRNA level of TLR1, -2, -4, -6 or, -8 in peripheral blood mononuclear cells
(PBMCs) do not statistically change with alterations when patients with TAK enter the active phase, which was concluded from the comparison between the active
patients and the inactive ones. ③ The gene co-expression of TLRs might serve as a biomarker that could distinguish active patients from inactive patients in TAK.
④ The negative gene co-expression between the TLRs cluster and the gene cluster associated with T-cell activation and differentiation is a characteristic of inactive-
treated TAK patients that is absent in the active ones. ⑤ The inactive TAK patients and the active TAK patients share the characteristic of the positive co-expressed
gene cluster comprising several key genes involved in the activation and differentiation of T-cells. ⑥ The inactive TAK patients and the active TAK patients have the
common positive co-expressed gene cluster comprising TLRs and BCL6. Notably, BCL6 is tightly related to TLRs, and the underlying mechanisms deserve further
exploration. Besides, miRNAs might play an important role in the above gene co-expression, and however, further investigation is needed to validate it. (B) The
proteins coded by the genes in the left gene cluster play a key role in the activation and differentiation of T-cells. APC, Antigen-presenting cell.
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controls, TLR2 expression on monocytes was reduced, and
intracellular TLR9 expression of CD19+ B-cells was elevated
(57). Comparing Behcet’s disease patients with healthy controls,
TLR1 and TLR2 were elevated in B-cells, TLR1, 2, and 4 were
more highly expressed in both CD4+and CD8+ T-cells,
granulocytes displayed a higher expression of TLR1, 2, 4, and
6, and the expressions of TLR2, 4, and 5 were significantly
increased on classical monocytes (58). However, few studies
probed the effect of the treatment on the expressions of the
TLRs in AIDs. For TAK, it has been unclear whether there are
abnormal expressions of the TLRs in TAK, except TLR4. Besides,
it also has been unclear whether the abnormal expressions of the
TLRs are related to the medication and the disease activity,
including TLR4. Our results complement and add to findings
from previous TAK studies in that the mRNA expression of
TLR4 and its ligand S100s in PBMCs from TAK patients were
higher compared to healthy controls (12). We found that both
the untreated and the treated TAK patients had increased mRNA
levels of TLR2 and TLR4, and there was no statistically
significant difference between the two groups, which
demonstrated that the increased mRNA levels of TLR2 and
TLR4 were independent from the medication. Besides, it was
unanticipated that there was no statistically significant difference
between the inactive and the active TAK patients in the mRNA
expression of TLR2 and TLR4, which suggested that the elevated
levels of TLR2 and TLR4 might be not resulted from the disease
activity in TAK. However, the treated patients in this study had a
relatively low serum level of TNF-a, which might imply
relatively inactive TLR-signaling pathways in their
peripheral blood.

Novel Association Between TLRs and
Disease Activity in AIDs
Many studies have shown that TLRs play a dual role in the
disease activity of AIDs. On the one hand, TLRs promote disease
progression. TLRs can be activated by the DAMPs which are
released from the injured tissue, such as high mobility group
box-1 (HGMB1) (59) and self-nucleic acids (60, 61). On the
other hand, TLRs although inhibit autoimmune inflammation.
In SLE, TLRs can promote sterile inflammation activated by
DAMPs released from damaged cells, which is closely related to
the disease progression and autoantibody production (62). For
example, TLR-7, -8, and -9, which are not only expressed in the
innate immune cells, such as neutrophils, macrophages and
dendritic cells (DCs), but also are expressed in the
lymphocytes, such as T-cells, and B-cells (60, 63, 64), can be
activated by the self-nucleic acids (DAMPs released from
damaged cells) (60, 61), and in recent years, there has been an
increasing interest in the mechanism of how TLRs directly
regulate the adaptive immune response without the innate
immune cells, which deepens our understanding of the role of
TLRs in the pathogenesis of AIDs. On the other hand, TLRs have
a dual role in the pathogenesis of SLE, and TLRs can protect the
body against autoimmune inflammation. Low expression of
TLR9 due to single nucleotide polymorphisms would increase
SLE susceptibility in humans (65), and deletion of TLR8 and
Frontiers in Immunology | www.frontiersin.org 22
TLR9 would accelerate lupus development in mice (66–70). A
variety of mechanisms for TLR9 to promote and limit AIDs have
been discovered. The TLR9-dependent function of medullary
thymic epithelial cells is required for the generation of regulatory
T cells (Tregs) and the establishment of central tolerance (71).
TLR9 can inhibit the production of autoantibodies mediated by
TLR7, such as anti-RNA Ab, anti-Sm Ab, anti-RNA Ab, anti-
IgG2a RF (68, 69, 72). The balance between TLR7 and TLR9 is
important for the formation of autoreactive B cells (73). And
UNC93B1 plays an important role in regulating the balance
between TLR7 and TLR9 (74–77). In the endoplasmic reticulum,
TLR7 competes with TLR9 to bind to UNC93B1, and the D34
position of UNC93B makes it biased to bind to TLR9 (78). In RA,
TLRs also promote sterile inflammation. For example, TLR4 can
be activated by high mobility group box-1 protein (HMGB1) in
RA (59). Besides, the activation of TLRs caused by PAMPs also
plays an important role in the pathogenesis of RA (79). In the
clinic, some cytokines induced by TLRs are immunotherapeutic
targets in AIDs, such as TNF-a, interleukin (IL)-6, interferon
(IFN)-a, and IL-1b (7). Recently, NI-0101, an anti-toll-like
receptor 4 monoclonal antibody was used in RA, which was
the first clinical trial to target TLRs to treat autoimmune diseases
(4). In this study, we observed a unique pattern of inverse
correlations between the TLRs gene clusters and the gene
cluster associated with T-cell activation and differentiation the
inactive-treated TAK group, which suggests a novel relationship
between TLRs and the disease activity in AIDs.

However, these potential mechanisms of these inverse
correlations need to be elucidated in depth, and there are
several fundamental questions to address. First, the inverse
correlations between TLRs and the activation of T-cell should
be described in more detailed, and some experimental data for
the difference in the T-cell activation status are needed to be
collected, including the expression of activation markers on T
cells (such as CD69, CD25 and HLA-DR) and some cytokines
(such as IFN-g+Th1, IL-4+Th2, and IL-17+Th17). Then,
association studies cannot be used to infer causality. While
there is a possible regulatory relationship between TLRs and T-
cells in TAK, it is also possible that TLRs and T-cells are under
the control of common upstream regulators. Furthermore,
another question is why the inverse correlations exist in
inactive TAK patients, but not in active TAK patients.

Activated Signaling Pathways in the
Inactive and the Active TAK Patients
T-cell is one of the main forces for the autoimmune
inflammation in TAK (6). It has been reported that multiple
T-cell subtypes are related to the pathogenesis of TAK, including
Th1, Th17, Th9, Tfh, and Th2-like Treg cells (80–83). In this
study, the functional enrichment of the greatest cluster of the
active-treated TAK group was centered on the activation and
differentiation of T-cells, indicating the activation of T-cells at
the active stage, which is consistent with previously reported
studies. Notably, the functional enrichment of the greatest cluster
of the inactive-treated TAK group was centered on the regulation
of cytokine production, the response to bacterium, peptide, and
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lipopolysaccharide, the TLR signaling pathway, the I-kappaB
kinase/NF-kappaB signaling pathway, the regulation of defense
response, and so on, which suggested the activated TLR-
signaling pathways at the inactive stage.

The previous study has shown that BCL6 regulates nearly a
third of the TLR4-regulated transcriptome, and that 90% of the
BCL6 cistrome is collapsed following TLR4 activation in the
macrophages (84). In B-cells, PELI1, which is activated by TLR3
and TLR4, directly interacted with BCL6, inducing lysine 63-
mediated BCL6 polyubiquitination, and PELI1 expression levels
positively correlated with BCL6 expression (85). Our results
showed that BCL6 had a very similar expression pattern to
that of TLRs, indicating that there is a stronger and closer
association between multiple TLRs and BCL6, such as direct
interactions and regulatory relationships, and this association
warrants further study. The transcription factor BCL6 is required
for driving Tfh cell differentiation and regulates their function.
Recent studies have demonstrated the implications of Tfh cells
with the disease activity of TAK (82), and our results suggested
that TLRs might play a role in the regulation of Tfh cells.

miRNA-548 Family
miRNAs play an important role in regulating gene expression
and the TLR-signaling pathways (86, 87). miRNAs with high
sequence similarity form the miRNA family, co-regulating
complex biological processes. Among them, the miR-548
family, with over 80 identified miRNAs, regulates the immune
process in some diseases, such as cancer (88, 89). A large amount
studies have shown that miRNA-548 suppresses tumor
proliferate by binding WNT2 (90), murine double minute 2
(91), metastasis tumor-associated protein-2 (92), specificity
protein 1 (93), cancerous inhibitor of protein phosphatase 2A
(94), HMGB1 (95), and so on. Inhibiting or down-regulating
miR-548 promotes the tumor proliferation (96). One study
proposed to serve miRNA-548 as a prognosis predictor in
primary central nervous system lymphoma (97). Our study
showed that miR-548 played an important role in the
pathogenesis of autoimmune disease, which might be related to
the TLR signaling pathway.

It is worth noting that miRNA-548 family was increased in
the serum exosomes from TAK patients than healthy controls,
while the expression levels of its potential target genes were not
decreased. While we have no clear explanation for this, we
speculated that miRNAs might play an important role in the
negative feedback regulation of TLR signaling pathways based on
previous studies. Studies have shown that miRNAs play an
important role as negative feedback to control inflammatory
responses maintaining a level, avoiding excess inflammatory
responses (98). For example, serum IL-6 levels increase with
aging, whereas miR-192 in extracellular vesicles alleviated the
prolonged inflammation associated with aging (99). Besides, the
expression level of miRNA-541 [can attenuate pro-inflammatory
cytokine expression (100)] in circulating extracellular vesicles
was negatively correlated with the pro-inflammatory cytokine
expression levels and the number of adverse local symptoms after
vaccination (101). In these cases, although the expression levels
of some targeted genes are still increased than normal, miRNAs
Frontiers in Immunology | www.frontiersin.org 23
in circulating extracellular vesicles have functioned as avoiding
excessive inflammation. However, we have not been
demonstrated the correlations between miR-548 as the RNA
samples and serum exosomes were not f rom the
same participants.

TLR-Co-Expression Signature
There are certain functional relationships among TLRs. First,
TLRs function as a homodimer or heterodimer. TLR2 binds
TLR1 or TLR6 to recognize distinct PAMPs (102, 103).
The TLR4-TLR6-CD36 complex is activated by atherogenic
lipids and amyloid-beta to stimulate sterile inflammation (48,
49). Second, there is some cross-talk between TLRs. In SLE, TLR9
can inhibit the production of autoantibodies mediated by TLR7,
such as anti-RNA Ab, anti-Sm Ab, anti-RNA Ab, anti-IgG2a RF
(68, 69, 72). The balance between TLR7 and TLR9 is important for
the formation of autoreactive B cells (73). And UNC93B1 plays an
important role in regulating the balance between TLR7 and TLR9
(74–77). In the endoplasmic reticulum, TLR7 competes with TLR9
to bind to UNC93B1, and the D34 position of UNC93B makes it
biased to bind to TLR9 (78). In the endothelial cells transfected
with TLR1in septic, the ability of TLR4 in these cells to respond to
LPS was lost (104). TLR10 on peripheral blood monocytes reduces
TLR2-induced cytokine production in Parkinson’s disease (105),
which is also a co-receptor of TLR2. Third, some TLR-genes locate
the same gene cluster in the chromosome, and there are multiple
associated SNPs of TLRs, such as TLR1, TLR6, and TLR10. For
example, the observed multiple associated SNPs at the TLR6-
TLR1-TLR10 gene cluster may play a role in prostate cancer risk
(106). STRING database analysis showed strong PPIs among TLRs
(Figure 6A). We observed the different co-expressed TLRs clusters
of different disease and treatment stages in TAK, which might
serve as a signature of transcriptome analysis for individualized
treatment decision. For instance, the co-expression TLR4 and
TLR6 could distinguish the active-treated TAK patients from the
inactive ones.

Limitations
In the correlation analysis results, there were many non-strong
correlations (0.01<p<0.05) between the expression levels, which
might be related to the sample heterogeneity. For instance, some
non-strong correlation in the treated TAK group became strong
correlations (p<or=0.01) after further stratifying patients into
subgroups according to disease activity. But the sample size is
relatively small, so the active or inactive group could not be
separated into subgroups.

Besides, there were limitations in the protocol for evaluating
the closeness of functional relationships between TLRs and the
other genes. Although the genes with a high score were likely to
be closely connected in function with TLRs, the genes with a low
score were not necessarily intimately linked with TLRs.

Notably, the reference genes had a large influence on the
correlation analysis results. Stably expressed reference genes help
find out the co-expression relations. Moreover, different
reference genes may cause some differences in the results, and
combining Pearson correlation and Spearman correlation help
partially address the problem.
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Last, larger clinical studies will be needed to validate our
findings and to calibrate the diagnostic thresholds. In this cohort,
the naïve TAK patients will be also classified into the active group
and the inactive group as it might exhibit a different co-
expression network from the TAK patients under treatment.
Some experimental data for the difference in the T cell activation
status (activation markers and cytokines) will be also collected to
construct more accurate and more detailed models of the
association between TLRs and T-cell activation in TAK.
CONCLUSIONS

This study identified the association between TLRs and T-cell
activation in TAK, found a potentially novel role of TLRs in the
pathogenesis of autoimmune diseases, and highlighted the
function of miRNAs in the cross-talk between TLRs and T-
cells in TAK, and more investigation is needed to further confirm
the role of miRNAs in the cross-talk between TLR and T-cell in
TAK patients and to elucidate the mechanisms.
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