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Abstract

Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has
been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural
mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional
blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to
investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural
representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation,
stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus
increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show
that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early
sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active
report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However,
later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously
reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions
for a ‘seen’ response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down
expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the
role of expectations and stimulus relevance.
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Introduction

What we perceive can be strongly influenced by top-down fac-
tors, such as our prior expectations about likely states of the
world and the relevance of input for the task at hand (Bar 2004;
Friston 2005; Bar et al. 2006; Clark 2013). According to a growing
body of work, expectations, originating from past experience,
can shape perception on both a neural and behavioural level
(Summerfield and De Lange 2014). When sensory input matches
prior expectations, performance on tasks is higher (Cheadle
et al. 2015; Stein and Peelen 2015) and neural activity is attenu-
ated (Alink et al. 2010; Kok et al. 2012; Todorovic and de Lange
2012). In such predictive brain frameworks, it is assumed that
what we perceive consciously is strongly related to the brain’s
best guess about the current state of the outside world (Gregory
1980; Hohwy 2012; Panichello et al. 2013; King and Dehaene
2014a).

Indeed, the idea that our subjective experience is strongly
influenced by top-down factors is supported by numerous
behavioural studies that have shown beneficial effects of prior
knowledge on subjective perception, such as on the accuracy
(Stein and Peelen 2015) or speed (Chang et al. 2015; Pinto et al.
2015) of detecting a stimulus. Likewise, it has been shown that
prior knowledge increases the likelihood that a stimulus is con-
sciously reported during the attentional blink (AB) (Martens and
Johnson 2005; Visser et al. 2015; Meijs et al. 2018). Although
expectations seem to affect conscious access, the neural under-
pinnings of these expectation-related modulations are still
unclear. In a recent electroencephalographic (EEG) study, we did
not find evidence that the amplitude of neural signals, as
indexed by event-related potentials, explained the effect of
expectations on the likelihood of conscious report of the stimu-
lus (Meijs et al. 2018). This finding may be explained by the fact
that instead of modulating the strength of neural responses,
expectations may improve the signal-to-noise ratio or
sharpness of the representation of stimuli (Kok et al. 2012; Bell
et al. 2016) by instantiating specific perceptual templates (e.g.
orientation selectivity), even before stimulus presentation (Kok
et al. 2017). Because it has been shown previously that conscious
perception may also be closely linked to the quality or variabil-
ity of sensory representations (Schurger et al. 2010; et al. 2015),
we here investigated whether similar enhancements of neural
representations also underlie the effects that expectations have
on the conscious accessibility of stimuli (Meijs et al. 2018).

To this end, we used an AB task in which each trial consisted
of a sequence of rapidly presented letters in which one or two tar-
gets were to be detected and reported at the end of the stream
(targets were marked by placeholders, Fig. 1A). Crucially, the first
target stimulus (T1) could either validly, invalidly or not predict
(neutral trials) the identity of the second target (T2). Then, multi-
variate decoding analyses were used on magnetoencephalogra-
phy (MEG) data to track the neural representations of target
stimuli. Further, to explore the effects of task relevance on
stimulus-specific neural activity patterns subjects also performed
an additional ‘oddball’ task in which a similar rapid serial presen-
tations of letters was presented but subjects were instructed to
merely detect a contrast change of a stimulus that happened only
on 10% of the trials (these oddball trials were not taken into ac-
count in the analyses). The combination of both tasks allowed us
to trace the sensory processing of a letter stimulus in the absence
of a target identity decision (because the identity of the letters
was task-irrelevant). This decoding profile could then be com-
pared to the decoding profile that we observed during the AB task
in which subjects did have to make a perceptual decision on the

presented target stimuli (target identity was task-relevant). This
approach allowed us to perform within-task decoding analyses
(training and testing on the AB task using k-folding) and be-
tween-task decoding analyses (training on the oddball task and
testing on the AB task). Both approaches are aimed at testing dif-
ferent hypotheses. Training the classifier on the oddball task will
extract a relatively pure sensory signal (letter identity is task-
irrelevant) and therefore between-task decoding will likely isolate
those neural processes in the AB task related to similar sensory
stages of information processing. Based on earlier research (Kok
et al. 2012, 2017), it may be predicted that these stages are also as-
sociated with the effect of expectations on conscious report. On
the other hand, within-task decoding in the AB will train and test
on task-relevant stimuli that require a categorical decision and
therefore may additionally reveal decision-dependent processes
that could also underlie the role of expectation in conscious ac-
cess. Thus, our approach allowed us to examine if expectations
influence visual representations at sensory and/or decision-
related stages and how this influences conscious access.

Materials and Methods
Participants

We tested a total of 33 participants for this experiment. All partici-
pants had normal or corrected-to-normal vision. One participant
was excluded because T1 identification performance was more
than three standard deviations lower than the group average.
Furthermore, four participants were excluded because their subjec-
tive estimates of T2 visibility were unreliable. When they indicated
they perceived a target they were not able to identify the target cor-
rectly more often than chance-level (P> 0.05 in a binomial test).
Additionally, only in the MEG analyses we excluded participants for
whom the number of observations in any of the relevant conditions
(usually in the invalid condition, which had less trials) was lower
than 10, similar to Meijs et al. (2018). As a result, we included 28 par-
ticipants (18 females, age 22.5 6 2.8 years) in the behavioural analy-
ses and 19 participants (12 females, age 23.0 6 2.8 years) in the MEG
analyses. For one control analysis, we included all 28 participants
to rule out our selection of participant biased the results.

The experiment was approved by the local ethics committee
of the Radboud University (CMO Arnhem-Nijmegen; ‘Imaging
Human Cognition’). Written informed consent was obtained
from participants according to the Declaration of Helsinki.
Compensation was either 36 Euros or course credit.

Materials

Stimuli were generated using the Psychophysics Toolbox
(Brainard 1997) in a MATLAB (MathWorks, Natick, MA, USA) envi-
ronment. In the behavioural lab, stimuli were displayed on a 2400

BENQ LED monitor (1920 � 1080 pixels; 120 Hz). A chinrest was
used to control participants’ distance from the screen (657 cm).
In the MEG environment, a PROPixx projector (VPixx
Technologies Inc., Saint-Bruno, Canada) located outside the mag-
netically shielded room projected the stimuli onto a screen
�80 cm in front of participants (1920 � 1080 pixels, 120 Hz). All vi-
sual input was presented on a ‘black’ background (luminance: 6

3 cd/m2) and matched for visual luminance between the two labs.

Procedure and stimuli

The experiment consisted of two sessions that were completed
within 1 week. In the first session, participants performed an
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oddball task and in the second session an AB task (Raymond
et al. 1992). In both sessions MEG was recorded. In the first ses-
sion, after the oddball task, participants also practiced the AB
task outside of the MEG scanner so that they could learn about
the predictive relationship between T1 and T2.

Session 1: Oddball task
At the start of the first session, we measured MEG while partici-
pants performed an oddball task that was highly similar to the
AB task (Fig. 1B). Again, every trial consisted of a sequence of
letters in which letters that were targets in the AB task were
presented. On every trial, a ‘T1’ (the letter D, V or G) was pre-
sented followed by a ‘T2’ (the letter D or K) at both lag 3 and
lag 10 and every of these targets was marked by placeholders.
All stimuli, including targets, were ‘white’. Every combination of
‘T1’ and ‘T2’ stimuli was equally likely, meaning there was no
predictive relationship between the targets. Importantly, partic-
ipants were not made aware of the presence of the targets.
Moreover, because they had not yet seen the AB task, they did
not know about the existence of any specific target letters
(or predictive relationship between those). The timing of the
stimuli and trials was identical to that in the AB task, with
the exception that at the end of the letter sequence the ITI
(800–1200 ms) started immediately.

Participants were instructed to detect oddball stimuli that
occurred on 10% of the trials. An oddball was defined by its grey
(luminance: 6 78 cd/m2) instead of white colour. Once an odd-
ball was detected, the participant had to press the index finger
button on an MEG-compatible button box as quickly as possible
while the task continued. Because, unbeknownst to partici-
pants, oddballs were always either a ‘T1’ or ‘T2’ target, they
were accompanied by the same placeholders used in the AB
task. To make sure participants would focus their attention on
the relevant time points in the sequence, they were explicitly
instructed that these squares marked the potential temporal
positions of oddballs and would help them detect oddballs.
Oddball trials were excluded from all analyses. Every participant
completed 8 blocks of 96 trials (total 768 trials) of the task. Every
block was followed by summary feedback and a short break.

Session 1: Training of the AB task
At the end of the first session, every participant was behaviour-
ally trained on the AB task. First, participants received on-
screen instructions in which they were explicitly instructed
about the predictive relationship between T1 and T2.
Subsequently, they performed 6 blocks of 75 trials (total 300 tri-
als) of the task. The goal of this training session was to familiar-
ize participant with the task before the MEG session and to
teach participants the predictive relationship between T1 and
T2. We did not analyse the data from this training session.

Session 2: AB task
Participants had to detect targets within a sequence of rapidly
presented distractors (92 ms per stimulus). Each stimulus in the
sequence was an uppercase letter that was presented at fixation
in a monospaced font (‘Courier New’; letter size: 62.08�).
The first target (T1: G, H or V) was presented in ‘green’ at the
fifth position of the sequence. In 80% of trials a second target
(T2: D or K) was presented as well, either at lag 3 (275 ms after
T1 onset; two-third of trials) or at lag 10 (917 ms after T1 onset;
one-third of trials). Each distractor letter (all alphabet letters
excluding the targets) was presented maximally once per trial.
T2 targets and distractors were presented in ‘white’ (luminance:
6 230 cd/m2).

Crucially, the likelihood of each T2 target appearing was
conditional on the identity of the T1 stimulus that was previ-
ously presented (Fig. 1A). For every participant, one of the T1
stimuli (e.g. G) predicted that ‘D’ was the most likely T2 target
while another T1 (e.g. H) made the exact opposite prediction
that ‘K’ was the most likely T2 target. If a T2 was presented, the
likely T2 stimulus was shown on 75% of trials. A third T1 stimu-
lus (e.g. V) had no predictive value (neutral condition; 20% of
trials), i.e. both T2 stimuli were equally likely to follow T1.
All possible mappings of T1 and T2 were used across partici-
pants in a counterbalanced fashion, but mappings were fixed
within a given participant for the entire experiment. On 20% of
trials no T2 stimulus was presented but a random distractor let-
ter was presented instead at either lag 3 or lag 10. Both at the
T1-timepoint and the T2-timepoint of a trial, even when a T2
target was omitted, a placeholder consisting of four grey
squares (luminance: 6 50 cd/m2; size: 0.62�; midpoint of each
square centred at 2.34� horizontally and vertically from fixation)
was presented around the target letter. This placeholder pro-
vided timing information, cueing participants which time
points were relevant in a trial and thereby helping them decide
which targets they saw during a trial.

Following a 150 ms blank period at the end of the letter se-
quence, participants gave their responses with the use of a
(MEG-compatible) button box, using the index, middle and ring
finger of their right hand. First, they reported the T2 they had
seen (3 response options: D, K or none). Subsequently, they
were asked to make a forced-choice judgment about the T1
stimulus that was presented (3 response options: G, H or V).
A long response timeout duration of 4 s was used, and partici-
pants were explicitly instructed to value accuracy over response
speed. The inter-trial interval was 800–1200 ms.

Before starting the MEG recordings, participants were briefly
reminded about the task instructions (given to them in a previ-
ous session, see next paragraph). Every participant completed
�750 trials (average: 748.7 6 26.8, minimum: 652; maximum:
803), with the exact number depending on the duration of MEG
preparations and the number of breaks a participant needed.
At the end of every block of 75 trials, participants received sum-
mary feedback about their performance and were provided with
the opportunity to take a short break.

Behavioural analyses

Oddball task
Like for the AB task, behavioural data were preprocessed with
MATLAB. We computed hit rates (percentage of detected odd-
balls) and analysed these using JASP (Love et al. 2015).
Specifically, we compared the hit rate between trials where
the oddball was presented at the T1-timepoint, the lag 3 T2-
timepoint or the lag 10 T2-timepoint.

AB task
Behavioural data were preprocessed with in-house MATLAB
scripts and subsequently analysed using JASP software
(Love et al. 2015). We focused on the effects of lag and expecta-
tion on percentage correct T2 visibility, given that the correct T1
target was reported. T2 responses were considered to be correct
if a participant entered the target letter that was presented or
reported not seeing a letter when none was presented on a T2
absent trials. Since expectations are undefined on T2 absent tri-
als, these trials cannot be used in the main statistical analyses.
T2 percentage correct was used in a 2 � 2 repeated measures
ANOVA with the factors expectation validity (valid, invalid and

Expectations, task-relevance and conscious report | 3

Deleted Text: attentional blink (
Deleted Text: )
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ,
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: ''. 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: A
Deleted Text: a
Deleted Text: ttentional B
Deleted Text: b
Deleted Text: link
Deleted Text: Attentional B
Deleted Text: b
Deleted Text: link 
Deleted Text: (``
Deleted Text: ''; 
Deleted Text:  
Deleted Text: ``
Deleted Text: '' 
Deleted Text: 2/3
Deleted Text: rd
Deleted Text: 1/3
Deleted Text: rd
Deleted Text: ``
Deleted Text: '' 
Deleted Text: m2
Deleted Text: ,
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ,
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ,
Deleted Text: ,
Deleted Text: 4 
Deleted Text: -
Deleted Text:  
Deleted Text: second 
Deleted Text:  - 
Deleted Text: approximately 
Deleted Text: as
Deleted Text: hit rates 
Deleted Text: Attentional B
Deleted Text: b
Deleted Text: link 
Deleted Text: as
Deleted Text: x
Deleted Text: ,


D K none

G H V

T1-T2 SOA
lag 3: 275 ms

and
lag 10: 916 ms

T1: G, H or V

T2: D or K

T1-T2 SOA
lag 3: 275 ms

or
lag 10: 916 ms

T1: G, H or V

T2: D, K or distractor

A Attentional blink task B Oddball task
T1 predicts T2 T1 and T2 are unrelated

Valid 
Neutral
Invalid

T1 response

T2 response: 

92 ms per stimulus92 ms per stimulus

C Percentage T2 correct

20

40

60

80

100

lag 3 lag 10

%
 T

2 
co

rr
ec

t

D Percentage “T2 seen” response

20

40

60

80

100

lag 3 lag 10

%
 “

T2
se

en
” 

re
sp

on
se

E Overview of T2 responses

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

20

40

60

80

100

Participants

F T2 responses on
omission trials

G Correlation response bias 
and lag 3 expectation effect

H Correlation response bias 
and lag 10 expectation effect

False alarm
Correct rejection
Miss
Wrong target reported
Hit

Response

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

20

40

60

80

100

D
K
None

Response

Expectation
D K Neutral

Ex
pe

ct
at

io
n 

ef
fe

ct
(v

al
id

-in
av

lid
) a

t l
ag

 3

20

40

60

80

100

0

-20

Ex
pe

ct
at

io
n 

ef
fe

ct
(v

al
id

-in
av

lid
) a

t l
ag

 1
0

20

40

60

80

100

0

-20

Response bias Response bias
0 100 100050 50

% T2 correct % “T2 seen” response

Valid 
Neutral
Invalid
T2 absent

Figure 1. Experimental tasks and behavioural results. (A) The trial structure of the AB task. Each trial consisted of a sequence of rapidly pre-
sented letters in which targets were to be detected and reported at the end of the stream. Targets were marked by placeholders. The first target
(T1: G, H or V) was always the fifth stimulus in the sequence. A second target (T2: D or K) was presented on 80% of trials, at varying lags. In a
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neutral) and lag (lag 3, lag 10). Subsequently, we performed post
hoc t-tests to directly compare the different levels of expecta-
tions within each of the lags.

MEG measurements and preprocessing

Whole-head magnetoencephalographic (MEG) recordings were
acquired (sampling rate 1200 Hz) using a 275-channel MEG sys-
tem with axial gradiometers (VSM/CTF Systems, Coquitlam, BC,
Canada), which was located in a magnetically shielded room.
Four channels (MLC11, MLC32, MLF62 and MRF66) were disabled
in all participants for technical reasons. Head position was
monitored and corrected if required using three coils, placed on
the nasion and on earplugs in both ears (Stolk et al. 2013).
Importantly, at the start of the second MEG session an effort
was made to reposition a participants’ head as much as possible
in the same location as during the first session by using a tem-
plate head position saved in the first MEG session. In addition to
the MEG, three sets of electrodes (þground) were used to mea-
sure the electrocardiogram and horizontal and vertical eye
movements. Finally, an Eyelink 1000 eyetracker (SR Research,
Ottawa, Canada; sampling rate 1000 Hz) was used to measure
pupil dilation and vertical and horizontal eye movements.

For each session separately, we preprocessed the data with
the FieldTrip toolbox for MATLAB (Oostenveld et al. 2011). Data
were high-pass filtered at 0.01 Hz to remove slow signal drifts.
Additionally, a set of notch filters was applied at 50, 100 and
150 Hz to remove line noise. Subsequently, we cut the data into
epochs from �750 to 1500 ms relative to T1 stimulus onset. The
data were visually inspected and trials and/or channels with
artefacts were deleted (averages session 1: 7.0% of trials, 1.2
channels; averages session 2: 5.4% of trials, 1.1 channels). To re-
move noise originating from far away external sources, third-
order gradient correction using the CTF reference sensors was
applied. Independent component analysis was used to identify
and remove data components related to eye blinks, eye move-
ments or heartbeats. To get a reliable estimate of which compo-
nents to delete, each of the components was correlated to the
EEG and eyetracker channels. Following the independent com-
ponent analysis, previously deleted channels were recon-
structed using the average of neighbouring channels. Finally, all
trials were baseline corrected on the interval 500 ms prior to T1
onset (corresponding to �775 to �275 ms prior to T2 onset).

Decoding analyses and statistics

Prior to the decoding analyses, we applied a sliding window of
50 ms to average the data, thereby smoothing the data in the

temporal domain and improving the signal-to-noise ratio.
Subsequently, we performed the decoding analyses by using
linear discriminant analysis (LDA) decoders with the activity
from all MEG-channels as features. In short, as outcome mea-
sure, the LDA decoder calculates the distance from a decision
boundary on a trial-by-trial basis (full analysis details are avail-
able in Mostert et al. 2015). This distance measure can be used
as a quantitative measure of the evidence for a certain class in
de decoder. In cases where a decoder was trained and tested on
the same dataset, a 10-fold cross-validation procedure was
implemented in which for each fold the LDA decoder was
trained on 90% of the trials and tested on the remaining 10% of
trials. To be able to look at the stability of neural representa-
tions over time, all decoders were trained at one-time point and
then tested on all-time points, resulting in a temporal generali-
zation matrix (time range �250 to 1500 ms relative to T1; see
also King and Dehaene 2014a,b). Cluster-based permutation
tests with 1000 permutations were used to find the significant
positive or negative clusters within the temporal generalization
matrices of interest (Maris and Oostenveld 2007). During each
permutation, positive and negative clusters were identified in-
dependently (each using one-sided P¼ 0.025 level), and subse-
quently the t-values within a cluster were summed. We then
took the maximum absolute t-value sum as the statistic for the
permutation distribution to which observed cluster t-statistics
would be compared.

Using these analyses methods, we initially decoded T2 target
identity at lag 3 within each of the two tasks. Further decoding
analyses were done between-tasks, training the LDA decoder on
one task and testing it on the other task. For the main analyses,
we used the decoding that was trained on the oddball task and
tested it on the AB task data (only trials where T1 was correctly
identified), separately for valid and invalid trials. We did not in-
clude the neutral condition here because the number of obser-
vations in this condition was low (only presented on 20% of
trials). A similar analysis was done to compare T2 identity
decoding between T2 reported and T2 missed trials. As a con-
trol, we repeated all these decoding analyses for T2 targets pre-
sented at lag 10, the results of which are reported in the
Supplementary material.

Next, we used the decoder trained on the oddball task and
tested it on the AB data (T1 correct trials) for T2-absent trials
and trials with lag 10 together (in both conditions, no target
stimulus was presented at lag 3). Instead of grouping trials
based on T2 identity, we grouped trials based on the expected
T2 stimulus so that we could investigate the neural representa-
tion of sensory expectations. In a final group of analyses,
decoders were trained and tested on the AB task (lag 3 and T1

Figure 1. Continued

training session participants learned conditional probabilities between T1 and T2. One T1 stimulus was used as neutral condition and was thus followed equally often

by each T2 stimulus. The other T1 stimuli predicted which T2 target was most likely to appear, thereby introducing valid and invalid expectations. (B) The oddball task

was designed such that temporally it resembled the AB task as much as possible, with the most notable difference that on every trial three target stimuli were pre-

sented (T1, T2 at lag 3 and T2 at lag 10). Participants’ task was unrelated to the target identity: they had to respond to oddball stimuli that were present on 10% of trials

at one of the target positions. In the example trial here, an oddball is presented at the T2 time point. (C) Percentage correct T2 (given that T1 was correctly identified)

for each of the lags and conditions. Expectation validity significantly modulated the percentage of T2s that was consciously seen and this effect was different at the

two lags. At lag 3, the expectation effect was mainly driven by the valid condition, while at lag 10 both invalid and valid expectations affected T2 detection as compared

to neutral trials. (D) Results from a control analysis, using the percentage of trials on which participants reported seeing a T2 target (given that T1 was correctly identi-

fied) as dependent variable. Overall, the pattern of results was similar to that in (C). Error bars denote SEM. (E) A general overview of the response pattern over all trials

for both lags together. The percentage of misses (no target reported when one was presented) was high in all participants. When no target was presented, participants

usually correctly reported not seeing one. (F) The response pattern shows participants had a response bias: if they reported a target on a T2-absent trial, they more of-

ten guessed the expected target letter (when there was an expectation). (G) and (H) The relationship between the response bias (% of T2-absent trials with a predictive

T1 where the expected target was reported) and the behavioural effect of expectation validity (valid–invalid) at lag 3 (G) and lag 10 (H) was depicted. In both, the rela-

tionship is shown for both outcome measures that were used to quantify behavioural performance: percentage correct (black) and percentage of ‘T2 seen’ responses

(regardless of the exact letter participants entered; grey).
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correct trials only), allowing us to investigate the main effects of
expectation validity and T2 visibility within the AB task. In addi-
tion, we did within-task T2 decoding analyses separately for T2
reported and T2 miss trials. Finally, to get a better view at the
decoding results when training and testing on the same time
point, we extracted the diagonal from the temporal generalization
matrices of a number of analyses. We performed a paired-
samples t-tests to each time point of the data after T1 presenta-
tion (0–1500 ms) and subsequently applied false discovery rate
(FDR) correction.

Results
Behavioural results: oddball task

In the oddball task, we computed the hit rate (percentage of
detected oddballs) for each of the time points at which an odd-
ball could be presented. The hit rate was significantly different
between these time points (F2,54 ¼ 13.87, P< 0.001; T1 time:
72.49 6 27.91%; T2 lag 3 time: 74.38 6 25.74%; T2 lag 10 time:
60.27 6 27.12%). Follow-up t-tests showed this effect was caused
by a lower hit rate for oddballs presented at the latest position
in the stream (T1 time vs. T2 lag 10 time: t27 ¼ 3.364, P¼ 0.002;
T2 lag 3 time vs. T2 lag 10 time: t27 ¼ 5.065, P< 0.001), while there
was no difference between the other two time points (T1 time
vs. T2 lag 3 time: t27 ¼ �0.897, P¼ 0.378).

Behavioural results: attentional blink task

In Fig. 1C, we show percentage correct T2 discrimination for tri-
als on which T1 was correctly identified, separately for short
and long lags (T1 accuracy T2 at lag 3: 95.63%, SD¼ 3.68%; T1 ac-
curacy T2 at lag 10: 95.69%, SD¼ 3.95%). We observed a clear AB,
as indicated by a reduced T2 performance when the time be-
tween T1 and T2 was short compared to long (lag 3: 34.57%; lag
10: 62.58%; F1,27 ¼ 61.43, P< 0.001). Importantly, T2 stimuli were
more often correctly reported when they were expected (col-
lapsed across lag: expected: 59.44%, unexpected: 39.13%;
F2,54¼17.37, P< 0.001) and this effect of expectations was differ-
ent at lag 3 than at lag 10 (interaction lag � validity: F2,54 ¼ 5.97,
P¼ 0.005).

To test whether valid expectations increase, or invalid
expectations decrease, T2 reportability, we directly compared
valid, invalid and neutral trials at each of the two lags. At lag 3,
where T2 most often goes unreported, T2 discrimination perfor-
mance was higher in the valid (black line; 47.67%) than in the
neutral (dark grey line; 30.35%) and invalid (light grey line;
25.68%) conditions (valid–invalid: t27 ¼ 5.49, P< 0.001; valid–neu-
tral: t27 ¼ 4.60, P< 0.001). In the invalid condition performance
was lowest, although not significantly lower than performance
in the neutral condition (neutral–invalid: t27 ¼ 1.79, P¼ 0.084).
At the long lag, performance was also higher in the valid than
invalid condition (valid 71.21%; invalid 52.57%; valid–invalid: t27

¼ 3.88, P < 0.001) and performance in the neutral condition was
in between the other conditions, though closer to the valid con-
dition (neutral: 63.97%; valid–neutral: t27 ¼ 2.04, P¼ 0.051; neu-
tral–invalid: t27 ¼ 3.18, P¼ 0.004). Taken together, these results
replicate earlier findings that conscious access can be affected
by expectations about stimulus likelihood and that these effects
are largest at short lags, inside the AB (Meijs et al. 2018).
Additionally, at this short lag performance was significantly im-
proved when expectations were valid compared to neutral,
while the negative effect of invalid expectations was relatively
small. Indeed, the benefit of valid expectations was larger at lag

3 than at lag 10 (valid–neutral lag 3 vs. valid–neutral lag 10: t27 ¼
3.67, P¼ 0.001). This suggests that at short lags, when the T2
stimulus is most often missed, the observed expectation effects
are likely mostly driven by a benefit from valid expectations,
which leads to a higher likelihood of conscious access.

Overall, false-alarms were infrequent, on �19% of T2-absent
trials subjects reported a target (Fig. 1E and F), correct rejections
for T2-absent trials: lag 3: 81.52%; lag 10: 79.94% (Aru and
Bachmann 2017). Further, if participants reported seeing a tar-
get on T2-absent trials, they most often reported the expected
target (t27 ¼ 2.52, P¼ 0.018), demonstrating that participants had
indeed learned the predictive relationship between T1 and T2
and used this information for their decisions. Therefore, it may
be that the behavioural effect of expectations we observed on
T2-present trials is (partly) affected by this response bias.
Indeed, a correlation between participants’ response bias, as
measured by the percentage of trials they reported the expected
letter vs. another letter on T2-absent trials, and their expecta-
tion effect, as measured by the difference in performance on
valid minus invalid trials, was observed at lag 3 (Fig. 1G and H,
black dots; lag 3: spearman r¼ 0.49, P¼ 0.008; lag 10: spearman
r¼ 0.34, P¼ 0.078). However, a control analysis where we
analysed the percentage of ‘T2 seen’ responses (classifying a re-
sponse as ‘seen’ regardless of whether this letter was correctly
reported) showed comparable effects of expectation (validity ef-
fect: F2,54 ¼ 6.06, P¼ 0.004; interaction lag � validity: F2,54 ¼ 5.13,
P¼ 0.009, Fig. 1D). Therefore it seems unlikely that response bias
can fully explain our behavioural results, because in this control
analysis the dependent variable (seen vs. miss) is completely or-
thogonal to participants’ expectations (D vs. K), ensuring that
expectations cannot bias a specific response option. This is fur-
ther supported by the fact that this outcome measure did not
correlate with the response bias participants had on T2-absent
trials (Fig. 1G and H; grey dots; lag 3: spearman r ¼ �0.09,
P¼ 0.649; lag 10: spearman r ¼ �0.11, P¼ 0.594). This suggests
that the observed expectation effects are present over and
above the effects of response bias (note that the pattern of cor-
relations was similar when the outlier subject with a response
bias of nearly 100% was removed from the data, lag 3: spearman
r ¼ �0.05, P¼ 0.822; lag 10: spearman r ¼ �0.05, P¼ 0.807).

Decoding of T2 identity is modulated by stimulus
relevance

Multivariate analyses can provide insights in the dynamics of
category-specific brain responses, as different neural and cogni-
tive processes may be reflected in dissimilar patterns of tempo-
ral generalization (King and Dehaene 2014b). First, we tested the
role of stimulus relevance in the processing of the letter stimuli.
To do so, we focused on decoding the identity of T2 targets
(D vs. K) at lag 3, irrespective of conscious report or expecta-
tions. Figure 2A and D shows the temporal generalization
profiles for T2 identity within each of the two tasks, using cross-
validation procedures and corrected for multiple comparisons
(see Materials and Methods section for details). As can be seen,
T2 target identity could reliably be decoded from MEG data in
both tasks, as reflected in a typically observed diagonal decod-
ing pattern starting �100 ms after T2 onset (Oddball task:
P¼ 0.022; AB task: P< 0.001, permutation tests). This diagonal
decoding pattern likely reflects a rapid sequence of distinct neu-
ral processes evolving over time (King and Dehaene 2014b;
Mostert et al. 2015; Marti and Dehaene 2017). Further, as
expected, in the AB task only, decoding performance was not
only strong on the diagonal of the temporal generalization
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matrix, but its profile showed a mixture of a diagonal and a
square-shaped pattern and decoding was much more extended
in time. Thus, we observed stimulus-specific stable and sus-
tained activation patterns for task-relevant compared to task-
irrelevant stimuli. Next, we trained decoders on each of the
tasks and subsequently tested them on the data of the other
task (between-task decoding) to test for neural similarities and
differences between the tasks. This approach solely resulted in
significant clusters along the diagonal of the temporal generali-
zation matrices for both analyses, further highlighting a shared
neural coding of target identity from �100 to 375 ms post T2 on-
set (Oddball task! AB task: P¼ 0.013, Fig. 2B; AB task! Oddball
task: P¼ 0.024, Fig. 2D). This conclusion is also supported by
similar decoding results for T2 stimuli presented at lag 10
(Supplementary Fig. 1). Overall, these results show that when
stimuli are task-relevant (require a perceptual decision) addi-
tional processing steps can be picked up by the classifier and T2
identity is processed in more stable and temporally extended
neural representations, as compared to when stimuli are task-
irrelevant (Kiebel et al. 2008; Stokes et al. 2009; King and
Dehaene 2014b; Mostert et al., 2015; Myers et al. 2017).

Conscious access is related to late and stable
stimulus-specific neural representations

Next, we tested how category-specific neural representations
relate to conscious report, or the absence thereof, in the AB
task. We did so by comparing T2 decoding (D vs. K) at lag 3 for
seen T2s vs. missed T2s. To rule out any effect caused by the

identity of T1, only trials where T1 was correctly reported were
incorporated in these analyses. Figure 3 shows both between-
task analyses (Oddball task! AB task) and within-task analyses
(AB task ! AB task; done separately per condition). In line with
prevalent theoretical models of consciousness, such as global
workspace theory (Baars 2002) and local recurrence theory
(Lamme 2006), early sensory processing of the stimulus was in-
dependent of conscious report, as reflected by similar decoding
profiles along the diagonal of the temporal generalization ma-
trix for reported and missed T2’s (Fig. 3A–C, Oddball task ! AB
task) (Dehaene et al. 2006; Dehaene and Changeux 2011; King
et al. 2016; Fahrenfort et al. 2017). Figure 3 also shows within-
task analyses (AB task !AB task) in which T2 identity was
decoded based on solely T2 reported (Fig. 3D) or T2 missed trials
(Fig. 3E). In both analyses, significant l decoding of T2 identity
around the diagonal was observed (T2 reported trials: P< 0.001,
miss trials: P¼ 0.042). However, when T2 was reported, this
decoding pattern was longer-lasting (Fig. 3F) and had a broader
spatial profile (more square-shaped instead of diagonal, T2
reported: decoding significant from �100 ms to �1200 ms post
T2-onset; T2 missed: decoding significant from �100 ms to
�410 ms post T2-onset). This suggests that, compared to missed
T2’s, the signal was broadcasted higher up the cortical hierarchy
(for similar results see Mostert et al. 2015). Please note that the
apparent pre-stimulus decoding in Fig. 3F should not necessar-
ily be interpreted as evidence for decoding of stimulus-specific
T2 activations before the stimulus is presented. This effect most
likely relates to decoding of T1, which in the AB task was corre-
lated to T2 identity.
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Figure 2. Decoding of T2 identity at lag 3. Temporal generalization matrices showing that T2 target identity (D vs. K) could be reliably decoded
from MEG data within both the oddball task (A) and the AB task (D). Decoding was longer and more widespread in the latter, suggesting neural
representations were more stable over time. (B, E) Between-task decoding analyses (trained and tested on separate datasets) showed signifi-
cant clusters along the diagonal, indicating that early neural sensory representations of T2 identity were highly similar between-tasks. Timing
of all panels is relative to T1 onset. Dashed lines indicate T2 stimulus onset. Contours of significant clusters are marked with a grey line (cor-
rected for multiple comparisons). Decoding of T2 targets at lag 10 is shown in Supplementary Fig. 1. To visualize the pattern of activity used by
the decoding algorithm, we display topographic plots (C, F) showing the planar gradient event related field (ERF)-difference between the two T2
targets (univariate contrast). On the left, we show the topography in an early window (100–250 ms post T2; including the peak in decoding) for
both tasks. For the AB task only, a topographic plot in a later window (450–600 ms post T2), in which there was no significant decoding for the
oddball task, is shown.
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Finally, we aimed to decode reported vs. missed T2’s in the
AB task, irrespective of the specific stimulus that was presented
(classifier labels: reported vs. missed, target letter is not rele-
vant, Fig. 3G, P< 0.001). Several interesting aspects of the
obtained temporal generalization profile can be noted. First,
along the diagonal, decoding was significant already before T2
presentation (Fig. 3H). Neural activity before stimulus presenta-
tion thus predicted later stimulus report, in line with recent
reports highlighting pre-stimulus fluctuations in neural activity
that correlate with stimulus visibility (e.g. Linkenkaer-Hansen
et al. 2004; Mathewson et al. 2009; Iemi et al. 2017). Because this
analysis only included T1-correct trials, this pre-stimulus effect
cannot easily be explained in terms of differences in T1-
performance. Nevertheless, we cannot rule out that T1-related
processes affected these results, since others have shown that
the extent of T1 processing may be different for T2 blink and T2

no-blink trials (Ouimet and Jolicœur 2007; Slagter et al. 2017).
The second interesting aspect about this overall visibility effects
was that the square-shaped pattern was much stronger and
clearer. This stimulus-independent profile is likely related to an
amplified P3-like component on T2 reported trials compared to
T2 missed trials, which is picked up by the classifier algorithm
(see Supplementary Fig. 5 for ERF results) (Sergent et al. 2005;
Meijs et al. 2018).

Valid expectations do not enhance early sensory
representations of stimulus identity

In our final set of decoding analyses, we aimed to explore the
link between neural recordings, expectations and conscious
reports. Behaviourally, we observed that valid expectations in-
creased the chance that a stimulus was subsequently reported
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Figure 3. Conscious stimulus detection and its neural representation. Temporal generalization matrices for the decoding of T2 identity at lag 3,
trained on the oddball task, for trials where T2 was consciously perceived (A) and trials where it was missed (B). T2 targets could be reliable
decoded in both conditions and no significant differences between both conditions was observed along the diagonal (C). Within condition
decoding analyses trained on the AB task show T2 decoding was more long-lasting (F) and stable on trials where T2 was consciously perceived
(D) compared to where it was missed (E). (G, H) A direct investigation of the effect of T2 visibility (seen vs. miss, irrespective of stimulus iden-
tity) showed widespread significant decoding starting before stimulus onset, indicating an early and long-lasting main effect of stimulus visi-
bility. Timing of all panels is relative to T1 onset and in every panel only trials where T1 was correctly identified were used. Dashed lines
indicate the onset of a T2 stimulus at lag 3. Significant clusters in the temporal generalization matrices are contoured by a grey line (corrected
for multiple comparisons). We also used t-test for effects along the diagonals, as shown in panels (C, F, H) in which significant time periods are
marked by horizontal lines at the bottom of the panel. Solid lines indicate significant time points (FDR-correct P-value <0.05) for conditions
while the difference between conditions is indicated by a dotted line (only in F).

8 | Meijs et al.

Deleted Text: p&thinsp;<&thinsp;
Deleted Text:  
Deleted Text:  
https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niz011#supplementary-data


and to test whether this may relate to the sharpening of sensory
representation of T2 identity, decoding performance was com-
pared between trials where participants had a valid (Fig. 4A) or
invalid (Fig. 4B) expectation at lag 3 (only T1-correct trials were
included). Importantly, only between-task analyses were per-
formed in which the decoder was trained on the oddball task
(no T1–T2 predictability) to prevent the decoding being biased
by the predictive relationship between T1 and T2 in the first
place, which is inherently present in our AB task and difficult to
circumvent. Training on the AB task would also incorporate un-
desirable factors (e.g. conscious access: valid trials are reported
more often than invalid trials) into the classifier training.

These decoding analyses revealed no effect of prior knowledge
on the sharpening of sensory representations (T2 identity decod-
ing was similar for valid and invalid trials, Fig. 4C, P> 0.9).
Because several studies have shown that the effects of expecta-
tion may interact with (or even depend on) attention (Kok et al.
2012; Jiang et al. 2013), we aimed to rule out that the absence of
expectation-related sharpening could be attributed to a lack of at-
tention for targets presented at lag 3 (i.e. during the ‘blink’ period).
However, similar results were obtained for stimuli presented at
lag 10 and hence out of the AB period (Supplementary Fig. 3).
Furthermore, we observed the same pattern of results in a control
analysis with all the 28 participants that were included in the
behavioural analyses. This eliminates the possibility that any ab-
sence of a significant effect may be related to the selection of par-
ticipants (Supplementary Fig. 4). To verify whether there were
any general neural effects of expectation validity, we also
decoded whether a trial was valid or invalid regardless of T2 iden-
tity within the AB task (training and testing within the AB task).
This control analysis, while matching the number of seen/unseen
trials within each condition (valid vs. invalid), did not reveal

significant decoding of validity (all cluster P-values >0.46). A final
control analysis in which we trained the classifier on the differ-
ence between oddball stimuli and standard stimuli in the oddball
task and tested the difference between valid and invalid trials in
the AB task did also not reveal any effects of expectation violation
(across task classification), but did reveal expectation violation
signals in the oddball task itself (see Supplementary Fig. 6A).

The lack of a decoding difference between valid and invalid
trials makes it unlikely that participants’ expectations induced
neural ‘perceptual templates’ in the current task design. On valid
trials, when participants’ expectation about the upcoming T2 was
equal to the T2 that was presented, a decoder trained to distin-
guish T2 identity in the oddball task should have been able to
pick up the representation of the target (expectation) before target
presentation (target and expectation matched). Similarly, on inva-
lid trials one would have expected inverse decoding, because par-
ticipant’s expectation was opposite to the T2 stimulus that was
later presented (target and expectation mismatched; Kok et al.
2017). To fully rule out that we may have missed expectation-
induced sharpening, we performed a final analysis in which we
grouped trials based on the expected T2 stimulus instead of the
actually presented T2 stimulus. Only T2-absent and lag 10 trials
were used, so no T2 stimulus was ever presented at lag 3 in order
to prevent any contamination of the results by actual stimuli. But
again we did not observe the instigation of expectation-related
perceptual templates (all P> 0.221, Fig. 4D and E).

Discussion

In this report, we investigated the relationship between expect-
ations and conscious access and the role of stimulus relevance
on stimulus-specific neural representations. Using an AB
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Figure 4. Expectation validity. Temporal generalization matrices for the decoding of T2 identity at lag 3 for valid trials (A) and invalid trials (B)
separately. Only trials where T1 was correctly identified were used. (C) No significant differences (valid � invalid) between the two conditions
were observed, indicating T2 identity could be decoded equally well on valid and invalid trials (significant time periods indicated by horizontal
lines at bottom of panels, FDR-correct P-value <0.05), thus suggesting early sensory representations were not affected by the validity of prior
expectations. (D, E) It was not possible to decode participant’s T2 stimulus expectations based on a between-task decoder trained on the odd-
ball task data and tested on the attentional blink data. Timing is relative to T1 onset, and the dashed lines indicate the onset of T2 stimuli at
lag 3. We did not find any evidence for the existence of neural stimulus templates.
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paradigm in which the identity of T1 predicted the likelihood of
the T2, we found that T2 stimuli confirming T1-induced expect-
ations are more likely to be consciously reported than T2 stimuli
that violate these expectations. This is in line with studies that
have shown that the speed (Chang et al. 2015; Pinto et al. 2015;
De Loof et al. 2016) and accuracy (Stein and Peelen 2015; Meijs
et al. 2018) of stimulus detection is strongly influenced by
expectations. While control analyses in our experiment ruled
out that response biases fully explain our effect, future experi-
ments may benefit from the use of other measures, e.g. by ask-
ing participants to rate the subjective strength of the targets,
such as done with the Perceptual Awareness Scale (Overgaard
et al. 2006). Interestingly, by including neutral expectation trials
we showed that the effect of expectations was mainly driven by
a performance benefit for valid expectations, at least in the AB
interval (at short lags) (see also Pinto et al. 2015). Thus, at the
time that targets are often missed, conscious access becomes
more likely when expectations are confirmed (valid) compared
to when they were absent or invalidated (Fig. 1C).

We have also presented a series of multivariate decoding
analyses, in which we first showed that it was possible to reli-
ably decode the identity of a target letter from MEG data, both
when the identity of this letter was task-irrelevant in an oddball
task and when it was task-relevant and actively searched for in
an AB task. Furthermore, the combination of both within- and
between-task decoding analyses revealed that stimulus-specific
neural representations underlying the early stages of informa-
tion processing (on-diagonal generalization) were highly similar
for both tasks and independent of stimulus relevance and the
outcome of the perceptual decision (whether T2’s were reported
or missed in the AB task; Mostert et al. 2015; King et al. 2016).
Similar early decoding profiles were observed for (i) task-
irrelevant letters in the oddball task, (ii) task-relevant, but
missed T2’s in the AB task and (iii) task-relevant and reported
T2’s in the AB task. These results suggest that early stimulus-
specific neural processing stages are not modulated by either
attention to the stimulus dimension [stimulus (task) relevance]
nor conscious access to the target identity (report), in line with
previous findings (Fahrenfort et al. 2017). The absence of decod-
ing at later time points when T2 was task-irrelevant further-
more suggests that the representation of target letter identity is
not ‘broadcasted’ to higher levels of the cortical hierarchy when
this feature is task-irrelevant (Marti and Dehaene 2017).
Usually, it is assumed that compared to nonconscious percep-
tion, conscious report is related to widespread neural activity
(up to frontal areas) and more stable neural representations
(Lamme and Roelfsema 2000; Dehaene et al. 2006; Dehaene and
Changeux 2011; Schurger et al. 2015). Indeed we observed that
within the AB task, when targets were task-relevant, attended
and reported, T2 identity could be decoded for a longer time
frames and was more stable, reflected in a square-shaped
decoding profile (Ress et al. 2000; Jehee et al. 2011; Mostert et al.
2015; King et al. 2016; Marti and Dehaene 2017; van Vugt et al.
2018). Additionally, we observed a non-specific (regardless of T2
identity or expectations) difference between T2 reported and
missed trials, of which the late sustained part presumably cor-
responds to previously observed P3 modulations related to con-
scious report (Kranczioch et al. 2003; Sergent et al. 2005; Meijs
et al. 2018) and task relevance (Pitts et al. 2014; et al. 2014). We
also observed that fluctuations in neural activity (or overall
‘brain state’) before T2 presentation influenced whether or not
the stimulus was later reported, as has been recently demon-
strated by several others using at threshold or backward mask-
ing tasks (Linkenkaer-Hansen et al. 2004; Busch et al. 2009;

Mathewson et al. 2009; Pincham and Szucs 2012; de Gee
et al. 2014; Petro and Keil 2015; Iemi et al. 2017). These fluctua-
tions may reflect differences in T1 processing (Slagter et al.
2017).

Next, in order to explain the behavioural effects of expecta-
tions on conscious access, we looked at the neural representations
of T2 identity conditioned on the validity of single-trial expecta-
tions. We hypothesized that the early neural representation of val-
idly expected stimuli would be ‘sharpened’, and that this
improvement in improved stimulus representation would relate
to enhanced stimulus report (Kok et al. 2012; Cheadle et al. 2015).
However, we did not observe this effect. Moreover, no evidence for
expectation-induced pre-stimulus perceptual templates was ob-
served, although these effects have been recently reported in a dif-
ferent task context (Kok et al. 2017). One possible explanation for
this discrepancy in findings is that it may take longer than 300 ms
to encode T1 and translate the T1-prediction into a sensory repre-
sentation. Nevertheless, in our study, the influence of expecta-
tions on conscious report was not reflected in modulations of
sensory representations prior to T2 presentation or at early stages
in the processing hierarchy (for a similar conclusions in a different
paradigm see e.g. Rungratsameetaweemana et al. 2018; Alilovic
et al. 2019; Weaver et al. 2019). It could be that expectations can in-
fluence perception at multiple levels of the cortical hierarchy,
with different processes being affected depending on the type of
target stimuli or expectations being involved. In our AB paradigm,
participants learned conditional relationships between two letter
stimuli. Consequently, the expectations in our task were most
likely represented at a higher level of the cortical hierarchy (i.e. se-
mantic) as compared to the rather low-level perceptual expecta-
tions in earlier studies (Kok et al. 2012, 2017). As a consequence,
the early sensory representation of the targets that we pick up
based on the oddball task may not have been optimal for detecting
expectation-based modulations of T2 processing. Therefore, the
‘format’ in which the expectations were represented may simply
have been different (e.g. verbally or motor code) than that of the
incoming visual information and hence interactive effects may
not have been visible at the sensory level (Bang and Rahnev 2017;
Rungratsameetaweemana et al. 2018; Rungratsameetaweemana
and Serences 2019). Future research would benefit from using
tasks that can capture the full stimulus processing hierarchy in-
volved in processing the relevant stimuli within the experimental
task (sensory, semantic, decision).

In line with a recent study (Rungratsameetaweemana et al.
2018), we did not find any reliable time-locked decoding effects
that we could relate to the behavioural benefits of expectations,
suggesting it may be relatively subtle and hard to detect (see
also Meijs et al. 2018). Expectations may only affect small popu-
lations of neurons and such effect may be hard to detect using
analyses based on data from multiple sources (which is the case
here because analyses were performed on the sensor level).
Such effects may be more readily picked up with analyses in the
source domain. Alternatively, there are other possible imple-
mentations of expectations, such as the modulation of the on-
set of components related to conscious perception (Melloni et al.
2011). Other potentially interesting signatures are the power
and/or phase of alpha oscillations because a number of studies
have shown that low pre-stimulus alpha power is predictive of
subsequent conscious stimulus perception (Linkenkaer-Hansen
et al. 2004; Busch et al. 2009; Mathewson et al. 2009; de Lange
et al. 2013; Sherman et al. 2016; Benwell et al. 2017; Iemi et al.
2017). Furthermore, it has been shown that expectations lead to
changes in pre-stimulus alpha in a way that predicts stimulus
visibility (Mayer et al. 2016). Future studies are required to
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unravel the effect of expectations on conscious access in the
frequency domain.

A number of conclusions can be drawn from this study.
First, we have shown that the neural representation of letters
presented during rapid serial visual presentation can be reliably
decoded from neural activity as measured by MEG. While early,
sensory representations of letters could be decoded regardless
of the behavioural state of the subject, later and more stable
multivariate activity patterns were dependent on top-down
modulations by task relevance, attention and conscious report.
Second, we have shown that valid expectations enhance the
likelihood of visual target detection but we did not find evidence
that this was due to increased ‘sharpness’ of the relevant sen-
sory representations.

Data availability

The data and analysis scripts used in this article will be made
publicly available after manuscript acceptance at the following
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the Data Use Agreement (DUA), after which they are automati-
cally authorized to download the shared data. The DUA speci-
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Brain, Cognition and Behaviour will keep these shared data
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