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Abstract
Introduction: The current diagnosis of Parkinson's disease (PD) comorbidity with de-
pression (DPD) largely depends on clinical evaluation. However, the modality may 
tend to lack precision in detecting PD with depression. A radiomic approach that 
combines functional connectivity and activity with clinical scores has the potential to 
achieve accurate and differential diagnosis between PD and DPD.
Methods: In this study, we aimed to employ the radiomic approach to extract large-
scale features of functional connectivity and activity for differentiating among DPD, 
PD with no depression (NDPD), and healthy controls (HC). We extracted 6,557 fea-
tures of five types from all subjects including clinical characteristics, resting-state 
functional connectivity (RSFC), amplitude of low-frequency fluctuation (ALFF), re-
gional homogeneity (ReHo), and voxel-mirrored homotopic connectivity (VMHC). 
Lasso, random forest, and support vector machine (SVM) were implemented for fea-
ture selection and dimension reduction based on the training sets, and the prediction 
performance for different methods in the testing sets was compared.
Results: The results showed that nineteen features were selected for the group of 
DPD versus HC, 34 features were selected for the group of NDPD versus HC, and 
17 features were retained for the group of DPD versus NDPD. In the testing sets, 
Lasso prediction achieved the accuracies of 0.95, 0.96, and 0.85 for distinguishing 
between DPD and HC, NDPD and HC, and DPD and NDPD, respectively. Random 
forest achieved the accuracies of 0.90, 0.82, and 0.90 for distinguishing between 
DPD and HC, NDPD and HC, and DPD and NDPD, respectively, while SVM yielded 
the accuracies of 1, 0.86 and 0.65 for distinguishing between DPD and HC, NDPD 
and HC, and DPD and NDPD, respectively.
Conclusions: By identifying aberrant functional connectivity and activity as potential 
biomarkers, the radiomic approach facilitates a deeper understanding and provides 
new insights into the pathophysiology of DPD to support the clinical diagnosis with 
high prediction accuracy.
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1  | INTRODUC TION

Depression is a frequent psychiatric symptom of  Parkinson's dis-
ease (PD) and one of the earliest prodromal comorbidities that can 
significantly impact quality of life (Chagas et  al., 2013). Nonmotor 
features including depression can appear in the earliest phase of 
the disease even before clinical motor impairment (Lix et al., 2010; 
Shearer et al., 2012; Tibar et al., 2018). The efficacy of medications 
and psychotherapies for treating depression in PD patients remains 
limited (Abós et al., 2017). Hence, advances in timely detection and 
concerted management of PD comorbidity with depression (DPD) 
become urgent. Motor symptoms were easily detected than nonmo-
tor symptoms using the present diagnostic tools (Picillo et al. 2017). 
According to the Unified Parkinson's Disease Rating Scale (UPDRS), 
over half DPD patients were not recognized by neurologists (Lachner 
et al. 2017), while the incidence of PD with depression was already 
substantially elevated recently (Kay et al., 2018). Clearly, physician 
recognition and current understanding for comorbidity of depres-
sion in PD are not enough.

Although knowledge of the neural and pathophysiologic mech-
anisms of DPD progression remains limited, many researchers are 
devoted to conduct research trying to understand the inner working 
mechanisms and discovering biomarkers of DPD. Clinical intervention 
is urgent around the early therapeutic windows (Tibar et al., 2018; Vu 
et al., 2012). Multimodal neuroimaging methods such as functional 
magnetic resonance imaging (MRI) and electroencephalography have 
aided the diagnosis of PD. Resting-state functional MRI (rs-fMRI) can 
provide more information on functional connections to assess the 
correlations among different networks. An intra- and internetwork 
functional connectivity study in DPD demonstrated aberrant func-
tional connectivity (FC) in left frontoparietal network, basal gan-
glia network, salience network, and default-mode network (DMN) 
(Wei et  al.,  2017). Meanwhile, these connectivity anomalies were 
correlated with the depression severity in DPD. This may indicate 
the mechanism of progressive deterioration and compensation for 
integrative neural models in DPD (Wei et al., 2017; Zhu et al. 2016). 
Structural MRI has also received research attention because of its 
stability and repeatability (Jacob et  al.,  2019; Remes et  al.,  2011). 
Diffusion tensor imaging can discover microstructural changes in the 
brain white matter. Previous studies found abnormal white matter 
fiber characteristic (mainly located in the right arcuate fasciculus and 
bilateral middle cerebellar peduncles) in prodromal early stage of PD 
(Sanjari Moghaddam et al., 2019). Another microstructure difference 
was located in the bilateral white matter fiber of the mediodorsal 
thalamic regions between the DPD and NDPD groups, but the sam-
ple size was relatively small and the clinical score only included the 
Hamilton depression rating scale (HAMD)(Li et al., 2010).

In recent years, machine learning has been recognized as a prom-
ising and powerful algorithm method for prediction and medical 

diagnosis. Studies have been conducted to obtain voxel-based mor-
phological biomarkers of PD by using machine learning such as sup-
port vector machine (SVM) or principal component analysis (PCA) 
that allowed individual differential diagnosis of PD (Lix et al., 2010; 
Palumbo et al., 2014; Salvatore et al., 2014). Another method (Peng 
et al., 2017; Peran et al., 2010) focusing on region of interest (ROI) 
has also been implemented where some specific regions of the brain 
such as gray matter and hippocampal volume were extracted based 
on prior knowledge regarding their effects on brain functionality and 
memory.

Recent progress in digital medical image analysis allows us 
to develop a novel feature extraction method called radiomics 
which converts large amounts of medical imaging characteristics 
into high-dimensional mineable data pool to build a predictive and 
descriptive model. The method has been applied to some neuro-
psychiatric diseases such as autism, schizophrenia, and Alzheimer 
disease (Feng et  al.,  2019; Salvatore et  al.,  2019). These findings 
demonstrate the validity of these radiomic approaches in improv-
ing the classification accuracy and discovering discriminative fea-
tures that can reveal pathological information. A radiomic study 
on quantitative susceptibility mapping (QSM) achieved good per-
formance for predicting PD (Xiao et  al.,  2019). The combination 
of radiomics features and convolutional neural networks (CNN) 
can increase the diagnostic accuracy (Ortiz et  al.,  2019). Other 
radiomic analysis focusing on longitudinal SPECT images and T2-
weighted MRI can also enhance the prediction accuracy of PD (Liu 
et al., 2020; Rahmim et al., 2017). A radiomic study based on PET/
CT images extracted high-order features and trained a SVM model 
to classify PD and HC subjects, and the results demonstrated that 
the radiomic method combined with SVM could distinguish PD 
from HC (Wu et al., 2019). Cao et al. leveraging rs-fMRI radiomic 
features showed that machine learning methods including Lasso 
and SVM could significantly improve diagnostic accuracy of PD 
(Cao et al., 2020).

In the present study, we aimed to build and validate a radiomic 
method that can facilitate the individual diagnosis of patients with 
PD and the development of DPD by extracting whole-brain func-
tional connectivity and activity using the radiomic approach. The 
proposed method can also identify brain regions of interest with ab-
errant functional activity between DPD and PD that were relevant 
to the disease onset, which may contribute to the early diagnosis and 
treatment for clinical practice.

2  | MATERIAL S AND METHODS

(Data acquisition and preprocessing procedures have all been ap-
plied in our published issue, Cao, et al., Front Neurosci. 2020; 14:751. 
10.3389/fnins.2020.00751).
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This prospective study was approved by the institutional re-
view board and followed the ethical guidelines of the Declaration 
of Helsinki, and written informed consent was acquired from each 
subject before inclusion.

2.1 | Participates and clinical evaluation

We used the same imaging data from the same recruited subjects as 
in our previously published issue (Cao et al., 2020). The only differ-
ence is that we further stratify the PD patients into two groups of 
DPD and NDPD to examine the aberrant functional connectivity and 
activity in DPD and to build machine learning models for predict-
ing DPD and NDPD. Seventy PD patients including 21 DPD and 49 
NDPD subjects were recruited, along with 50 matched healthy con-
trols. The details regarding the diagnostic criteria and clinical evalua-
tion of the NDPD and DPD groups are provided in Data S1.

2.2–2.5 Image data acquisition, preprocessing, extraction of ra-
diomic features including regional homogeneity (ReHo), amplitude 
of low-frequency fluctuation (ALFF) and voxel-mirrored homotopic 
connectivity (VMHC), resting-state functional connectivity (RSFC), 
feature selection, and model validation are provided in Data S2. The 
flowchart of this study is shown in Figure 1.

3  | RESULTS

3.1 | Differences in clinical characteristics

Clinical information from three groups was displayed in Table 1. No 
significant difference was observed among the three groups re-
garding age, gender, education, and MMSE score, while significant 
difference in HAMD score was detected among three groups. In 
particular, for the DPD group, the HAMD scores (20.2 ± 4.6) were 
significantly higher than those for other two groups (the same data 
from our aforementioned published study were used).

3.2 | Feature selection

For the first classification of DPD versus (versus) HC, 19 features 
including (HAMD, 2 mALFFs, and 16 RSFCs) were retained for bi-
nary classification. The 16 RSFCs and corresponding brain regions 
using HOA template were presented in Table 2. The most aberrant 
brain regions of RSFCs included DMN, executive control network 
(ECN), visual network (VIN), affective network (AN), sensorimotor 
network (SMN), and short-term memory (STM) network (Figure 2). 
The other two mALFF features were located at the left precentral 

F I G U R E  1  Flowchart of the study. We extracted the 6,557 metrics after the rs-fMRI images preprocessed. Then, Lasso regression was 
carried out to reduce the number of features. Last, Lasso prediction, random forest, and SVM were used to differentiate between different 
categories of subjects
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gyrus and the left planum polare. In Table 3, we reported the statisti-
cal characteristics of these features resulting from the dimension re-
duction step and illustrated the difference in these selected features 
between DPD and HC. The decreasing or increasing trend of these 
features between DPD and HC can also be discovered in Table 3.

For the second classification, NDPD versus HC, 34 features in-
cluding (30 RSFCs, HAMD, 1 mALFF, 1ReHo, and 1VHMC) remained 
for binary classification. The 30 RSFCs and the corresponding brain 
regions using HOA template were presented in Table 4. The most ab-
errant brain regions of RSFCs were located in DMN, VIN, AN, SMN, 
automatic urban network (AUN), ventral attention network (VAN), 

ECN, salience network (SN), and basal ganglia (BGN) (Figure 3). The 
other three radiomic features were mALFF of the left juxtapositional 
lobule cortex, mReHo of the left middle temporal gyrus, posterior 
division, and VMHC of the right temporal fusiform cortex, posterior 
division. The mean, standard deviation, and p value of these 34 fea-
tures were reported in Table 5.

For the third classification, DPD versus NDPD, 17 features 
including (15 RSFCs, HAMD, and 1 mALFF) were kept for bi-
nary classification. The 15 RSFCs and the corresponding brain 
regions using HOA template were presented in Table  6. The 
most aberrant networks associated with these RSFCs included 

TA B L E  1  Clinical and demographic data evaluation of DPD, NDPD, and HC

Characteristics DPD (n = 21) nDPD (n = 49) HC (n = 50) Test statistics p value

Sex (M/F) 9/12 26/23 24/26 0.409 >.05a 

Age (year) 58.1 ± 7.5 57.8 ± 7.0 57.8 ± 5.5 0.021 >.05b 

Education (year) 11.0 ± 3.1 11.8 ± 3.3 11.7 ± 4.8 0.689 >.05c 

MMSE 28.7 ± 1.1 28.6 ± 1.7 29.0 ± 2.3 0.585 >.05d 

HAMD 20.2 ± 4.6 6.9 ± 3.1 2.2 ± 2.3 243.2 (p < .05) <.016e-g  < .016e-g  < .016e-g 

aThe p value for gender distribution by Fisher's exact test. 
bThe p value for age by multivariate analysis of variance (MANOVA). 
cThe p value for education by MANOVA. 
dThe F test statistic and the p value for MMSE scores by MANOVA. 
e-gThe p values for HAMD scores by paired-samples t test with Bonferroni correction for further comparison between three groups. 

TA B L E  2  16 RSFC features and the related brain regions indexed in the HOA template for differentiating DPD from HC

ID
HOA 
number Brain region A Network HOA number Brain region B Network

1 5 Superior Frontal Gyrus.L DMN 31 Inferior Temporal Gyrus, 
temporooccipital.L

Other region

2 6 Superior Frontal Gyrus. R DMN 89 Heschl's Gyrus.L AUN

3 14 Precentral Gyrus. R SMN 109 Left Amygdala DMN

4 14 Precentral Gyrus.R SMN 110 Right Amygdala DMN

5 16 Temporal Pole.R AN 47 Intracalcarine Cortex.L VIN

6 16 Temporal Pole.R AN 85 Parietal Operculum Cortex.L SMN

7 20 Superior Temporal Gyrus, 
posterior.R

DMN 90 Heschl's Gyrus.R AUN

8 22 Middle Temporal Gyrus, 
anterior.R

DMN 36 Superior Parietal Lobule.R(SPL) VIN

9 22 Middle Temporal Gyrus, 
anterior.R

DMN 82 Frontal Operculum Cortex.R VAN

10 26 Middle Temporal Gyrus, 
temporooccipital.R

FNs 40 Supramarginal Gyrus, posterior.R STM

11 35 Superior Parietal Lobule.L(SPL) VIN 53 Subcallosal Cortex.L Other region

12 36 Superior Parietal Lobule.R(SPL) VIN 56 Paracingulate Gyrus.R ECN

13 37 Supramarginal Gyrus, 
anterior.L

STM 62 Precuneus Cortex.R DMN

14 42 Angular Gyrus.R DMN 58 Cingulate Gyrus, anterior.R SN

15 57 Cingulate Gyrus, anterior.L SN 110 Right Amygdala DMN

16 94 Supracalcarine Cortex.R VIN 112 Right Accumbens Other region
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the DMN, VIN, STM, AN, BGN, SMN, SN, ECN, VAN, and AUN 
(Figure  4). The remaining mALFF feature belonged to the re-
gion of left subcallosal cortex. In Table  7, we also listed the 
mean, standard deviation, and p value of these 17 radiomic 
features.

3.3 | Model fitting

After the screening process, for all three classifications, there 
were no more than 34 features left, and the ultrahigh dimensional 
situation was no  longer  present. Most of the commonly used 

F I G U R E  2   The visualization plot of the 
selected 16 RSFC features for the first 
classification between DPD and HC using 
the BrainNet Viewer (Xia et al., 2013)

TA B L E  3  The mean, standard deviation (SD) and p value for all 19 selected features in the training sets for the group of DPD versus HC

ID Features DPD (mean ± SD) HC (mean ± SD) p value

1 Superior Frontal Gyrus.L-Inferior Temporal Gyrus, 
temporooccipital.L

0.3854 ± 0.3630 0.1885 ± 0.2118 0

2 Superior Frontal Gyrus.R-Heschl's Gyrus.L 0.2827 ± 0.3072 0.5094 ± 0.2967 .0606

3 Precentral Gyrus.R-Left Amygdala −0.1771 ± 0.3208 0.0576 ± 0.2736 .0314

4 Precentral Gyrus.R-Right Amygdala −0.2144 ± 0.2458 −0.0180 ± 0.2247 .0015

5 Temporal Pole.R-Intracalcarine Cortex.L 0.5120 ± 0.2035 0.2924 ± 0.2869 0

6 Temporal Pole.R-Parietal Operculum Cortex.L 0.2573 ± 0.1805 −0.1046 ± 0.3396 .0051

7 Superior Temporal Gyrus, posterior.R-Heschl's Gyrus.R 0.1219 ± 0.2061 −0.1426 ± 0.2739 .1274

8 Middle Temporal Gyrus, anterior.R-Superior Parietal 
Lobule.R

−0.0564 ± 0.1229 0.0885 ± 0.2423 .3779

9 Middle Temporal Gyrus, anterior.R-Frontal Operculum 
Cortex.R

0.0773 ± 0.1620 −0.1025 ± 0.1783 .1568

10 Middle Temporal Gyrus, temporooccipital.R-Supramarginal 
Gyrus, posterior.R

0.0909 ± 0.3364 −0.1273 ± 0.2680 .2875

11 Superior Parietal Lobule.L(SPL)-Subcallosal Cortex.L 0.0690 ± 0.2970 −0.1440 ± 0.3210 .2622

12 Superior Parietal Lobule.R(SPL)-Paracingulate Gyrus.R −0.0626 ± 0.2409 −0.1500 ± 0.2254 .3921

13 Supramarginal Gyrus, anterior.L-Precuneus Cortex.R 0.1038 ± 0.2217 −0.0251 ± 0.2207 .0950

14 Angular Gyrus.R-Cingulate Gyrus, anterior.R −0.0276 ± 0.2388 −0.2765 ± 0.2116 .1589

15 Cingulate Gyrus, anterior.L-Right Amygdala 0.2119 ± 0.2191 −0.0252 ± 0.2398 .0020

16 Supracalcarine Cortex.R-Right Accumbens −0.0057 ± 0.2229 0.2186 ± 0.2920 .0512

17 mALFF of Left Precentral Gyrus 0.8066 ± 0.0847 0.9223 ± 0.1261 .0007

18 mALFF of Left Planum Polare 1.4770 ± 0.2962 1.3442 ± 0.2449 0

19 HAMD Score 20.5385 ± 4.0541 2.3143 ± 2.2198 0
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TA B L E  4  30 RSFC features and the related brain regions indexed in the HOA template for differentiating NDPD from HC

ID
HOA 
number Brain region A Network

HOA 
number Brain region B Network

1 1 Frontal Pole.L Other region 8 Middle Frontal Gyrus.R DMN

2 1 Frontal Pole.L Other region 80 Occipital Fusiform 
Gyrus.R

VIN

3 2 Frontal Pole.R Other region 5 Superior Frontal Gyrus.L Other region

4 4 Insular Cortex.R SN 88 Planum Polare.R Other region

5 5 Superior Frontal Gyrus.L DMN 66 Frontal Orbital Cortex.R Other region

6 6 Superior Frontal Gyrus.R DMN 37 Supramarginal Gyrus, 
anterior.L

STM

7 7 Middle Frontal Gyrus.L DMN 19 Superior Temporal Gyrus, 
posterior.L

DMN

8 9 Inferior Frontal Gyrus, pars 
triangularis.L

Other region 19 Superior Temporal Gyrus, 
posterior.L

DMN

9 9 Inferior Frontal Gyrus, pars 
triangularis.L

Other region 22 Middle Temporal Gyrus, 
anterior.R

DMN

10 9 Inferior Frontal Gyrus, pars 
triangularis.L

Other region 47 Intracalcarine Cortex.L VIN

11 13 Precentral Gyrus.L SMN 82 Frontal Operculum 
Cortex.R

VAN

12 13 Precentral Gyrus.L SMN 112 Right Accumbens Other region

13 15 Temporal Pole.L AN 19 Superior Temporal Gyrus, 
posterior.L

DMN

14 15 Temporal Pole.L AN 51 Juxtapositional Lobule 
Cortex.L

Other region

15 25 Middle Temporal Gyrus, 
temporooccipital.L

FNs 89 Heschl's Gyrus.L AUN

16 27 Inferior Temporal Gyrus, 
anterior.L

DMN 89 Heschl's Gyrus.L AUN

17 28 Inferior Temporal Gyrus, 
anterior.R

DMN 46 Lateral Occipital Cortex, 
inferior.R

VIN

18 28 Inferior Temporal Gyrus, 
anterior.R

DMN 77 Temporal Occipital 
Fusiform Cortex.L

VIN

19 31 Inferior Temporal Gyrus, 
temporooccipital.L

Other region 92 Planum Temporale.R Other region

20 32 Inferior Temporal Gyrus, 
temporooccipital.R

Other region 73 Temporal Fusiform 
Cortex, anterior.L

VIN

21 50 Frontal Medial Cortex.R DMN 58 Cingulate Gyrus, 
anterior.R

SN

22 51 Juxtapositional Lobule Cortex.L Other region 111 Left Accumbens Other region

23 60 Cingulate Gyrus, posterior.R DMN 77 Temporal Occipital 
Fusiform Cortex.L

VIN

24 60 Cingulate Gyrus, posterior.R DMN 78 Temporal Occipital 
Fusiform Cortex.R

VIN

25 68 Parahippocampal Gyrus, 
anterior.R

DMN 109 Left Amygdala DMN

26 69 Parahippocampal Gyrus, 
posterior.L

DMN 85 Parietal Operculum 
Cortex.L

Other region

27 78 Temporal Occipital Fusiform 
Cortex.R

VIN 79 Occipital Fusiform Gyrus.L VIN

28 84 Central Opercular Cortex.R Other region 103 Left Putamen BGN

29 91 Planum Temporale.L Other region 95 Occipital Pole.L VIN

30 95 Occipital Pole.L VIN 110 Right Amygdala DMN
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machine learning methods including Lasso prediction, random for-
est, and SVM could accommodate this relatively smaller number 
of variables compared with previous 6,557 features. Hence, we 
performed the model fitting procedure for categorizing subjects in 
the training set using Lasso prediction, SVM, and random forest to 
assess the performance of these methods. After cross-validation, 
the results demonstrated that all three methods achieved perfect 
accuracy and AUC for distinguishing among the three groups in 
the training sets. The outcome was not surprising as the numbers 
of coefficients to be estimated were comparable to the sample 
sizes.

3.4 | Model validation

Although all the methods have achieved superior performance in the 
training set, the predictive result in the testing set is what really mat-
ters. We therefore tested the validity of Lasso, SVM, and random 
forest by assessing their classified performance in the testing set. 
The area under the curve (AUC), accuracy, true positive rate (TPR), 
and true negative rate (TNR) were measured (Table 8). Taking the 
first categorization: DPD versus HC as an example, TPR measures 
the proportion of subjects that were corrected identified as DPD by 
the given procedure within all the DPD subjects. TNR is calculated 
using the number of HCs detected and divided by all the number 
of HCs. Accuracy ensures the proportion of true results (including 
both TP and TN) among the total number of subjects tested (i.e., the 
sample size of the testing set). The natural cutoff of 0.5 was used 
to determine whether these subjects should be classified as DPD. 
To further evaluate the robustness of all three methods, the ROC 
curves were also plotted by varying thresholding values in Figure 5.

From Table  8 and Figure  5, we can tell that Lasso prediction 
performed better than random forest and SVM for differentiating 
NDPD from HC. Random forest outperformed Lasso and SVM for 

discriminating DPD from NDPD in terms of the overall accuracy. 
SVM yielded a higher prediction accuracy compared with Lasso and 
random forest for distinguishing HC from DPD.

4  | DISCUSSION

By conducting the radiomic analysis, our study presented a com-
prehensive framework for discovering predictive biomarkers of 
DPD and for classifying HC, DPD, and NDPD subjects using whole-
brain rs-fMRI metrics including ReHo, mALFF, VHMC, and RSFC. In 
our study, PD with depression can be distinguished from HC with 
a 100% accuracy using SVM, while the accuracies using Lasso and 
random forest were 0.95 and 0.90, respectively. When comparing 
DPD and NDPD, the prediction accuracies of Lasso, random forest, 
and SVM were 0.85, 0.90, and 0.65, respectively. For the group of 
NDPD and HC, the accuracies of three methods were 0.96, 0.82, and 
0.86, respectively. From the aforementioned results, it is not difficult 
to see that all three methods have achieved high classification ac-
curacy and are also quite robust with respect to varying thresholds 
based on the AUC values. The method of Lasso achieved the high-
est accuracy and AUC averaged over three groups. A vast amount 
of existing literatures also focused on biomarkers for the identifica-
tion of PD and distinguishing PD from other neurodegenerative dis-
eases. A study using the machine learning method got an accuracy 
of 0.9 for differentiating PD from progressive supranuclear palsy 
(PSP) (Salvatore et  al.,  2014). Another study using SVM correctly 
identified PD with other comorbidity of tremor-dominant symptom 
with an accuracy of 100% using a multimodal algorithm (Cherubini 
et  al.,  2014). Consistent with existing methods, the present study 
also found SVM with a multipredictor model was able to fully dis-
criminate DPD from HC.

As once said by Robert Gilles et al., “Images are more than pic-
tures, they are data” (Gillies et al., 2016) radiomic approaches based 

F I G U R E  3   The visualization plot of 
the selected 30 RSFCs for the second 
classification: NDPD versus HC
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on data-characterization algorithms have been widely applied to 
disease prediction and diagnosis especially in oncology and ge-
netic fields. A random forest-based radiomics analysis combin-
ing both nonimaging and imaging variables found the longitudinal 
DAT-SPECT images significantly improved the prediction accuracy 
of PD, and exhibited great potentials toward development of effec-
tive prognostic biomarkers in PD (Wu et al., 2019). In recent years, a 
computer-based technique utilizing CNN (Ortiz et al., 2019; Shinde 
et  al.,  2019) to create prognostic and diagnostic biomarkers has 
been widely adopted and attracted lots of attention. These methods 

exploited 3D structural MRI and required no prior knowledge on sig-
nificant regions that might impact the progress of PD. A QSM study 
showed radiomic features extracted from QSM data had high values 
in the diagnosis of PD (Xiao et al., 2019). Isosurface-based features 
with CNN features enhanced the diagnostic accuracy of PD (Ortiz 
et al., 2019). In our study, we also discovered discriminative RSFC 
features in NDPD and DPD, which supported the validity of the ra-
diomic approach. With the emergence of data-driven approaches, 
radiomics have been shown to be trustworthy and practically useful 
to aid PD diagnosis and to reach precision medicine.

TA B L E  5  The mean, standard deviation (SD), and p value for all 34 selected features in the training sets for the group of NDPD versus HC

ID Features NDPD (mean ± SD) HC (mean ± SD) p value

1 Frontal Pole.L-Middle Frontal Gyrus.R 0.6287 ± 0.2843 0.4504 ± 0.3413 0

2 Frontal Pole.L-Occipital Fusiform Gyrus.R −0.2502 ± 0.2854 −0.4479 ± 0.2228 .0008

3 Frontal Pole.R-Superior Frontal Gyrus.L 0.1360 ± 0.2409 −0.0666 ± 0.2649 .0033

4 Insular Cortex.R-Planum Polare.R 0.3087 ± 0.2961 0.1136 ± 0.1984 0

5 Superior Frontal Gyrus.L-Frontal Orbital Cortex.R 0.1880 ± 0.2725 −0.0482 ± 0.3444 .0009

6 Superior Frontal Gyrus.R-Supramarginal Gyrus, anterior.L −0.0965 ± 0.2182 −0.2674 ± 0.2170 .0585

7 Middle Frontal Gyrus.L-Superior Temporal Gyrus, posterior.L 0.4780 ± 0.2792 0.2907 ± 0.2677 0

8 Inferior Frontal Gyrus, pars triangularis.L-Superior Temporal Gyrus, 
posterior.L

−0.0148 ± 0.2314 0.1764 ± 0.2544 .2549

9 Inferior Frontal Gyrus, pars triangularis.L-Middle Temporal Gyrus, anterior.R −0.2060 ± 0.2867 0.0127 ± 0.2723 .0001

10 Inferior Frontal Gyrus, pars triangularis.L-Intracalcarine Cortex.L −0.1387 ± 0.2596 0.1013 ± 0.2941 .0067

11 Precentral Gyrus.L-Frontal Operculum Cortex.R −0.0223 ± 0.2241 −0.2138 ± 0.2068 .2278

12 Precentral Gyrus.L-Right Accumbens −0.0666 ± 0.2067 −0.2799 ± 0.2678 .2214

13 Temporal Pole.L-Superior Temporal Gyrus, posterior.L −0.2858 ± 0.2406 −0.4705 ± 0.2687 .0002

14 Temporal Pole.L-Juxtapositional Lobule Cortex.L −0.1078 ± 0.2802 −0.3625 ± 0.2483 .0976

15 Middle Temporal Gyrus, temporooccipital.L-Heschl's Gyrus.L −0.0661 ± 0.2838 −0.2662 ± 0.2636 .2563

16 Inferior Temporal Gyrus, anterior.L-Heschl's Gyrus.L 0.5797 ± 0.3812 0.2949 ± 0.3318 0

17 Inferior Temporal Gyrus, anterior.R-Lateral Occipital Cortex, inferior.R −0.0485 ± 0.1849 0.1095 ± 0.1477 .1335

18 Inferior Temporal Gyrus, anterior.R-Temporal Occipital Fusiform Cortex.L 0.4466 ± 0.3445 0.1378 ± 0.3444 0

19 Inferior Temporal Gyrus, temporooccipital.L-Planum Temporale.R −0.2934 ± 0.2524 −0.1327 ± 0.2430 0

20 Inferior Temporal Gyrus, temporooccipital.R-Temporal Fusiform Cortex, 
anterior.L

−0.0219 ± 0.1985 0.1411 ± 0.2267 .1932

21 Frontal Medial Cortex.R-Cingulate Gyrus, anterior.R −0.1154 ± 0.2473 0.1462 ± 0.2711 .0200

22 Juxtapositional Lobule Cortex.L-Left Accumbens −0.0518 ± 0.2334 0.1499 ± 0.2725 .2808

23 Cingulate Gyrus, posterior.R-Temporal Occipital Fusiform Cortex.L 0.2302 ± 0.2153 0.0001 ± 0.2783 0

24 Cingulate Gyrus, posterior.R-Temporal Occipital Fusiform Cortex.R 0.0186 ± 0.2482 0.1740 ± 0.2555 .2036

25 Parahippocampal Gyrus, anterior.R-Left Amygdala 0.3030 ± 0.2640 0.0721 ± 0.3043 0

26 Parahippocampal Gyrus, posterior.L-Parietal Operculum Cortex.L 0.1977 ± 0.3141 −0.0680 ± 0.3273 .0008

27 Temporal Occipital Fusiform Cortex.R-Occipital Fusiform Gyrus.L −0.0092 ± 0.2235 0.1330 ± 0.2873 .1467

28 Central Opercular Cortex.R-Left Putamen 0.0590 ± 0.2228 −0.0844 ± 0.2651 .1802

29 Planum Temporale.L-Occipital Pole.L 0.0788 ± 0.2119 0.2063 ± 0.2260 .0893

30 Occipital Pole.L-Right Amygdala 0.1418 ± 0.2327 0.0236 ± 0.2305 .0008

31 mALFF of Left Juxtapositional Lobule Cortex 0.9061 ± 0.1372 1.0316 ± 0.1531 0

32 mReHo of Left Middle Temporal Gyrus, Posterior Division 1.0703 ± 0.0994 0.9802 ± 0.0995 0

33 VMHC of Right Temporal Fusiform Cortex, Posterior Division 0.1917 ± 0.0846 0.1331 ± 0.1166 0

34 HAMD score 6.8182 ± 2.9310 2.4545 ± 2.2373 0
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The aberrant regions associated with RSFC features contribut-
ing to the discrimination of DPD from HC were primarily located 
in the DMN, ECN, VIN, AN, SMN, and STM. The other two mALFF 

features were located at the left precentral gyrus and the left pla-
num polare. The disturbed brain regions distinguishing NDPD from 
HC were located in DMN, VIN, AN, SMN, AUN, VAN, ECN, SN, 

TA B L E  6  15 RSFC features and the related brain regions indexed in the HOA template for differentiating DPD from NDPD

ID HOA number Brain region A Network
HOA 
number Brain region B Network

1 2 Frontal Pole.R Other region 39 Supramarginal Gyrus, 
posterior.L

STM

2 6 Superior Frontal Gyrus.R Other region 69 Parahippocampal Gyrus, 
posterior.L

DMN

3 16 Temporal Pole.R AN 59 Cingulate Gyrus, 
posterior.L

DMN

4 16 Temporal Pole.R AN 69 Parahippocampal Gyrus, 
posterior.L

DMN

5 19 Superior Temporal Gyrus, 
posterior.L

DMN 63 Cuneal Cortex.L Other region

6 20 Superior Temporal Gyrus, 
posterior.R

DMN 99 Left Thalamus DMN

7 22 Middle Temporal Gyrus, 
anterior.R

DMN 82 Frontal Operculum 
Cortex.R

VAN

8 22 Middle Temporal Gyrus, 
anterior.R

DMN 90 Heschl's Gyrus.R AUN

9 32 Inferior Temporal Gyrus, 
temporooccipital.R

Other region 60 Cingulate Gyrus, 
posterior.R

DMN

10 33 Postcentral Gyrus,L SMN 45 Lateral Occipital Cortex, 
inferior.L

VIN

11 38 Supramarginal Gyrus, anterior.R STM 40 Supramarginal Gyrus, 
posterior.R

STM

12 45 Lateral Occipital Cortex, 
inferior.L

VIN 101 Left Caudate BGN

13 50 Frontal Medial Cortex.R SN 74 Temporal Fusiform 
Cortex, anterior.R

VIN

14 56 Paracingulate Gyrus.R ECN 102 Right Caudate BGN

15 65 Frontal Orbital Cortex.L VIN 108 Right Hippocampus DMN

F I G U R E  4   The visualization plot 
of the selected 15 RSFCs for the third 
classification: NDPD versus HC
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and BGN. Compared with HC subjects, DPD and NDPD patients 
shared similar brain network abnormalities mainly in the DMN, 
VIN, ECN, AN, SMN, STM, ECN, and AUN. The most discriminated 
regions of RSFCs that differentiated DPD from NDPD were within 
or across the DMN, VIN, AN, STM, BGN, SMN, SN, ECN, VAN, 
and AUN. Our results showed that aberrant functional connectiv-
ity and activity for DPD were primarily detected within the DMN, 

VIN, AN, STM, SMN, AUN, VAN, ECN, SN, and BGN. A previous 
study on FC markers of depression in advanced PD also found 
RSFC features located in the subcortical, auditory, SMN, VIN, 
cognitive control, DMN, and cerebellar networks. These networks 
were significantly relevant to classification and provided prelimi-
nary evidence that can characterize DPD patients compared with 
NDPD (Lin et al., 2019).

ID Features DPD (mean ± SD) NDPD (mean ± SD)
p 
value

1 Frontal Pole.R-
Supramarginal Gyrus, 
posterior.L

−0.0141 ± 0.2446 −0.1103 ± 0.2266 .1323

2 Superior Frontal Gyrus.R-
Parahippocampal Gyrus, 
posterior.L

0.0908 ± 0.3179 0.3104 ± 0.3217 .2138

3 Temporal Pole.R-Cingulate 
Gyrus, posterior.L

−0.5177 ± 0.1974 −0.2593 ± 0.2495 0

4 Temporal Pole.R-
Parahippocampal Gyrus, 
posterior.L

0.2872 ± 0.2356 0.0371 ± 0.2611 .0001

5 Superior Temporal Gyrus, 
posterior.L-Cuneal 
Cortex.L

0.7327 ± 0.2467 0.4994 ± 0.1967 0

6 Superior Temporal Gyrus, 
posterior.R-Left Thalamus

0.2852 ± 0.2382 0.4485 ± 0.2196 .0194

7 Middle Temporal Gyrus, 
anterior.R-Frontal 
Operculum Cortex.R

0.0727 ± 0.1566 −0.1205 ± 0.2109 .2219

8 Middle Temporal Gyrus, 
anterior.R-Heschl's 
Gyrus.R

0.1312 ± 0.1967 −0.1280 ± 0.2557 .0663

9 Inferior Temporal Gyrus, 
temporooccipital.R-
Cingulate Gyrus, 
posterior.R

−0.0184 ± 0.2250 −0.1782 ± 0.2349 .2035

10 Postcentral Gyrus,L-
Lateral Occipital Cortex, 
inferior.L

0.0495 ± 0.1741 −0.1453 ± 0.2468 .1751

11 Supramarginal Gyrus, 
anterior.R-Supramarginal 
Gyrus, posterior.R

0.0070 ± 0.2991 0.2006 ± 0.2252 .1307

12 Lateral Occipital Cortex, 
inferior.L-Left Caudate

0.1091 ± 0.2589 −0.0380 ± 0.1802 .0539

13 Frontal Medial Cortex.R-
Temporal Fusiform 
Cortex, anterior.R

0.0218 ± 0.2341 −0.1444 ± 0.1815 .2254

14 Paracingulate Gyrus.R-
Right Caudate

−0.2438 ± 0.1765 −0.0544 ± 0.1970 0

15 Frontal Orbital Cortex.L-
Right Hippocampus

−0.0016 ± 0.2287 0.1277 ± 0.2147 .1807

16 mALFF of Left Subcallosal 
Cortex

0.9220 ± 0.0859 1.0933 ± 0.2287 .0007

17 HAMD Score 20.2143 ± 4.0796 6.8182 ± 3.0460 0

TA B L E  7  The mean, standard deviation 
(SD), and p value for all 17 selected 
features in the training sets for the group 
of DPD versus NDPD
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DMN plays an important role in self-referential introspective 
condition, and disturbances of the DMN have been confirmed in 
many neurological and psychiatric disorders including PD. A RSFC 
study in DPD found the increased ALFF in the DMN compared with 
the NDPD and HCs. Other previous studies also found that the BGN, 
DMN, LFPN, and SN were involved DPD (Hu, Song, Li, et al., 2015), 
which facilitated the advancement of more detailed and integrative 
neural models of DPD (Lin et al., 2019; Wei et al., 2017).

In our study, aberrant functional connectivity and activity of the 
emotion network and motor network were also identified in DPD 
patients. Abnormal directional connectivity between motor network 
and emotion network in DPD has been described in the existing lit-
erature. Compared with HC, DPD patients displayed significant gray 
matter volume abnormality in some limbic and subcortical regions in 
addition to the unique alterations of directional connectivity from 
the different brain regions, which may provide differential biomark-
ers for distinguishing DPD from HC and NDPD (Liang et al., 2016). 
Rs-fMRI studies in depression have shown that antidepressant treat-
ment could affect cortical connectivity. The corticolimbic network 

and amygdala play an important role in the development of DPD, 
even antidepressant effects also associated with the abnormal hy-
poconnectivity in DPD (Morgan et al., 2018). Compared to NDPD 
and HC, DPD showed abnormal functional connectivity in the left 
amygdala, right amygdala, and the bilateral mediodorsal thalamus. 
The disturbed connectivity between limbic regions and corticolim-
bic networks in DPD patients may reflect impaired limbic areas in 
mood dysregulation of emotion-related regulatory effect (Hu, Song, 
Li, et al., 2015).

The group of DPD displayed altered spontaneous brain activity 
in the frontal, temporal, and limbic regions in our study. Compared 
with NDPD, DPD exhibited significantly increased regional activity 
in the superior temporal gyrus, middle temporal gyrus, inferior tem-
poral gyrus, and frontal medial cortex. Decreased RSFC values were 
detected between superior frontal gyrus and right hippocampus. 
These findings confirmed alteration and disruption of the regional 
brain activity in mood regulation network in the DPD group (Sheng 
et al., 2014).

Salience network (SN) includes brain regions whose cortical 
hubs are the anterior cingulate and ventral anterior insular corti-
ces. This network coactivates in response to various experimen-
tal tasks and conditions, suggesting a domain-general function 
(Seeley, 2019). A rs-fMRI study including 17 DPD patients, 17 ND 
PD patients, and 17 HC subjects found that damaged insula net-
works between the SN and ECN in PD might lead to DPD (Huang 
et al., 2020). As one of the critical nodes in the STM, the left su-
pramarginal gyrus involved in keeping an abstract representation 
from the serial order information, and independently from all the 
content, which instead is stored separately (Guidali et al., 2019). In 
our study, when DPD was compared with NDPD and HC, disturbed 
STM regional brain network was identified and might demonstrate 
the attention deficit.

Our findings also selected several mALFF and ReHo features 
including the mALFFs of left precentral gyrus and left planum po-
lare, and the mReHo of left middle temporal gyrus for the group of 
DPD versus HC. When comparing NDPD and DPD, the mALFF of 
left subcallosal cortex was selected. A rs-fMRI study found abnormal 

TA B L E  8   Predictive performance table in the testing set for 
Lasso prediction, random forest, and SVM

Accuracy TPR TNR AUC

DPD versus HC

Lasso 0.95 0.88 1 1

Random forest 0.90 0.75 1 1

SVM 1 1 1 1

NDPD versus HC

Lasso 0.96 0.92 1 0.98

Random forest 0.82 0.85 0.80 0.89

SVM 0.86 0.85 0.87 0.93

DPD versus NDPD

Lasso 0.85 0.71 0.92 0.98

Random forest 0.90 0.71 1 1

SVM 0.65 0.29 0.85 0.86

F I G U R E  5  ROC curves displaying the predictive performance of Lasso prediction, SVM, and random forest in the testing sets for three 
classifications. (a) DPD versus HC; (b) NDPD versus HC; (c) DPD versus NDPD
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baseline brain activity in the dorsolateral prefrontal cortex, the ros-
tral anterior cingulated cortex, and the ventromedial prefrontal 
cortex that were positively correlated with the HAMD score. The 
results of abnormal ALFF values in these brain regions implied that 
the prefrontal-limbic network might be associated with abnormal ac-
tivities in PD patients with depression (Wen et al., 2013).

In our study, disturbed VMHC was found in the right temporal 
fusiform cortex, posterior division when comparing NDPD to HC. 
Indeed, the impaired functional connectivity within the homotopic 
brain regions of PD extended previous studies that the disconnec-
tion of corticostriatal circuit provided new evidence of disturbed in-
terhemispheric connections in PD (Luo et al., 2015). A VMHC study 
using the seed-based method discovered decreased VMHC values in 
the bilateral paracentral lobule and medial frontal gyrus in DPD com-
pared with NDPD (Liao et al.,2020). A structural brain network study 
showed the global efficiency and characteristic path length were im-
paired in DPD, which indicated the topological property can be used 
as a potential objective neuroimaging index for early diagnosis of DPD 
(Gou et al.,2018).

However, our approach failed to extract any significant VMHC 
features when comparing DPD and NDPD. This may due to the 
smaller sample size of the DPD group. Though we could perform 
data augmentation to increase the sample size, the model fitting 
results might be compromised by the correlated structures re-
sulting from data augmentation. Hence, for future studies, we 
intend to include more subjects to diminish the threats caused 
by the high dimensionality and to further confirm our neurolog-
ical findings. In addition, the values of radiomic features before 
and after antidepressant treatment will also be evaluated in the 
future.

In conclusion, the machine learning-based radiomic approach 
proposed in this study showed that high-order radiomic features 
that quantify the functional connectivity and activity of the brain 
can be used for the diagnosis of DPD and NDPD with high accuracy.
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