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A B S T R A C T

The failure of T cells to eradicate tumour cells in the tumour microenvironment is mainly due to the dysfunc-
tion of T cells. Senescent T cells, with defects in proliferation and effector functions, accumulate in ageing,
chronic viral infections, and autoimmune disorders where antigen stimulation persists. Increasing evidence
suggests that inducing T cell senescence is a key strategy used by malignant tumours to evade immune sur-
veillance. In this review, we summarize the general features, functional regulation, and signalling network of
senescent T cells in tumour development and highlight their potential as prognostic biomarkers in multiple
cancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Moreover, we discuss possi-
ble therapeutic strategies for preventing or rejuvenating senescence in tumour-specific T cells. Understand-
ing these critical issues may provide novel strategies to enhance cancer immunotherapy.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Tumorigenesis is a process that escapes the immune systemmani-
fested by the dysfunction of immune surveillance and clearance.
Novel tumour immune escape mechanisms are still under investiga-
tion. As the most powerful immune cells in clearing tumour cells,
dysfunction of T cells has attracted the most interest.

The exhaustion and senescence of T cells are two dominant dys-
functional states in chronic infections and cancers [1]. The principle fea-
tures of exhausted T cells is the elevated inhibitory receptors, including
programmed cell death protein 1 (PD-1), T cell immunoglobulin and
mucin domain containing-3 (Tim-3), and lymphocyte activation gene-3
(LAG-3) with impaired cytotoxicity and effector cytokine production
[1]. Senescent T cells have a distinct phenotypes including downregu-
lated expression of the costimulatory molecules CD27 and CD28, and
high expression of CD57, killer cell lectin-like receptor subfamily G
member 1 (KLRG-1), and CD45RA [2-4]. They share common features
with senescent somatic cells such as DNA damage, declines in prolifera-
tion and activation, but are able to produce high amounts of proinflam-
matory cytokines [5]. The dysfunction of exhausted T cells can be
reversed by immune checkpoint blockades whereas senescent seems
to be irreversible [1]. The exhausted and senescent T cells share over-
lapping characteristics but they are two distinct dysfunctional states.

The accumulation of senescent T cells was first found in the periph-
eral blood of elderly people [6]. Therefore, T cell senescence is thought
to be attributed to the failing efficacy of vaccination and the increased
morbidity and mortality from infections and cancer in ageing [7,8].
Soon thereafter, an increase in senescent T cells was also detected in
young patients with chronic viral infections or autoimmune disorders
[5,9]. This phenomenon indicates that in addition to ageing, repeated
antigenic stimulation and a chronic inflammatory environment can
also lead to T cell senescence. Considering that T cells may be constitu-
tively activated by antigens and influenced by numerous inflammatory
cytokines, the tumour microenvironment may be the origin of senes-
cent T cells. Recent studies have shed light on the potential roles of T
cell senescence in cancer development. The interplay between senes-
cent T cells and the tumour microenvironment has been reviewed
recently [10]. However, its potential prognostic value upon various
cancer treatments needs to be further clarified. In this review, we sum-
marized the general features, functional regulation, and signalling net-
work of senescent T cells in tumour development and their potential
as prognostic biomarkers in cancer therapy. Moreover, possible thera-
peutic strategies for modulating T cell senescence to alter the initiation
and progression of cancer are discussed.
2. Characteristics and potential roles of senescent T cells in
tumours

2.1. General markers of senescent T cells

Senescent T cells share several common features with senescent
somatic cells. Senescent T cells become larger and flatter and show
positive senescence-associated b-galactosidase (SA-b-gal) staining
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Table 1
Markers of senescent T cells

Category Makers References

Functional markers SA-b-gal activity SA-b-gal+ 11-14

Cell cycle arrest Proliferation # 11-13, 15

p53, p21, p16 " 11-13

DNA damage ATM, and gH2AX " 13, 28

SASP IL-6, IL-8, TNF-a, IFN-g " 11, 13, 15-18

IL-2, and Granzyme B # 15, 19

Metabolic changes ROS " 17, 20, 21

Mitochondrial fitness # 17, 20

Glycolysis " 17, 20

Surface markers Frequently used CD28, CD27 # 11-13, 51, 81

CCR7, CD45RO#;
CD45RA "

17, 22, 23

KLRG-1, CD57 " 2-4, 22, 68

Newly defined TIGIT, Tim-3, ILT2/
CD85j, NKRs "

19, 24-26

Under debate PD-1, LAG-3 ? 19, 27

ATM, ataxia-telangiectasia mutated; IFN-g: interferon gamma; ILT2: immunoglobu-
lin-like transcript 2; KLRG-1: killer cell lectin-like receptor subfamily G member 1;
LAG-3: lymphocyte activation gene-3; NKRs: natural killer like receptors; PD-1: pro-
grammed cell death protein 1; SA-b-gal: senescence-associated b-galactosidase;
SASP: senescence-associated secretory phenotype; TIGIT: T cell immunoreceptor with
Ig and ITIM domains; Tim-3: T cell immunoglobulin and mucin domain containing-3;
TNF-a: tumour necrosis factor alpha; gH2AX: phosphorylated H2AX.
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[4,11-14]. The telomeres become shortened and the DNA damage
increases, which then leads to the upregulation of p53, p21, and p16,
and the downregulation of Cdk2, Cdk6, and cyclin D3 to cause cell
cycle arrest [11-13,15]. Therefore, the proliferation of senescent T
cells is greatly dampened. The senescence-associated secretory phe-
notype (SASP) [11,13,15-19] and metabolic changes (discussed fur-
ther in the following sections) [13,17,20,21] are also present in
senescent T cells.

In addition to the common features mentioned above, senescent T
cells show distinct surface markers. Senescent T cells lose the expres-
sion of costimulatory receptors CD27/CD28 but express CD57 and
KLRG-1, which indicates replicative senscent [2-4]. Senescent T cells
also show a terminally differentiated phenotype with the downregu-
lation of the chemokine receptors CCR7 and CD45RO but the upregu-
lation of CD45RA [17,22,23]. Therefore, the T cell phenotype of
CD27�CD28�CD57+KLRG-1+, or CCR7�CD45RA+ is a commonly used
indicator of T cell senescence. T cells that express Tim-3 [24], T cell
immunoreceptor with Ig and ITIM domains (TIGIT) [19], immuno-
globulin-like transcript 2 (ILT2/CD85j) [25], or other natural killer
like receptors (NKRs) [26] also showed senescent features, indicating
that these may be newly defined senescent markers. Whether
exhausted markers such as PD-1, and LAG-3 are expressed on senes-
cent T cells is still under debate [19,27]. Since senescent T cells may
show diversified phenotypes in different scenarios, we should better
to combine functional markers and surface markers to track aged T
cells accurately (Table 1).

2.2. Loss of antigen-specific killing but gain of innate-like functions

In the tumour microenvironment, cytotoxic T cells are activated
by tumour antigens through T-cell receptor (TCR) signalling to pro-
duce a durable and efficient antitumour immune response. However,
the efficiency of TCR signalling is compromised in senescent T cells.
The expression of key components of TCR signalling (CD3, Lck, Zap70,
SLP-76, LAT, and PLCg1) [26,28], as well as the costimulatory mole-
cules CD27 and CD2811, 29 is decreased in senescent T cells. In addi-
tion, the phosphorylation of Zap70 is impaired following CD3
activation [26,28]. When stimulated with anti-CD3 plus anti-CD28,
senescent T cells, especially those isolated from old individuals, pro-
duce significantly lower amounts of IL-2, interferon gamma (IFN-g),
tumour necrosis factor alpha (TNF-a), and granzyme B than other
types of T cells [15,19]. Moreover, TCRb diversity roughly declines
linearly with age, especially in senescent CD8+ T cells [30,31]. These
findings indicate that senescent T cells probably dampen TCR-depen-
dent antigen-specific killing.

Senescent T cells also upregulate the expression of NKRs, includ-
ing NKG2A/C and KLRG-1 [2,26]. Senescent T cells display higher lev-
els of CD107a, granzyme B, and perforin than other subsets with no
stimulation[19]. and under NKG2D stimulation [26]. In vitro experi-
ments have shown that senescent T cells kill tumour cells indepen-
dent of TCR, with the same efficiency as natural killer (NK) cells [26].
This evidence indicates that although antigen specific killing is lost,
senescent T cells with strong nonspecific killing potential fight antitu-
mour immunity to some extent.

2.3. Special SASPs

Senescent cells produce a complex mixture of factors termed
SASPs. Senescent T cells are also able to produce pro- and anti-
inflammatory cytokines to modulate the tumour microenvironment.
Similar to fibroblasts, IL-6, IL-8, CXCR1, and CXCR2, classic SASP fac-
tors, are also increased in the senescent subset compared with the
naïve subset [16]. In addition, the inflammatory and immune-modu-
latory cytokines and chemokines, such as IFN-g , TNF-a, IL-18, IL-29,
CCL5, CCL16, and CCL23, are significantly upregulated in senescent T
cells [15,17,18]. SASP factors such as IL-6 [32] and TNF-a [33], act in
an autocrine or paracrine manner to accelerate T cell senescence.
SASP factors may also promote tumour development and suppress
antitumour immunity. For example, the CCL5/CCR5 axis promotes
tumour growth and migration, facilitates neovessel formation, and
induces the immunosuppressive polarization of monocytes and mye-
loid cells, leading to M2 type tumour-associated macrophages and
myeloid-derived suppressor cells (MDSCs) that induce the exhaus-
tion of effector T cells [34]. IL-18, a proinflammatory cytokine in the
IL-1 family that induces IFN-g production, drives the generation of
MDSCs, and augments the immunosuppressive activity of MDSCs in
multiple myeloma [35]. High levels of IFN-g in the absence of gran-
zyme B also inhibit T cell cytotoxicity by inducing the expression of
immune suppressive factors such as indoleamine 2, 3-dioxygenase
(IDO), programmed death-ligand 1 (PD-L1), and cytotoxic T-lympho-
cyte-associated protein 4 (CTLA-4) [36]. Therefore, SASP factors pro-
duced by senescent T cells may create and maintain an
immunosuppressive environment.

2.4. Immunosuppression

In addition to modulating the tumour microenvironment by the
SASPs, senescent T cells are also reported to be a unique subpopula-
tion of regulatory T cells (Tregs) that directly suppress T cell func-
tions. Senescent T cells inhibit proliferation and activation, decrease
the secretion of proinflammatory cytokines, and induce the apoptosis
of activated T cells in vitro [37,38]. Tumour-induced senescent T cells
may also enhance the production of proinflammatory cytokines (TNF,
IL-1b, and IL-6) and angiogenic factors [matrix metallopeptidase 9
(MMP-9), vascular endothelial growth factor A (VEGF-A) and IL-8] by
monocytes/macrophages, which may promote tubulogenesis and
tumour cell survival [39]. These data indicate that senescent T cells
with suppressive functions could contribute to tumour immune eva-
sion. However, whether senescent T cells play a beneficial role or a
negative role in different types of tumours and the different stages of
tumour progression still need further investigation.

2.5. Metabolic features

In T cells, more energy allows more proliferation and effector
functions. As the most important energy-producing organelle, mito-
chondria are defective in senescent T cells, with a low mitochondrial
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mass, decreased mitochondrial membrane potential and elevated
levels of reactive oxygen species (ROS) [17,20,21]. CD8+ T cells
acquire a senescent phenotype faster than CD4+ T cells, because they
have less fit and healthy mitochondria [20]. Senescent T cells express
low levels of the glucose transporter type 1 (Glut1) [17,20], and fatty
acid transporters FATP2 and FATP3 [20], resulting in impaired nutri-
ent uptake. Therefore, as the principle mechanism, senescent T cells
rely heavily on glycolysis, which is not the most productive way to
generate energy, whereas effector T cells can use glycolysis and oxi-
dative phosphorylation for energy generation [17,20]. Although p38
inhibition partially restores mitochondrial function, senescent T cells
still engage glycolysis to provide the energy required for the increase
in proliferation after activation and the increased energy demand is
met by increased autophagy [17]. Moreover, glucose consumption
caused by immunosuppressive cells such as natural regulatory T cells
(nTregs) or tumour-derived gd Treg cells also triggers T cell senes-
cence [13]. Tumour cells and tumour-infiltrating T cells also compete
for glucose within the tumour suppressive microenvironment, indi-
cating that a lack of enough glucose highly consumed by tumour cells
may result in responder T cell senescence as a new mechanism of
tumour immune escape.

2.6. Key signalling molecules regulating T cell senescence

Mitogen-activated protein kinases (MAPKs), including extracellu-
lar signal-regulated protein kinase (ERK), c-Jun N-terminal kinase
(JNK) and p38, play an important role in regulating T cell senescence
(Figure 1). In senescent T cells, MAPKs can be activated by DNA dam-
age [28], metabolic disorders, such as glucose consumption [13,28] or
the accumulation of cyclic adenosine monophosphate (cAMP) [14]
proinflammatory cytokines, TNF-a [40] and interferon alpha (IFN-a)
[29], and stress sensor, sestrins [26,41]. The activation of p38, JNK
Figure 1. Signalling pathways involved in T cell senescence in the tumour microenviron
ders, proinflammatory cytokines, and sestrins. The activation of p38 inhibits telomerase activ
activates p38, ERK, and STAT1/3 to pronounce the expression of CKIs to prevent T cell prolif
help senescent T cells gain innate-like killing capacity. ATM, ataxia-telangiectasia mutated
CREB, cAMP response element-binding protein; ERK, extracellular signal-regulated protein k
c-Jun N-terminal kinase; MAPKs, mitogen-activated protein kinases; NK, natural killer; NKR
cies; SASP, senescence-associated secretory phenotype; STAT, signal transducer and activator
latory T cells; gH2AX, phosphorylated H2AX
and ERK suppresses T cell proliferation [15,28,41] and causes senes-
cence in different ways. On the one hand, after the phosphorylation
of p38, the expression and activity of telomerase decrease
[28,29,40,41], and mitochondria become dysfunctional [17], which
further leads to DNA damage. In the tumour microenvironment, DNA
damage in T cells is also triggered by glucose consumption [13,28]
and the accumulation of cAMP, which can be reduced by the activa-
tion of TLR8 signalling [14]. Then, activated p38 and ERK cooperate
with signal transducer and activator of transcription 1/3 (STAT1/3) to
significantly increase the expression of cyclin-dependent kinase
inhibitors (CKIs), such as p21, p16, and p53 to prevent T cell prolifera-
tion [13]. Two p53 isoforms also regulate ageing- and tumour-associ-
ated T cell senescence [16]. On the other hand, activated p3811, 28, 29

and JNK [26,41] inhibit the expression and activity of key compo-
nents of TCR signalling as well as costimulatory receptors, CD27 and
CD28, to form T cell-specific SASPs [18]. Moreover, JNK helps senes-
cent T cells gain innate-like killing capacity by increasing NKG2D-
DAP12 expression [26].

3. Potential prognostic biomarkers in cancer treatment

3.1. General progression

Senescent T cells accumulate in the peripheral blood of patients
with solid tumour, such as lung cancer [22], breast cancer [42,43],
head and neck cancer [44], gastric cancer [45], glioblastoma [46], and
haematologic malignancies, such as acute myeloid leukaemia (AML)
[47,48], and chronic lymphocytic leukaemia (CLL) [49,50], and
increase with clinical stage [51]. Senescent T cells show a decreasing
tendency after tumour resection [44] or in long-term complete
remission (CR) [47]. T cells also display features of senescence at the
tumour site of non-small cell lung cancer (NSCLC) [22], multiple
ment. In senescent T cells, MAPKs can be activated by DNA damage, metabolic disor-
ity and destroys mitochondria fitness which leads to DNA damage. DNA damage further
eration. P-p38 and p-JNK inhibit TCR signaling to form T cell specific SASPs. P-JNK also
; cAMP, cyclic adenosine monophosphate; CKIs, cyclin-dependent kinase inhibitors;
inase; hTERT, human telomerase reverse transcriptase; IFN-g , interferon gamma; JNK,
s, natural killer like receptors; PKA, phosphorylase kinase A; ROS, reactive oxygen spe-
of transcription; TCR, T-cell receptor; TNF-a, tumour necrosis factor alpha; Tregs, regu-
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myeloma [52], ovarian cancer [2], breast cancer [2], and follicular
lymphoma [53]. In NSCLC, although the percentage of CD57+ T cells
in CD3+ tumour-infiltrating lymphocytes (TILs) is lower than that
observed in the peripheral blood [22], the cytokine production and
proliferation ability of senescent T cells is much more dampened at
the tumour site [22,52]. In vitro experiments further confirmed that
tumour cells [14,16,38,48] or Tregs in the tumour microenvironment
[11,13] are able to induce T cell senescence.

Senescent T cells may also serve as biomarkers to predict clinical
outcomes. In lung cancer [54], gastric cancer [45], renal cell carci-
noma [55], glioblastoma [46], non-Hodgkin lymphoma [53], CLL [49],
and AML [56], overall survival (OS) is significantly shorter in patients
with higher levels of senescent T cells in the blood. CD8+CD57+ T cells
are also able to predict the development of cutaneous squamous cell
carcinoma in patients post kidney transplantation [57].

3.2. Chemo(radio)therapy

In addition to correlations with the progression and prognosis of
multiple cancers, most studies have indicated that pretreatment lev-
els of senescent T cells in the peripheral blood are also associated
with outcomes in patients treated with chemo(radio)therapy. A
lower level of non-senescent T cells independently predicts a worse
early response to stereotactic ablative radiotherapy in patients with
lung metastases from NSCLC [58]. Higher levels of senescent T cells
also independently predict unfavourable OS and progression free sur-
vival (PFS) from diagnosis in advanced gastric cancer [45], NSCLC
[51], breast cancer [59], and AML [56] patients. The change in senes-
cent T cells after chemo(radio)therapy can also act as a prognostic
biomarker for refractory disease or relapse. In AML, the frequency of
senescent CD8+ T cells decreases in patients after achieving CR, but
concomitantly increases in patients who develop refractory disease
and/or relapse (RR) [48,56]. Patients with more senescent T cells in
the peripheral blood have decreased levels of IFN-g and increased
levels of IL-6 [59], which may partially explain why senescent T cells
predict poor chemo(radio)therapy efficacy.

Chemo(radio)therapy is reported to induce T cell senescence in
lung cancer [60], breast cancer [54], and metastatic colorectal cancer
[61]. One explanation is that chemo(radio)therapy, as a DNA-damag-
ing agent, can induce T cell senescence by increasing the expression
of phosphorylated H2AX (gH2AX) and p16, which are canonical bio-
markers in senescent somatic cells [62,63], preventing proliferation
[63] and modulating metabolism [64]. Another explanation is that
senescent T cells accumulate after several cycles of chemo(radio)
therapies because non-proliferative cells are resistant to chemo
(radio)therapy [61,63]. Notably, senescent T cells induced by chemo
(radio)therapy are impaired in cytotoxicity and the production of
TNF-a and IFN-g [61], which may further lead to a poor response.

3.3. Immune checkpoint inhibitors

As one of the most important developments in cancer therapy in
the past decade, immune checkpoint inhibitors (ICIs) have been
designed to restore a patient's own antitumour immune response
that is attenuated during the process of tumour progression [65]. It is
the exhausted T cells (PD-1+CD8+ T cells), but not senescent T cells
can be re-activated by PD-1/PD-L1 blockades. However, preclinical
research has demonstrated that the reinvigoration of exhausted CD8+

T cells by PD-1/PD-L1 blockade depends on CD28 signalling [66,67].
Therefore, the frequency of senescent T cells may act as a potential
biomarker to predict the response to ICIs. In advanced NSCLC and
melanoma patients treated with PD-1/PD-L1 inhibitors, a high level
of circulating senescent CD8+ T cells, with limited proliferative capac-
ity and lower IL-2 and higher TNF-a and IFN-g production [68], was
significantly correlated with resistance to ICIs [69] and a poor overall
response rate (ORR), median PFS and OS [68,70].
Senescent T cell markers are also enriched in the peripheral blood
of NSCLC patients who respond to ICIs [23,65,71]; therefore, they can
be used to determine candidates and predict therapeutic efficacy.
Neoantigen-specific T cells towards terminally differentiated pheno-
type with enhanced CD57 and KLRG-1 are more frequently detected
in responders than in nonresponders [23,71]. The terminally differen-
tiated phenotype is indicative of recent antigen experience, suggest-
ing that an effective antitumour T cell response may be ongoing in
responders [71]. Moreover, a high percentage of highly differentiated
CD4+ T cells at baseline was significantly correlated with objective
responses [65]. Although lack CD27 and CD28 expression, highly dif-
ferentiated CD4+ T cells do not highly express CD57 and gH2AX, indi-
cating that they are not senescent T cells [65]. Therefore, whether
senescent-like T cells with predictive ability for ICIs are bona fide
senescent T cells still needs further clarification.

3.4. Adoptive cell transfer therapy

Adoptive cell transfer therapy, especially chimeric antigen recep-
tor (CAR) T cell therapy, can evoke antitumour immune responses to
prevent the progression of a variety of malignancies. However, con-
tinuous TCR or CAR stimulation would probably accelerate T cell dif-
ferentiation to senescent subsets with limited in vivo persistence
[72,73]. Compared with pre-infusion, post-infusion CAR-T cells
express the senescent markers KLRG-1 and CD57, and lose the
expression of the costimulatory molecule CD28 towards senescent-
like phenotypes [74-76] The upregulation of CD57 on CAR T cells
depends on the contact with tumour cells [75]. However, the mecha-
nism by which these CAR T cells turn senescent still needs investiga-
tion.

It has been consistently reported that adoptive cell transfer of few
senescent T cells demonstrate superior in vivo expansion, persis-
tence, and antitumour capacities relative to the more senescent T cell
subsets [77,78]. In B lymphoid haematologic malignancies, T cell
senescence influences the response to CAR T cell therapy [79]. Res-
ponders who achieved CR and PR, had both a lower frequency of
senescent populations and a higher frequency of less differentiated
populations on CD8+ CAR T cells than nonresponders [80]. Another
small patient cohort study also showed that responders had a lower
percentage of senescent T cells in the apheresis product prior to the
CAR T cell manufacturing process [81]. Moreover, according to pre-
clinical experiments, enhancing proliferative and cytotoxic capacities
and preventing the terminal differentiation of T cells by CD27 or
CD28 transduction [82,83] or gamma chain cytokine treatment
[84,85] may help restore antitumour activity. These data indicate
that fewer senescent T cells may be more therapeutically effective.

3.5. Cancer vaccines

Cancer vaccines activate immune systems to treat existing cancers
or prevent the development of cancer. However, cancer vaccines do
not achieve good efficacy in limiting existing tumour cells or hurdling
metastases in old individuals [7]. This is probably because the cancer
vaccine fails to restore the proliferation of CD4+ and CD8+ T cells in
elderly individuals [7,8]. CD8+ cytotoxic T cell responses to dominant
tumour-associated antigens are profoundly weakened by ageing [86].
Loss of CD28 expression, which may indicate the accumulation of
senescent T cells, was also found after vaccine challenge in the old
group but not in the young group [87].

A clinical trial indicated that the proportion of senescent T cells at
the beginning of the CIMAvax-EGF vaccine can be used as a predictive
biomarker of efficacy in NSCLC patients [60]. Vaccinated patients with
<24% of CD8+CD28� T cells pretreatment achieved a 20-month
increase in median survival compared to control patients [60]. A
reduction in senescent T cells by the temporary blockade of sestrins
[41] or with a p38 MAPK inhibitor (losmapimod) [41,87] significantly
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enhances the number of antigen-specific T cells and increases the
antiviral response after vaccination in older subjects. These findings
suggest that delayed or reversed senescence in antigen-specific CD8+

T cells may be a new strategy to enhance antitumour immunity after
vaccination during ageing.

4. Senescent T cells as therapeutic targets

4.1. Gamma chain cytokine treatment

The gamma chain cytokines, IL-2, IL-7, IL-15, and IL-21 serve as
critical regulators of the survival and homeostasis of T cells
[84,85,88,89]. Increasing evidence indicates that gamma chain cyto-
kine-fuel cancer immunotherapy is associated with delayed or
reversed senescence in antigen-specific CD8+ T or CAR T cells
[84,85,88,89]. For example, IL-7 but not IL-2, or IL-15 inhibits
tumour-induced T cell senescence by maintaining CD27/CD28
expression and proliferative capacity and reducing their suppressive
function [88]. IL-15 and IL-21 prevent the terminal differentiation of
tumour antigen-specific T cells and promote their expansion and
effector functions [84,85,89]. The IL-15 super-agonist complex ALT-
803 can also upregulate the expression of NKG2D and exhibit non-
specific cytotoxicity against tumour cells [90]. In clinical trials, ALT-
803 efficiently reinduced responses in NSCLC or Merkel cell carci-
noma patients who failed anti-PD-1 treatments [91,92] and in hae-
matologic malignancy patients who relapsed after allogeneic
haematopoietic cell transplantation [93]. Enhanced donor antitu-
mour immune responses were probably due to an increase in the
proliferation of CD8+ T cells [91,93].

The delayed or reversed senescence of antigen-specific CD8+ T or
CAR T cells by gamma chain cytokine treatment relies on the activa-
tion of the JAK-STAT signalling pathway [89,94]. Therefore, a novel
generation of CAR T cells that include domains to activate STAT sig-
nalling can prevent CAR T cell senescence by maintaining a less dif-
ferentiated phenotype (CD8+CD45RA+CD62L+CCR7+ T cells) and
proliferation ability to gain superior antitumour effects than other
CAR T cells [94].

4.2. MAPK-related regulation

MAPKs play an important role in regulating T cell senescence.
Therefore, inhibitors targeting the p38, ERK, JNK, and STAT signalling
pathways may prevent the senescence of T cells according to preclini-
cal experiments [13,17,18,28,29,40,41,95]. Notably, MAPK signalling
Table 2
Potential prognostic role of senescent T cells in cancer treatment

Treatment Tumour type Change of cell subsets

radiotherapy NSCLC high levels of pretreatm
chemo(radio)therapy NSCLC high levels of pretreatm
chemotherapy gastric cancer high levels of pretreatm
chemotherapy metastatic breast cancer high levels of pretreatm
chemotherapy AML high levels of pretreatm
chemotherapy AML posttreatment CD8+CD

cells "
ICIs melanoma high levels of pretreatm

CCR7�CD27�CD28�C
ICIs melanoma high level of pretreatm
ICIs NSCLC high level of pretreatm
ICIs NSCLC present of CD57+KLRG-
ICIs NSCLC present of CD45RA+CCR

treatment
CAR T cell therapy B lymphoid haematologic malignancies lower frequency of pre
CAR T cell therapy B lymphoid haematologic malignancies lower frequency of CD5
cancer vaccine NSCLC high levels of pretreatm

AML, acute myeloid leukaemia; CAR, chimeric antigen receptor; EFS, event-free survival;
response rate; OS, overall survival; PFS, progression free survival.
is also critical for T cell activation and effector functions. Therefore,
the temporal specificity of MAPK inhibitors for preventing senes-
cence in tumour-reactive T cells is urgently needed. In mouse models,
T cells were pretreated with p38 inhibitors before transfusion to test
their antitumour function in vivo [95]. One possible solution is the
CRISPR-Cas9 system, which may help to modulate MAPK signalling
directly and stably. Another is to identify specific surface markers on
senescent T cells to perform selective depletion [96].

The regulation of MAPK inhibition can also reduce T cell senes-
cence. Knockdown of sestrins restored antigen-specific proliferation
and cytokine production in T cells from old mice [41]. However, the
restoration of sestrins may also increase senescent T cell NK-like
clearance ability at the cost of TCR-dependent cytotoxic function
[26]. Future clinical experiments are needed to illustrate the role of
sestrins in modulating senescent T cell functions in different kinds of
tumours.

4.3. Metabolic regulation

Senescence is the ultimate state of the coordinating effect from
both inner and outer environments. Mitochondrial dysfunction, glu-
cose deprivation and a hypoxic environment may cause T cell senes-
cence. Therefore, metabolic regulation might be an important
strategy to reverse or prevent T cell senescence in the tumour micro-
environment. Rapamycin [84], a mammalian target of rapamycin
complex 1 (mTORC1) inhibitor, metformin [97] and BIRB 796 [17],
p38 inhibitors, can increase mitochondrial biogenesis and fitness to
prevent T cell senescence. The addition of glucose can prevent Treg-
induced senescence in responder T cells during their interactions
[13]. A hypoxic environment created by the accumulation of adeno-
sine and cAMP was reported to induce T cell senescence [14]. A pro-
spective trial showed that hyperbaric oxygen therapy increases
telomere length in peripheral blood cells and decreases the number
of senescent T cells [98]. Similarly, physical exercise, which can
increase the amount of oxygen in the blood, prevents cellular senes-
cence in circulating leukocytes [99]. In the tumour microenviron-
ment, the downregulation of cAMP by the specific cAMP
pharmacological inhibitors, 7-ddA and H89, or by synthetic poly-G3
and natural TLR8 ligand (ssRNA40) to activate TLR8 signalling sup-
presses tumour-, Treg-, and gd-Treg-induced T cell senescence
[11,12,14]. Although many clinical trials on TLR agonists in solid
tumours are currently ongoing [100], whether the enhanced antitu-
mour immunity is partially due to the prevention of T cell senescence
still needs further investigation.
Clinical outcome References

ent CD8+CD28� T cells early treatment response # 58

ent CD8+CD28� T cells OS and PFS # 51

ent CD57+ T cumulative 3-year survival # 45

ent CD8+CD28� T cells PFS # 59

ent CD28�CD57+CD8+ T cells OS and EFS # 56

28�CD57+ T cells and CD8+CD57+ T responders 48, 56

ent CD45RA+

D8+ T cells
OS # 70

ent CD27�CD28�Tim-3+CD57+ T cells resistance 69

ent CD28�CD57+KLRG1+CD8+ T cells ORR, median PFS and OS # 68

1+ T cells after treatment responders 71

7�CD28�CD95+CD8+ T cells after responders 23

treatment CD27�CD28� T cells responders 81

7+CD39+CD28�CD8+ CAR T cells responders 80

ent CD28�CD8+ T cells survival # 60

ICIs: immune checkpoint inhibitors; NSCLC, non-small cell lung cancer; ORR, overall
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5. Outstanding questions

Increasing evidence suggests a link between T cell senescence and
tumour progression. Studies have indicated that the tumour microen-
vironment promotes the senescence of T cells through multiple path-
ways. The accumulation of senescent T cells may be responsible for
advanced cancer and the low response rate to chemo(radio)therapy as
well as immunotherapy (Table 2). Thus, preventing and restoring T cell
senescence could be novel therapeutic strategies for cancer treatment.

Although great progress has been made in this specific area of
cancer research, gaps in our understanding of senescent T cells in
cancer patients remain. First, the heterogeneity should be fully con-
sidered. The heterogeneity here refers to both the spatial and time
dimensions. The role of senescent T cells in different types of
tumours, even in different sites within the same patient varies. Like-
wise, senescent T cells in primary versus metastatic tumours, and in
situ versus the peripheral blood also need to be further investigated.
Senescent T cells lose TCR-dependent killing ability but gain TCR-
independent cytotoxic functions [26,41], suggesting that rather than
being dysfunctional, these cells acquire an alternative functional pro-
file as they differentiate towards senescence. Therefore, the role of
senescent T cells in the tumour microenvironment needs further
study. T cells incubated with tumours at a low tumour to T cell ratio
undergo transformation into a senescent phenotype [38], indicating
that the number of TILs may also influence T cell senescence.

Second, the study techniques for T cell senescence should be
improved. Since several features of senescence in aged mice do not
necessarily represent the phenomenon in humans [19], it is worth
finding suitable animal models to study the mechanisms involved. In
addition, due to their limited proliferative abilities, more efficient
and precise high-resolution techniques are needed because the quan-
tity of senescent T cells is usually too low for in-depth phenotype or
functional assays [71]. This effort may be aided by techniques such as
single cell sequencing. Moreover, since senescence is the dynamic
process upon antigen stimulation, it will be very helpful to trace over-
all changes in both the phenotype and corresponding function.

Third, targeting senescent T cells as a novel therapeutic strategy
requires further analysis of the phenotype and causative mechanism
under different scenarios. It is worth clarifying whether the existing
therapies/strategies are engaged in regulating T cell senescence. If
involved in T cell senescence upon a given therapy, parameters such
as the dose, interval time, and treatment duration should be delin-
eated precisely. Only with a comprehensive and objective under-
standing can disabled T cells regain their powerful lethality in
tumour therapy.

6. Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE, Cur-
rent Contents, PubMed, and references from relevant articles using
the search terms “senescent T cell”, “CD8+CD57+ T cell”, “CD8+CD28�

T cell”, “terminally differentiated T cells”, “cancer”, “immunother-
apy”, and “chemotherapy”. Abstracts and reports from meetings
were included only when they related directly to previously pub-
lished work. Only articles published in English between 1998 and
2021 were included.
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