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Abstract
Introduction: The current diagnosis of Parkinson's disease (PD) comorbidity with de-
pression	 (DPD)	 largely	depends	on	clinical	evaluation.	However,	 the	modality	may	
tend	 to	 lack	 precision	 in	 detecting	PD	with	 depression.	A	 radiomic	 approach	 that	
combines functional connectivity and activity with clinical scores has the potential to 
achieve accurate and differential diagnosis between PD and DPD.
Methods: In	this	study,	we	aimed	to	employ	the	radiomic	approach	to	extract	large-	
scale	features	of	functional	connectivity	and	activity	for	differentiating	among	DPD,	
PD	with	no	depression	(NDPD),	and	healthy	controls	(HC).	We	extracted	6,557	fea-
tures	of	 five	 types	 from	all	 subjects	 including	 clinical	 characteristics,	 resting-	state	
functional	 connectivity	 (RSFC),	 amplitude	of	 low-	frequency	 fluctuation	 (ALFF),	 re-
gional	 homogeneity	 (ReHo),	 and	 voxel-	mirrored	 homotopic	 connectivity	 (VMHC).	
Lasso,	random	forest,	and	support	vector	machine	(SVM)	were	implemented	for	fea-
ture	selection	and	dimension	reduction	based	on	the	training	sets,	and	the	prediction	
performance for different methods in the testing sets was compared.
Results: The results showed that nineteen features were selected for the group of 
DPD	versus	HC,	34	features	were	selected	for	the	group	of	NDPD	versus	HC,	and	
17	features	were	retained	for	the	group	of	DPD	versus	NDPD.	In	the	testing	sets,	
Lasso	prediction	achieved	the	accuracies	of	0.95,	0.96,	and	0.85	for	distinguishing	
between	DPD	and	HC,	NDPD	and	HC,	and	DPD	and	NDPD,	respectively.	Random	
forest	 achieved	 the	 accuracies	 of	 0.90,	 0.82,	 and	0.90	 for	 distinguishing	between	
DPD	and	HC,	NDPD	and	HC,	and	DPD	and	NDPD,	respectively,	while	SVM	yielded	
the	accuracies	of	1,	0.86	and	0.65	for	distinguishing	between	DPD	and	HC,	NDPD	
and	HC,	and	DPD	and	NDPD,	respectively.
Conclusions: By	identifying	aberrant	functional	connectivity	and	activity	as	potential	
biomarkers,	the	radiomic	approach	facilitates	a	deeper	understanding	and	provides	
new insights into the pathophysiology of DPD to support the clinical diagnosis with 
high prediction accuracy.
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1  | INTRODUC TION

Depression	 is	 a	 frequent	 psychiatric	 symptom	 of	 Parkinson's	 dis-
ease (PD) and one of the earliest prodromal comorbidities that can 
significantly	 impact	quality	of	 life	 (Chagas	et	 al.,	2013).	Nonmotor	
features including depression can appear in the earliest phase of 
the	disease	even	before	clinical	motor	impairment	(Lix	et	al.,	2010;	
Shearer	et	al.,	2012;	Tibar	et	al.,	2018).	The	efficacy	of	medications	
and psychotherapies for treating depression in PD patients remains 
limited	(Abós	et	al.,	2017).	Hence,	advances	in	timely	detection	and	
concerted management of PD comorbidity with depression (DPD) 
become	urgent.	Motor	symptoms	were	easily	detected	than	nonmo-
tor	symptoms	using	the	present	diagnostic	tools	(Picillo	et	al.	2017).	
According	to	the	Unified	Parkinson's	Disease	Rating	Scale	(UPDRS),	
over	half	DPD	patients	were	not	recognized	by	neurologists	(Lachner	
et	al.	2017),	while	the	incidence	of	PD	with	depression	was	already	
substantially	elevated	recently	 (Kay	et	al.,	2018).	Clearly,	physician	
recognition and current understanding for comorbidity of depres-
sion in PD are not enough.

Although	knowledge	of	 the	neural	and	pathophysiologic	mech-
anisms	 of	DPD	 progression	 remains	 limited,	many	 researchers	 are	
devoted to conduct research trying to understand the inner working 
mechanisms and discovering biomarkers of DPD. Clinical intervention 
is	urgent	around	the	early	therapeutic	windows	(Tibar	et	al.,	2018;	Vu	
et	al.,	2012).	Multimodal	neuroimaging	methods	such	as	functional	
magnetic	resonance	imaging	(MRI)	and	electroencephalography	have	
aided	the	diagnosis	of	PD.	Resting-	state	functional	MRI	(rs-	fMRI)	can	
provide more information on functional connections to assess the 
correlations	among	different	networks.	An	 intra-		and	 internetwork	
functional connectivity study in DPD demonstrated aberrant func-
tional	 connectivity	 (FC)	 in	 left	 frontoparietal	 network,	 basal	 gan-
glia	 network,	 salience	 network,	 and	 default-	mode	 network	 (DMN)	
(Wei	 et	 al.,	 2017).	Meanwhile,	 these	 connectivity	 anomalies	 were	
correlated with the depression severity in DPD. This may indicate 
the mechanism of progressive deterioration and compensation for 
integrative	neural	models	in	DPD	(Wei	et	al.,	2017;	Zhu	et	al.	2016).	
Structural	MRI	has	also	 received	 research	attention	because	of	 its	
stability	 and	 repeatability	 (Jacob	 et	 al.,	 2019;	 Remes	 et	 al.,	 2011).	
Diffusion tensor imaging can discover microstructural changes in the 
brain white matter. Previous studies found abnormal white matter 
fiber characteristic (mainly located in the right arcuate fasciculus and 
bilateral middle cerebellar peduncles) in prodromal early stage of PD 
(Sanjari	Moghaddam	et	al.,	2019).	Another	microstructure	difference	
was located in the bilateral white matter fiber of the mediodorsal 
thalamic	regions	between	the	DPD	and	NDPD	groups,	but	the	sam-
ple size was relatively small and the clinical score only included the 
Hamilton	depression	rating	scale	(HAMD)(Li	et	al.,	2010).

In	recent	years,	machine	learning	has	been	recognized	as	a	prom-
ising and powerful algorithm method for prediction and medical 

diagnosis.	Studies	have	been	conducted	to	obtain	voxel-	based	mor-
phological biomarkers of PD by using machine learning such as sup-
port	 vector	machine	 (SVM)	or	principal	 component	 analysis	 (PCA)	
that	allowed	individual	differential	diagnosis	of	PD	(Lix	et	al.,	2010;	
Palumbo	et	al.,	2014;	Salvatore	et	al.,	2014).	Another	method	(Peng	
et	al.,	2017;	Peran	et	al.,	2010)	focusing	on	region	of	interest	(ROI)	
has also been implemented where some specific regions of the brain 
such	as	gray	matter	and	hippocampal	volume	were	extracted	based	
on prior knowledge regarding their effects on brain functionality and 
memory.

Recent progress in digital medical image analysis allows us 
to	 develop	 a	 novel	 feature	 extraction	 method	 called	 radiomics	
which converts large amounts of medical imaging characteristics 
into high- dimensional mineable data pool to build a predictive and 
descriptive model. The method has been applied to some neuro-
psychiatric	diseases	such	as	autism,	schizophrenia,	and	Alzheimer	
disease	 (Feng	et	 al.,	 2019;	Salvatore	et	 al.,	 2019).	These	 findings	
demonstrate the validity of these radiomic approaches in improv-
ing the classification accuracy and discovering discriminative fea-
tures	 that	 can	 reveal	 pathological	 information.	 A	 radiomic	 study	
on	quantitative	susceptibility	mapping	 (QSM)	achieved	good	per-
formance	 for	 predicting	 PD	 (Xiao	 et	 al.,	 2019).	 The	 combination	
of radiomics features and convolutional neural networks (CNN) 
can	 increase	 the	 diagnostic	 accuracy	 (Ortiz	 et	 al.,	 2019).	 Other	
radiomic analysis focusing on longitudinal SPECT images and T2- 
weighted	MRI	can	also	enhance	the	prediction	accuracy	of	PD	(Liu	
et	al.,	2020;	Rahmim	et	al.,	2017).	A	radiomic	study	based	on	PET/
CT	images	extracted	high-	order	features	and	trained	a	SVM	model	
to	classify	PD	and	HC	subjects,	and	the	results	demonstrated	that	
the	 radiomic	 method	 combined	 with	 SVM	 could	 distinguish	 PD	
from	HC	(Wu	et	al.,	2019).	Cao	et	al.	 leveraging	rs-	fMRI	radiomic	
features	 showed	 that	machine	 learning	methods	 including	 Lasso	
and	 SVM	 could	 significantly	 improve	 diagnostic	 accuracy	 of	 PD	
(Cao	et	al.,	2020).

In	the	present	study,	we	aimed	to	build	and	validate	a	radiomic	
method that can facilitate the individual diagnosis of patients with 
PD	and	 the	development	of	DPD	by	 extracting	whole-	brain	 func-
tional connectivity and activity using the radiomic approach. The 
proposed method can also identify brain regions of interest with ab-
errant functional activity between DPD and PD that were relevant 
to	the	disease	onset,	which	may	contribute	to	the	early	diagnosis	and	
treatment for clinical practice.

2  | MATERIAL S AND METHODS

(Data	 acquisition	 and	 preprocessing	 procedures	 have	 all	 been	 ap-
plied	in	our	published	issue,	Cao,	et	al.,	Front	Neurosci.	2020;	14:751.	
10.3389/fnins.2020.00751).

K E Y W O R D S
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This prospective study was approved by the institutional re-
view board and followed the ethical guidelines of the Declaration 
of	Helsinki,	and	written	 informed	consent	was	acquired	from	each	
subject before inclusion.

2.1 | Participates and clinical evaluation

We used the same imaging data from the same recruited subjects as 
in	our	previously	published	issue	(Cao	et	al.,	2020).	The	only	differ-
ence is that we further stratify the PD patients into two groups of 
DPD	and	NDPD	to	examine	the	aberrant	functional	connectivity	and	
activity in DPD and to build machine learning models for predict-
ing	DPD	and	NDPD.	Seventy	PD	patients	including	21	DPD	and	49	
NDPD	subjects	were	recruited,	along	with	50	matched	healthy	con-
trols. The details regarding the diagnostic criteria and clinical evalua-
tion of the NDPD and DPD groups are provided in Data S1.

2.2– 2.5	Image	data	acquisition,	preprocessing,	extraction	of	ra-
diomic	 features	 including	 regional	 homogeneity	 (ReHo),	 amplitude	
of	low-	frequency	fluctuation	(ALFF)	and	voxel-	mirrored	homotopic	
connectivity	 (VMHC),	 resting-	state	functional	connectivity	 (RSFC),	
feature	selection,	and	model	validation	are	provided	in	Data	S2.	The	
flowchart	of	this	study	is	shown	in	Figure	1.

3  | RESULTS

3.1 | Differences in clinical characteristics

Clinical information from three groups was displayed in Table 1. No 
significant difference was observed among the three groups re-
garding	age,	gender,	education,	and	MMSE	score,	while	significant	
difference	 in	 HAMD	 score	 was	 detected	 among	 three	 groups.	 In	
particular,	for	the	DPD	group,	the	HAMD	scores	(20.2	± 4.6) were 
significantly higher than those for other two groups (the same data 
from our aforementioned published study were used).

3.2 | Feature selection

For	 the	 first	 classification	of	DPD	versus	 (versus)	HC,	19	 features	
including	 (HAMD,	2	mALFFs,	 and	16	RSFCs)	were	 retained	 for	bi-
nary	classification.	The	16	RSFCs	and	corresponding	brain	regions	
using	HOA	template	were	presented	in	Table	2.	The	most	aberrant	
brain	 regions	of	RSFCs	 included	DMN,	 executive	 control	 network	
(ECN),	 visual	 network	 (VIN),	 affective	 network	 (AN),	 sensorimotor	
network	(SMN),	and	short-	term	memory	(STM)	network	(Figure	2).	
The	other	two	mALFF	features	were	 located	at	the	 left	precentral	

F I G U R E  1  Flowchart	of	the	study.	We	extracted	the	6,557	metrics	after	the	rs-	fMRI	images	preprocessed.	Then,	Lasso	regression	was	
carried	out	to	reduce	the	number	of	features.	Last,	Lasso	prediction,	random	forest,	and	SVM	were	used	to	differentiate	between	different	
categories of subjects
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gyrus	and	the	left	planum	polare.	In	Table	3,	we	reported	the	statisti-
cal characteristics of these features resulting from the dimension re-
duction step and illustrated the difference in these selected features 
between DPD and HC. The decreasing or increasing trend of these 
features between DPD and HC can also be discovered in Table 3.

For	the	second	classification,	NDPD	versus	HC,	34	features	in-
cluding	(30	RSFCs,	HAMD,	1	mALFF,	1ReHo,	and	1VHMC)	remained	
for	binary	classification.	The	30	RSFCs	and	the	corresponding	brain	
regions	using	HOA	template	were	presented	in	Table	4.	The	most	ab-
errant	brain	regions	of	RSFCs	were	located	in	DMN,	VIN,	AN,	SMN,	
automatic	urban	network	 (AUN),	ventral	attention	network	 (VAN),	

ECN,	salience	network	(SN),	and	basal	ganglia	(BGN)	(Figure	3).	The	
other	three	radiomic	features	were	mALFF	of	the	left	juxtapositional	
lobule	cortex,	mReHo	of	 the	 left	middle	 temporal	gyrus,	posterior	
division,	and	VMHC	of	the	right	temporal	fusiform	cortex,	posterior	
division.	The	mean,	standard	deviation,	and	p value of these 34 fea-
tures were reported in Table 5.

For	the	third	classification,	DPD	versus	NDPD,	17	features	
including	 (15	RSFCs,	HAMD,	 and	1	mALFF)	were	 kept	 for	 bi-
nary	classification.	The	15	RSFCs	and	the	corresponding	brain	
regions	 using	 HOA	 template	 were	 presented	 in	 Table	 6.	 The	
most	aberrant	networks	associated	with	these	RSFCs	included	

TA B L E  1  Clinical	and	demographic	data	evaluation	of	DPD,	NDPD,	and	HC

Characteristics DPD (n = 21) nDPD (n = 49) HC (n = 50) Test statistics p value

Sex	(M/F) 9/12 26/23 24/26 0.409 >.05a 

Age	(year) 58.1	±	7.5 57.8	±	7.0 57.8	± 5.5 0.021 >.05b 

Education (year) 11.0 ± 3.1 11.8	± 3.3 11.7	±	4.8 0.689 >.05c 

MMSE 28.7	± 1.1 28.6	±	1.7 29.0	± 2.3 0.585 >.05d 

HAMD 20.2 ± 4.6 6.9	± 3.1 2.2 ± 2.3 243.2 (p < .05) <.016e- g 	< .016e-g 	< .016e- g 

aThe p	value	for	gender	distribution	by	Fisher's	exact	test.	
bThe p	value	for	age	by	multivariate	analysis	of	variance	(MANOVA).	
cThe p	value	for	education	by	MANOVA.	
dThe F test statistic and the p	value	for	MMSE	scores	by	MANOVA.	
e- gThe p	values	for	HAMD	scores	by	paired-	samples	t	test	with	Bonferroni	correction	for	further	comparison	between	three	groups.	

TA B L E  2  16	RSFC	features	and	the	related	brain	regions	indexed	in	the	HOA	template	for	differentiating	DPD	from	HC

ID
HOA 
number Brain region A Network HOA number Brain region B Network

1 5 Superior	Frontal	Gyrus.L DMN 31 Inferior	Temporal	Gyrus,	
temporooccipital.L

Other region

2 6 Superior	Frontal	Gyrus.	R DMN 89 Heschl's	Gyrus.L AUN

3 14 Precentral	Gyrus.	R SMN 109 Left	Amygdala DMN

4 14 Precentral	Gyrus.R SMN 110 Right	Amygdala DMN

5 16 Temporal Pole.R AN 47 Intracalcarine	Cortex.L VIN

6 16 Temporal Pole.R AN 85 Parietal	Operculum	Cortex.L SMN

7 20 Superior	Temporal	Gyrus,	
posterior.R

DMN 90 Heschl's	Gyrus.R AUN

8 22 Middle	Temporal	Gyrus,	
anterior.R

DMN 36 Superior	Parietal	Lobule.R(SPL) VIN

9 22 Middle	Temporal	Gyrus,	
anterior.R

DMN 82 Frontal	Operculum	Cortex.R VAN

10 26 Middle	Temporal	Gyrus,	
temporooccipital.R

FNs 40 Supramarginal	Gyrus,	posterior.R STM

11 35 Superior	Parietal	Lobule.L(SPL) VIN 53 Subcallosal	Cortex.L Other region

12 36 Superior	Parietal	Lobule.R(SPL) VIN 56 Paracingulate	Gyrus.R ECN

13 37 Supramarginal	Gyrus,	
anterior.L

STM 62 Precuneus	Cortex.R DMN

14 42 Angular	Gyrus.R DMN 58 Cingulate	Gyrus,	anterior.R SN

15 57 Cingulate	Gyrus,	anterior.L SN 110 Right	Amygdala DMN

16 94 Supracalcarine	Cortex.R VIN 112 Right	Accumbens Other region
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the	DMN,	VIN,	STM,	AN,	BGN,	SMN,	SN,	ECN,	VAN,	and	AUN	
(Figure	 4).	 The	 remaining	mALFF	 feature	 belonged	 to	 the	 re-
gion	 of	 left	 subcallosal	 cortex.	 In	 Table	 7,	 we	 also	 listed	 the	
mean,	 standard	 deviation,	 and	 p	 value	 of	 these	 17	 radiomic	
features.

3.3 | Model fitting

After	 the	 screening	 process,	 for	 all	 three	 classifications,	 there	
were	no	more	than	34	features	left,	and	the	ultrahigh	dimensional	
situation	 was	 no	 longer	 present.	 Most	 of	 the	 commonly	 used	

F I G U R E  2   The visualization plot of the 
selected	16	RSFC	features	for	the	first	
classification between DPD and HC using 
the	BrainNet	Viewer	(Xia	et	al.,	2013)

TA B L E  3  The	mean,	standard	deviation	(SD) and p	value	for	all	19	selected	features	in	the	training	sets	for	the	group	of	DPD	versus	HC

ID Features DPD (mean ± SD) HC (mean ± SD) p value

1 Superior	Frontal	Gyrus.L-	Inferior	Temporal	Gyrus,	
temporooccipital.L

0.3854	± 0.3630 0.1885	±	0.2118 0

2 Superior	Frontal	Gyrus.R-	Heschl's	Gyrus.L 0.2827	±	0.3072 0.5094	±	0.2967 .0606

3 Precentral	Gyrus.R-	Left	Amygdala −0.1771	±	0.3208 0.0576	±	0.2736 .0314

4 Precentral	Gyrus.R-	Right	Amygdala −0.2144	±	0.2458 −0.0180	±	0.2247 .0015

5 Temporal	Pole.R-	Intracalcarine	Cortex.L 0.5120 ± 0.2035 0.2924	±	0.2869 0

6 Temporal	Pole.R-	Parietal	Operculum	Cortex.L 0.2573	±	0.1805 −0.1046	±	0.3396 .0051

7 Superior	Temporal	Gyrus,	posterior.R-	Heschl's	Gyrus.R 0.1219	± 0.2061 −0.1426	±	0.2739 .1274

8 Middle	Temporal	Gyrus,	anterior.R-	Superior	Parietal	
Lobule.R

−0.0564	±	0.1229 0.0885	± 0.2423 .3779

9 Middle	Temporal	Gyrus,	anterior.R-	Frontal	Operculum	
Cortex.R

0.0773	± 0.1620 −0.1025	±	0.1783 .1568

10 Middle	Temporal	Gyrus,	temporooccipital.R-	Supramarginal	
Gyrus,	posterior.R

0.0909	± 0.3364 −0.1273	±	0.2680 .2875

11 Superior	Parietal	Lobule.L(SPL)-	Subcallosal	Cortex.L 0.0690	±	0.2970 −0.1440	± 0.3210 .2622

12 Superior	Parietal	Lobule.R(SPL)-	Paracingulate	Gyrus.R −0.0626	±	0.2409 −0.1500	± 0.2254 .3921

13 Supramarginal	Gyrus,	anterior.L-	Precuneus	Cortex.R 0.1038	±	0.2217 −0.0251	±	0.2207 .0950

14 Angular	Gyrus.R-	Cingulate	Gyrus,	anterior.R −0.0276	±	0.2388 −0.2765	± 0.2116 .1589

15 Cingulate	Gyrus,	anterior.L-	Right	Amygdala 0.2119	±	0.2191 −0.0252	±	0.2398 .0020

16 Supracalcarine	Cortex.R-	Right	Accumbens −0.0057	±	0.2229 0.2186	±	0.2920 .0512

17 mALFF	of	Left	Precentral	Gyrus 0.8066	±	0.0847 0.9223	± 0.1261 .0007

18 mALFF	of	Left	Planum	Polare 1.4770	±	0.2962 1.3442 ±	0.2449 0

19 HAMD	Score 20.5385	± 4.0541 2.3143 ±	2.2198 0
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TA B L E  4  30	RSFC	features	and	the	related	brain	regions	indexed	in	the	HOA	template	for	differentiating	NDPD	from	HC

ID
HOA 
number Brain region A Network

HOA 
number Brain region B Network

1 1 Frontal	Pole.L Other region 8 Middle	Frontal	Gyrus.R DMN

2 1 Frontal	Pole.L Other region 80 Occipital	Fusiform	
Gyrus.R

VIN

3 2 Frontal	Pole.R Other region 5 Superior	Frontal	Gyrus.L Other region

4 4 Insular	Cortex.R SN 88 Planum Polare.R Other region

5 5 Superior	Frontal	Gyrus.L DMN 66 Frontal	Orbital	Cortex.R Other region

6 6 Superior	Frontal	Gyrus.R DMN 37 Supramarginal	Gyrus,	
anterior.L

STM

7 7 Middle	Frontal	Gyrus.L DMN 19 Superior	Temporal	Gyrus,	
posterior.L

DMN

8 9 Inferior	Frontal	Gyrus,	pars	
triangularis.L

Other region 19 Superior	Temporal	Gyrus,	
posterior.L

DMN

9 9 Inferior	Frontal	Gyrus,	pars	
triangularis.L

Other region 22 Middle	Temporal	Gyrus,	
anterior.R

DMN

10 9 Inferior	Frontal	Gyrus,	pars	
triangularis.L

Other region 47 Intracalcarine	Cortex.L VIN

11 13 Precentral	Gyrus.L SMN 82 Frontal	Operculum	
Cortex.R

VAN

12 13 Precentral	Gyrus.L SMN 112 Right	Accumbens Other region

13 15 Temporal	Pole.L AN 19 Superior	Temporal	Gyrus,	
posterior.L

DMN

14 15 Temporal	Pole.L AN 51 Juxtapositional	Lobule	
Cortex.L

Other region

15 25 Middle	Temporal	Gyrus,	
temporooccipital.L

FNs 89 Heschl's	Gyrus.L AUN

16 27 Inferior	Temporal	Gyrus,	
anterior.L

DMN 89 Heschl's	Gyrus.L AUN

17 28 Inferior	Temporal	Gyrus,	
anterior.R

DMN 46 Lateral	Occipital	Cortex,	
inferior.R

VIN

18 28 Inferior	Temporal	Gyrus,	
anterior.R

DMN 77 Temporal Occipital 
Fusiform	Cortex.L

VIN

19 31 Inferior	Temporal	Gyrus,	
temporooccipital.L

Other region 92 Planum Temporale.R Other region

20 32 Inferior	Temporal	Gyrus,	
temporooccipital.R

Other region 73 Temporal	Fusiform	
Cortex,	anterior.L

VIN

21 50 Frontal	Medial	Cortex.R DMN 58 Cingulate	Gyrus,	
anterior.R

SN

22 51 Juxtapositional	Lobule	Cortex.L Other region 111 Left	Accumbens Other region

23 60 Cingulate	Gyrus,	posterior.R DMN 77 Temporal Occipital 
Fusiform	Cortex.L

VIN

24 60 Cingulate	Gyrus,	posterior.R DMN 78 Temporal Occipital 
Fusiform	Cortex.R

VIN

25 68 Parahippocampal	Gyrus,	
anterior.R

DMN 109 Left	Amygdala DMN

26 69 Parahippocampal	Gyrus,	
posterior.L

DMN 85 Parietal Operculum 
Cortex.L

Other region

27 78 Temporal	Occipital	Fusiform	
Cortex.R

VIN 79 Occipital	Fusiform	Gyrus.L VIN

28 84 Central	Opercular	Cortex.R Other region 103 Left	Putamen BGN

29 91 Planum	Temporale.L Other region 95 Occipital	Pole.L VIN

30 95 Occipital	Pole.L VIN 110 Right	Amygdala DMN
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machine	learning	methods	including	Lasso	prediction,	random	for-
est,	and	SVM	could	accommodate	 this	 relatively	smaller	number	
of	 variables	 compared	with	 previous	 6,557	 features.	 Hence,	we	
performed the model fitting procedure for categorizing subjects in 
the	training	set	using	Lasso	prediction,	SVM,	and	random	forest	to	
assess	the	performance	of	these	methods.	After	cross-	validation,	
the results demonstrated that all three methods achieved perfect 
accuracy	 and	AUC	 for	 distinguishing	 among	 the	 three	 groups	 in	
the training sets. The outcome was not surprising as the numbers 
of coefficients to be estimated were comparable to the sample 
sizes.

3.4 | Model validation

Although	all	the	methods	have	achieved	superior	performance	in	the	
training	set,	the	predictive	result	in	the	testing	set	is	what	really	mat-
ters.	We	 therefore	 tested	 the	validity	of	Lasso,	SVM,	and	 random	
forest by assessing their classified performance in the testing set. 
The	area	under	the	curve	(AUC),	accuracy,	true	positive	rate	(TPR),	
and	 true	negative	 rate	 (TNR)	were	measured	 (Table	8).	Taking	 the	
first	categorization:	DPD	versus	HC	as	an	example,	TPR	measures	
the proportion of subjects that were corrected identified as DPD by 
the given procedure within all the DPD subjects. TNR is calculated 
using the number of HCs detected and divided by all the number 
of	HCs.	Accuracy	ensures	the	proportion	of	true	results	 (including	
both	TP	and	TN)	among	the	total	number	of	subjects	tested	(i.e.,	the	
sample size of the testing set). The natural cutoff of 0.5 was used 
to determine whether these subjects should be classified as DPD. 
To	 further	evaluate	 the	 robustness	of	all	 three	methods,	 the	ROC	
curves	were	also	plotted	by	varying	thresholding	values	in	Figure	5.

From	 Table	 8	 and	 Figure	 5,	 we	 can	 tell	 that	 Lasso	 prediction	
performed	better	 than	 random	 forest	 and	SVM	for	differentiating	
NDPD	from	HC.	Random	forest	outperformed	Lasso	and	SVM	for	

discriminating DPD from NDPD in terms of the overall accuracy. 
SVM	yielded	a	higher	prediction	accuracy	compared	with	Lasso	and	
random forest for distinguishing HC from DPD.

4  | DISCUSSION

By	 conducting	 the	 radiomic	 analysis,	 our	 study	 presented	 a	 com-
prehensive framework for discovering predictive biomarkers of 
DPD	and	for	classifying	HC,	DPD,	and	NDPD	subjects	using	whole-	
brain	rs-	fMRI	metrics	including	ReHo,	mALFF,	VHMC,	and	RSFC.	In	
our	study,	PD	with	depression	can	be	distinguished	 from	HC	with	
a	100%	accuracy	using	SVM,	while	the	accuracies	using	Lasso	and	
random	 forest	were	0.95	and	0.90,	 respectively.	When	comparing	
DPD	and	NDPD,	the	prediction	accuracies	of	Lasso,	random	forest,	
and	SVM	were	0.85,	0.90,	and	0.65,	respectively.	For	the	group	of	
NDPD	and	HC,	the	accuracies	of	three	methods	were	0.96,	0.82,	and	
0.86,	respectively.	From	the	aforementioned	results,	it	is	not	difficult	
to see that all three methods have achieved high classification ac-
curacy	and	are	also	quite	robust	with	respect	to	varying	thresholds	
based	on	the	AUC	values.	The	method	of	Lasso	achieved	the	high-
est	accuracy	and	AUC	averaged	over	three	groups.	A	vast	amount	
of	existing	literatures	also	focused	on	biomarkers	for	the	identifica-
tion of PD and distinguishing PD from other neurodegenerative dis-
eases.	A	study	using	the	machine	learning	method	got	an	accuracy	
of	 0.9	 for	 differentiating	 PD	 from	 progressive	 supranuclear	 palsy	
(PSP)	 (Salvatore	 et	 al.,	 2014).	 Another	 study	 using	 SVM	 correctly	
identified PD with other comorbidity of tremor- dominant symptom 
with an accuracy of 100% using a multimodal algorithm (Cherubini 
et	 al.,	 2014).	 Consistent	with	 existing	methods,	 the	 present	 study	
also	found	SVM	with	a	multipredictor	model	was	able	to	fully	dis-
criminate DPD from HC.

As	once	said	by	Robert	Gilles	et	al.,	“Images	are	more	than	pic-
tures,	they	are	data”	(Gillies	et	al.,	2016)	radiomic	approaches	based	

F I G U R E  3   The visualization plot of 
the	selected	30	RSFCs	for	the	second	
classification: NDPD versus HC
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on data- characterization algorithms have been widely applied to 
disease prediction and diagnosis especially in oncology and ge-
netic	 fields.	 A	 random	 forest-	based	 radiomics	 analysis	 combin-
ing both nonimaging and imaging variables found the longitudinal 
DAT-	SPECT	 images	 significantly	 improved	 the	prediction	accuracy	
of	PD,	and	exhibited	great	potentials	toward	development	of	effec-
tive	prognostic	biomarkers	in	PD	(Wu	et	al.,	2019).	In	recent	years,	a	
computer-	based	technique	utilizing	CNN	(Ortiz	et	al.,	2019;	Shinde	
et	 al.,	 2019)	 to	 create	 prognostic	 and	 diagnostic	 biomarkers	 has	
been widely adopted and attracted lots of attention. These methods 

exploited	3D	structural	MRI	and	required	no	prior	knowledge	on	sig-
nificant	regions	that	might	impact	the	progress	of	PD.	A	QSM	study	
showed	radiomic	features	extracted	from	QSM	data	had	high	values	
in	the	diagnosis	of	PD	(Xiao	et	al.,	2019).	Isosurface-	based	features	
with CNN features enhanced the diagnostic accuracy of PD (Ortiz 
et	al.,	2019).	 In	our	 study,	we	also	discovered	discriminative	RSFC	
features	in	NDPD	and	DPD,	which	supported	the	validity	of	the	ra-
diomic	 approach.	With	 the	 emergence	of	 data-	driven	 approaches,	
radiomics have been shown to be trustworthy and practically useful 
to aid PD diagnosis and to reach precision medicine.

TA B L E  5  The	mean,	standard	deviation	(SD),	and	p value for all 34 selected features in the training sets for the group of NDPD versus HC

ID Features NDPD (mean ± SD) HC (mean ± SD) p value

1 Frontal	Pole.L-	Middle	Frontal	Gyrus.R 0.6287	±	0.2843 0.4504 ± 0.3413 0

2 Frontal	Pole.L-	Occipital	Fusiform	Gyrus.R −0.2502	±	0.2854 −0.4479	±	0.2228 .0008

3 Frontal	Pole.R-	Superior	Frontal	Gyrus.L 0.1360 ±	0.2409 −0.0666	±	0.2649 .0033

4 Insular	Cortex.R-	Planum	Polare.R 0.3087	±	0.2961 0.1136 ±	0.1984 0

5 Superior	Frontal	Gyrus.L-	Frontal	Orbital	Cortex.R 0.1880	±	0.2725 −0.0482	± 0.3444 .0009

6 Superior	Frontal	Gyrus.R-	Supramarginal	Gyrus,	anterior.L −0.0965	±	0.2182 −0.2674	±	0.2170 .0585

7 Middle	Frontal	Gyrus.L-	Superior	Temporal	Gyrus,	posterior.L 0.4780	±	0.2792 0.2907	±	0.2677 0

8 Inferior	Frontal	Gyrus,	pars	triangularis.L-	Superior	Temporal	Gyrus,	
posterior.L

−0.0148	± 0.2314 0.1764	± 0.2544 .2549

9 Inferior	Frontal	Gyrus,	pars	triangularis.L-	Middle	Temporal	Gyrus,	anterior.R −0.2060	±	0.2867 0.0127	±	0.2723 .0001

10 Inferior	Frontal	Gyrus,	pars	triangularis.L-	Intracalcarine	Cortex.L −0.1387	±	0.2596 0.1013 ±	0.2941 .0067

11 Precentral	Gyrus.L-	Frontal	Operculum	Cortex.R −0.0223	± 0.2241 −0.2138	±	0.2068 .2278

12 Precentral	Gyrus.L-	Right	Accumbens −0.0666	±	0.2067 −0.2799	±	0.2678 .2214

13 Temporal	Pole.L-	Superior	Temporal	Gyrus,	posterior.L −0.2858	± 0.2406 −0.4705	±	0.2687 .0002

14 Temporal	Pole.L-	Juxtapositional	Lobule	Cortex.L −0.1078	±	0.2802 −0.3625	±	0.2483 .0976

15 Middle	Temporal	Gyrus,	temporooccipital.L-	Heschl's	Gyrus.L −0.0661	±	0.2838 −0.2662	± 0.2636 .2563

16 Inferior	Temporal	Gyrus,	anterior.L-	Heschl's	Gyrus.L 0.5797	±	0.3812 0.2949	±	0.3318 0

17 Inferior	Temporal	Gyrus,	anterior.R-	Lateral	Occipital	Cortex,	inferior.R −0.0485	±	0.1849 0.1095	±	0.1477 .1335

18 Inferior	Temporal	Gyrus,	anterior.R-	Temporal	Occipital	Fusiform	Cortex.L 0.4466 ± 0.3445 0.1378	± 0.3444 0

19 Inferior	Temporal	Gyrus,	temporooccipital.L-	Planum	Temporale.R −0.2934	± 0.2524 −0.1327	± 0.2430 0

20 Inferior	Temporal	Gyrus,	temporooccipital.R-	Temporal	Fusiform	Cortex,	
anterior.L

−0.0219	±	0.1985 0.1411 ±	0.2267 .1932

21 Frontal	Medial	Cortex.R-	Cingulate	Gyrus,	anterior.R −0.1154	±	0.2473 0.1462 ±	0.2711 .0200

22 Juxtapositional	Lobule	Cortex.L-	Left	Accumbens −0.0518	± 0.2334 0.1499	±	0.2725 .2808

23 Cingulate	Gyrus,	posterior.R-	Temporal	Occipital	Fusiform	Cortex.L 0.2302 ± 0.2153 0.0001 ±	0.2783 0

24 Cingulate	Gyrus,	posterior.R-	Temporal	Occipital	Fusiform	Cortex.R 0.0186	±	0.2482 0.1740	± 0.2555 .2036

25 Parahippocampal	Gyrus,	anterior.R-	Left	Amygdala 0.3030 ± 0.2640 0.0721	± 0.3043 0

26 Parahippocampal	Gyrus,	posterior.L-	Parietal	Operculum	Cortex.L 0.1977	± 0.3141 −0.0680	±	0.3273 .0008

27 Temporal	Occipital	Fusiform	Cortex.R-	Occipital	Fusiform	Gyrus.L −0.0092	± 0.2235 0.1330 ±	0.2873 .1467

28 Central	Opercular	Cortex.R-	Left	Putamen 0.0590	±	0.2228 −0.0844	± 0.2651 .1802

29 Planum	Temporale.L-	Occipital	Pole.L 0.0788	±	0.2119 0.2063 ± 0.2260 .0893

30 Occipital	Pole.L-	Right	Amygdala 0.1418	±	0.2327 0.0236 ± 0.2305 .0008

31 mALFF	of	Left	Juxtapositional	Lobule	Cortex 0.9061	±	0.1372 1.0316 ± 0.1531 0

32 mReHo	of	Left	Middle	Temporal	Gyrus,	Posterior	Division 1.0703	±	0.0994 0.9802	±	0.0995 0

33 VMHC	of	Right	Temporal	Fusiform	Cortex,	Posterior	Division 0.1917	±	0.0846 0.1331 ± 0.1166 0

34 HAMD	score 6.8182	±	2.9310 2.4545 ±	2.2373 0
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The	aberrant	regions	associated	with	RSFC	features	contribut-
ing to the discrimination of DPD from HC were primarily located 
in	the	DMN,	ECN,	VIN,	AN,	SMN,	and	STM.	The	other	two	mALFF	

features were located at the left precentral gyrus and the left pla-
num polare. The disturbed brain regions distinguishing NDPD from 
HC	were	 located	 in	DMN,	VIN,	AN,	 SMN,	AUN,	VAN,	 ECN,	 SN,	

TA B L E  6  15	RSFC	features	and	the	related	brain	regions	indexed	in	the	HOA	template	for	differentiating	DPD	from	NDPD

ID HOA number Brain region A Network
HOA 
number Brain region B Network

1 2 Frontal	Pole.R Other region 39 Supramarginal	Gyrus,	
posterior.L

STM

2 6 Superior	Frontal	Gyrus.R Other region 69 Parahippocampal	Gyrus,	
posterior.L

DMN

3 16 Temporal Pole.R AN 59 Cingulate	Gyrus,	
posterior.L

DMN

4 16 Temporal Pole.R AN 69 Parahippocampal	Gyrus,	
posterior.L

DMN

5 19 Superior	Temporal	Gyrus,	
posterior.L

DMN 63 Cuneal	Cortex.L Other region

6 20 Superior	Temporal	Gyrus,	
posterior.R

DMN 99 Left	Thalamus DMN

7 22 Middle	Temporal	Gyrus,	
anterior.R

DMN 82 Frontal	Operculum	
Cortex.R

VAN

8 22 Middle	Temporal	Gyrus,	
anterior.R

DMN 90 Heschl's	Gyrus.R AUN

9 32 Inferior	Temporal	Gyrus,	
temporooccipital.R

Other region 60 Cingulate	Gyrus,	
posterior.R

DMN

10 33 Postcentral	Gyrus,L SMN 45 Lateral	Occipital	Cortex,	
inferior.L

VIN

11 38 Supramarginal	Gyrus,	anterior.R STM 40 Supramarginal	Gyrus,	
posterior.R

STM

12 45 Lateral	Occipital	Cortex,	
inferior.L

VIN 101 Left	Caudate BGN

13 50 Frontal	Medial	Cortex.R SN 74 Temporal	Fusiform	
Cortex,	anterior.R

VIN

14 56 Paracingulate	Gyrus.R ECN 102 Right Caudate BGN

15 65 Frontal	Orbital	Cortex.L VIN 108 Right Hippocampus DMN

F I G U R E  4   The visualization plot 
of	the	selected	15	RSFCs	for	the	third	
classification: NDPD versus HC
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and	BGN.	Compared	with	HC	subjects,	DPD	and	NDPD	patients	
shared	 similar	 brain	 network	 abnormalities	 mainly	 in	 the	 DMN,	
VIN,	ECN,	AN,	SMN,	STM,	ECN,	and	AUN.	The	most	discriminated	
regions	of	RSFCs	that	differentiated	DPD	from	NDPD	were	within	
or	 across	 the	DMN,	 VIN,	 AN,	 STM,	 BGN,	 SMN,	 SN,	 ECN,	 VAN,	
and	AUN.	Our	results	showed	that	aberrant	functional	connectiv-
ity	and	activity	for	DPD	were	primarily	detected	within	the	DMN,	

VIN,	AN,	STM,	SMN,	AUN,	VAN,	ECN,	SN,	and	BGN.	A	previous	
study	 on	 FC	 markers	 of	 depression	 in	 advanced	 PD	 also	 found	
RSFC	 features	 located	 in	 the	 subcortical,	 auditory,	 SMN,	 VIN,	
cognitive	control,	DMN,	and	cerebellar	networks.	These	networks	
were significantly relevant to classification and provided prelimi-
nary evidence that can characterize DPD patients compared with 
NDPD	(Lin	et	al.,	2019).

ID Features DPD (mean ± SD) NDPD (mean ± SD)
p 
value

1 Frontal	Pole.R-	
Supramarginal	Gyrus,	
posterior.L

−0.0141	± 0.2446 −0.1103	± 0.2266 .1323

2 Superior	Frontal	Gyrus.R-	
Parahippocampal	Gyrus,	
posterior.L

0.0908	±	0.3179 0.3104 ±	0.3217 .2138

3 Temporal Pole.R- Cingulate 
Gyrus,	posterior.L

−0.5177	±	0.1974 −0.2593	±	0.2495 0

4 Temporal Pole.R- 
Parahippocampal	Gyrus,	
posterior.L

0.2872	± 0.2356 0.0371	± 0.2611 .0001

5 Superior	Temporal	Gyrus,	
posterior.L-	Cuneal	
Cortex.L

0.7327	±	0.2467 0.4994	±	0.1967 0

6 Superior	Temporal	Gyrus,	
posterior.R-	Left	Thalamus

0.2852	±	0.2382 0.4485	±	0.2196 .0194

7 Middle	Temporal	Gyrus,	
anterior.R-	Frontal	
Operculum	Cortex.R

0.0727	± 0.1566 −0.1205	±	0.2109 .2219

8 Middle	Temporal	Gyrus,	
anterior.R- Heschl's 
Gyrus.R

0.1312 ±	0.1967 −0.1280	±	0.2557 .0663

9 Inferior	Temporal	Gyrus,	
temporooccipital.R- 
Cingulate	Gyrus,	
posterior.R

−0.0184	± 0.2250 −0.1782	±	0.2349 .2035

10 Postcentral	Gyrus,L-	
Lateral	Occipital	Cortex,	
inferior.L

0.0495	±	0.1741 −0.1453	±	0.2468 .1751

11 Supramarginal	Gyrus,	
anterior.R- Supramarginal 
Gyrus,	posterior.R

0.0070	±	0.2991 0.2006 ± 0.2252 .1307

12 Lateral	Occipital	Cortex,	
inferior.L-	Left	Caudate

0.1091	±	0.2589 −0.0380	±	0.1802 .0539

13 Frontal	Medial	Cortex.R-	
Temporal	Fusiform	
Cortex,	anterior.R

0.0218	± 0.2341 −0.1444	±	0.1815 .2254

14 Paracingulate	Gyrus.R-	
Right Caudate

−0.2438	±	0.1765 −0.0544	±	0.1970 0

15 Frontal	Orbital	Cortex.L-	
Right Hippocampus

−0.0016	±	0.2287 0.1277	±	0.2147 .1807

16 mALFF	of	Left	Subcallosal	
Cortex

0.9220	±	0.0859 1.0933	±	0.2287 .0007

17 HAMD	Score 20.2143 ±	4.0796 6.8182	± 3.0460 0

TA B L E  7  The	mean,	standard	deviation	
(SD),	and	p	value	for	all	17	selected	
features in the training sets for the group 
of DPD versus NDPD
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DMN	 plays	 an	 important	 role	 in	 self-	referential	 introspective	
condition,	 and	 disturbances	 of	 the	 DMN	 have	 been	 confirmed	 in	
many	neurological	 and	psychiatric	disorders	 including	PD.	A	RSFC	
study	in	DPD	found	the	increased	ALFF	in	the	DMN	compared	with	
the	NDPD	and	HCs.	Other	previous	studies	also	found	that	the	BGN,	
DMN,	LFPN,	and	SN	were	involved	DPD	(Hu,	Song,	Li,	et	al.,	2015),	
which facilitated the advancement of more detailed and integrative 
neural	models	of	DPD	(Lin	et	al.,	2019;	Wei	et	al.,	2017).

In	our	study,	aberrant	functional	connectivity	and	activity	of	the	
emotion network and motor network were also identified in DPD 
patients.	Abnormal	directional	connectivity	between	motor	network	
and	emotion	network	in	DPD	has	been	described	in	the	existing	lit-
erature.	Compared	with	HC,	DPD	patients	displayed	significant	gray	
matter volume abnormality in some limbic and subcortical regions in 
addition	 to	 the	unique	alterations	of	directional	 connectivity	 from	
the	different	brain	regions,	which	may	provide	differential	biomark-
ers	for	distinguishing	DPD	from	HC	and	NDPD	(Liang	et	al.,	2016).	
Rs-	fMRI	studies	in	depression	have	shown	that	antidepressant	treat-
ment could affect cortical connectivity. The corticolimbic network 

and	 amygdala	 play	 an	 important	 role	 in	 the	development	of	DPD,	
even antidepressant effects also associated with the abnormal hy-
poconnectivity	 in	DPD	 (Morgan	et	al.,	2018).	Compared	 to	NDPD	
and	HC,	DPD	showed	abnormal	functional	connectivity	 in	the	 left	
amygdala,	 right	 amygdala,	 and	 the	bilateral	mediodorsal	 thalamus.	
The disturbed connectivity between limbic regions and corticolim-
bic networks in DPD patients may reflect impaired limbic areas in 
mood	dysregulation	of	emotion-	related	regulatory	effect	(Hu,	Song,	
Li,	et	al.,	2015).

The group of DPD displayed altered spontaneous brain activity 
in	 the	frontal,	 temporal,	and	 limbic	regions	 in	our	study.	Compared	
with	NDPD,	DPD	exhibited	significantly	 increased	 regional	activity	
in	the	superior	temporal	gyrus,	middle	temporal	gyrus,	inferior	tem-
poral	gyrus,	and	frontal	medial	cortex.	Decreased	RSFC	values	were	
detected between superior frontal gyrus and right hippocampus. 
These findings confirmed alteration and disruption of the regional 
brain activity in mood regulation network in the DPD group (Sheng 
et	al.,	2014).

Salience network (SN) includes brain regions whose cortical 
hubs are the anterior cingulate and ventral anterior insular corti-
ces.	This	network	coactivates	 in	 response	to	various	experimen-
tal	 tasks	 and	 conditions,	 suggesting	 a	 domain-	general	 function	
(Seeley,	2019).	A	rs-	fMRI	study	including	17	DPD	patients,	17	ND	
PD	patients,	and	17	HC	subjects	found	that	damaged	insula	net-
works between the SN and ECN in PD might lead to DPD (Huang 
et	al.,	2020).	As	one	of	the	critical	nodes	in	the	STM,	the	left	su-
pramarginal gyrus involved in keeping an abstract representation 
from	the	serial	order	information,	and	independently	from	all	the	
content,	which	instead	is	stored	separately	(Guidali	et	al.,	2019).	In	
our	study,	when	DPD	was	compared	with	NDPD	and	HC,	disturbed	
STM	regional	brain	network	was	identified	and	might	demonstrate	
the attention deficit.

Our	 findings	 also	 selected	 several	 mALFF	 and	 ReHo	 features	
including	the	mALFFs	of	 left	precentral	gyrus	and	 left	planum	po-
lare,	and	the	mReHo	of	left	middle	temporal	gyrus	for	the	group	of	
DPD	versus	HC.	When	comparing	NDPD	and	DPD,	 the	mALFF	of	
left	subcallosal	cortex	was	selected.	A	rs-	fMRI	study	found	abnormal	

TA B L E  8   Predictive performance table in the testing set for 
Lasso	prediction,	random	forest,	and	SVM

Accuracy TPR TNR AUC

DPD versus HC

Lasso 0.95 0.88 1 1

Random forest 0.90 0.75 1 1

SVM 1 1 1 1

NDPD versus HC

Lasso 0.96 0.92 1 0.98

Random forest 0.82 0.85 0.80 0.89

SVM 0.86 0.85 0.87 0.93

DPD versus NDPD

Lasso 0.85 0.71 0.92 0.98

Random forest 0.90 0.71 1 1

SVM 0.65 0.29 0.85 0.86

F I G U R E  5  ROC	curves	displaying	the	predictive	performance	of	Lasso	prediction,	SVM,	and	random	forest	in	the	testing	sets	for	three	
classifications. (a) DPD versus HC; (b) NDPD versus HC; (c) DPD versus NDPD
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baseline	brain	activity	in	the	dorsolateral	prefrontal	cortex,	the	ros-
tral	 anterior	 cingulated	 cortex,	 and	 the	 ventromedial	 prefrontal	
cortex	 that	were	positively	 correlated	with	 the	HAMD	score.	 The	
results	of	abnormal	ALFF	values	in	these	brain	regions	implied	that	
the prefrontal- limbic network might be associated with abnormal ac-
tivities	in	PD	patients	with	depression	(Wen	et	al.,	2013).

In	 our	 study,	 disturbed	VMHC	was	 found	 in	 the	 right	 temporal	
fusiform	 cortex,	 posterior	 division	 when	 comparing	 NDPD	 to	 HC.	
Indeed,	 the	 impaired	 functional	 connectivity	 within	 the	 homotopic	
brain	 regions	 of	 PD	 extended	 previous	 studies	 that	 the	 disconnec-
tion of corticostriatal circuit provided new evidence of disturbed in-
terhemispheric	connections	in	PD	(Luo	et	al.,	2015).	A	VMHC	study	
using	the	seed-	based	method	discovered	decreased	VMHC	values	in	
the bilateral paracentral lobule and medial frontal gyrus in DPD com-
pared	with	NDPD	(Liao	et	al.,2020).	A	structural	brain	network	study	
showed the global efficiency and characteristic path length were im-
paired	in	DPD,	which	indicated	the	topological	property	can	be	used	
as	a	potential	objective	neuroimaging	index	for	early	diagnosis	of	DPD	
(Gou	et	al.,2018).

However,	our	approach	failed	to	extract	any	significant	VMHC	
features when comparing DPD and NDPD. This may due to the 
smaller sample size of the DPD group. Though we could perform 
data	augmentation	to	increase	the	sample	size,	the	model	fitting	
results might be compromised by the correlated structures re-
sulting	 from	 data	 augmentation.	 Hence,	 for	 future	 studies,	 we	
intend to include more subjects to diminish the threats caused 
by the high dimensionality and to further confirm our neurolog-
ical	findings.	 In	addition,	the	values	of	radiomic	features	before	
and after antidepressant treatment will also be evaluated in the 
future.

In	 conclusion,	 the	 machine	 learning-	based	 radiomic	 approach	
proposed in this study showed that high- order radiomic features 
that	quantify	 the	 functional	 connectivity	 and	 activity	of	 the	brain	
can be used for the diagnosis of DPD and NDPD with high accuracy.
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