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While the gut microbiome has been reported to play a role in bone metabolism, the
individual species and underlying functional mechanisms have not yet been characterized.
We conducted a systematic multi-omics analysis using paired metagenomic and
untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-
menopausal women to identify the potential crosstalk between these biological factors
which may be involved in the regulation of bone mineral density (BMD). Single omics
association analyses identified 22 bacteria species and 17 serum metabolites for putative
association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteriawere
negatively associated, while Firmicutes were positively associated. Several of the identified
serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary
polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts
of the microbiota. We further conducted a supervised integrative feature selection with
respect to BMD and constructed the inter-omics partial correlation network. Although still
requiring replication and validation in future studies, the findings from this exploratory
analysis provide novel insights into the interrelationships between the gut microbiome and
serum metabolome that may potentially play a role in skeletal remodeling processes.

Keywords: metagenomics, metabolomics, data integration, osteoporosis, bone
INTRODUCTION

Osteoporosis is a progressive age-related condition associated with reduced bone mineral density
(BMD) and increased susceptibility to low trauma fractures, which are the clinical endpoint of the
disease. It represents the most prevalent metabolic bone disorder affecting >200 million people
worldwide (Reginster and Burlet, 2006), and the burden is particularly large among postmenopausal
gy | www.frontiersin.org March 2022 | Volume 12 | Article 8534991
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women, which is mainly attributed to the reduced production of
estrogen and other hormonal/metabolic changes that occur
during menopause. It is estimated that at least one in three
postmenopausal women have osteoporosis, and nearly half of
those women will experience fragility fractures in their
remaining lifetime (Melton et al., 1992). Dual-energy X-ray
absorptiometry (DXA) derived BMD measurements of the hip
and spine are the most frequently used metric for clinically
diagnosing osteoporosis, as well as the most powerful known risk
factor for predicting fracture risk (Kanis et al., 2005).

The gut microbiome, composed of the bacteria residing in the
human gastrointestinal tract, is involved in a variety of diverse
functions that are important for physiological wellbeing. There are
several potential mechanisms through which the microbiome may
impact bonemetabolism, as previously reviewed (Hernandez et al.,
2016; Chen et al., 2017). The microbiota can influence the
intestinal absorption of essential minerals (e.g., calcium) that are
important for maintaining skeletal homeostasis (Weaver, 2015),
elicit immune responses which may alter the levels of
inflammatory cytokines (e.g., TNF-a) that are important for
bone health (Sjogren et al., 2012), produce metabolic byproducts
(e.g., short chain fatty acids) which regulate critical cell signaling
factors for bone remodeling processes (Lucas et al., 2018), and
modulate the levels of hormones and neurotransmitters through
the gut-brain axis (Cryan et al., 2019), including some (e.g.,
serotonin) that have been shown to interact with bone cells
(Bliziotes, 2010). Although experimental animal models have
provided compelling evidence that the gut microbiome may play
a role in the regulation of bone mass (Sjogren et al., 2012), only a
few limited studies have explored this relationship in humans
(Wang et al., 2017; Das et al., 2019; Xu et al., 2020). While these
early efforts reported significant differences in the microbial
diversity between osteoporosis cases and healthy controls, they
were generally limited by small sample sizes and the inability to
reveal specific trait-associated bacteria or functional mechanisms.

Metabolomics enables the comprehensive profiling of the
intermediate and end products of cellular metabolism. Since
metabolites represent the downstream expression of genomic,
transcriptomic, and proteomic factors, small changes in other
omics may be amplified at the metabolomic level, enabling the
detection of critical biomarkers or corresponding therapeutic
target pathways closely related to disease risk (Johnson et al.,
2016). However, the application of metabolomics for
osteoporosis is rather limited. At present, most efforts are
confined to animal experiments (Lv et al., 2016), although
several early studies in humans have identified novel
osteoporosis biomarkers involved in the metabolism of
tryptophan, phenylalanine, lipids, and energy (Miyamoto et al.,
2018; Moayyeri et al., 2018; Zhao Q et al., 2018; Gong et al.,
2021). Notably, some studies demonstrated that the effects of the
novel metabolites identified were more significant than classical
bone turnover markers (Qi et al., 2016), supporting the crucial
functions of small molecule metabolites in BMD regulation and
osteoporosis prediction.

It is well established that changes in diet may be accompanied
by shifts in the composition of the microbiome (Singh et al., 2017),
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but perhaps even more important is the resulting effect on the
human metabolome. The diet contains many compounds that
cannot be broken down by human digestive enzymes, and
therefore pass to the gut where they are catabolized by the
microbiota (Lamichhane et al., 2018). Some of the metabolic
byproducts generated during these processes may then be
absorbed into the circulating blood, where they can potentially
impact human health. For instance, the gut metabolite
Trimethylamine N-oxide (TMAO), regulated by dietary
phosphatidylcholine intake, has been shown to promote the
development of atherosclerosis (Wang et al., 2011; Tang et al.,
2013). Based on these findings, a novel therapeutic approach was
established to inhibit microbial production of TMAO (Wang et al.,
2015). We hypothesized that there could be similar undiscovered
mechanisms which contribute to the osteoporosis susceptibility.

Multi-omics integration analyses of microbiome and
metabolite profiles collected from the same individuals are very
much needed to elucidate the full range of interactions between
these biological factors with respect to bone phenotypes. We
integrated the paired gut microbiome and untargeted serum
metabolite profiles from a large sample of peri- and early post-
menopausal Chinese women to explore the crosstalk which may
contribute to BMD variation at the femoral neck, the most
common site for hip fracture, which is one of the most
devastating types of osteoporotic fractures (LeBlanc et al.,
2014). An overview of the study workflow is provided
in Figure 1.
MATERIALS AND METHODS

Sample Recruitment
We randomly recruited 499 peri- and early post-menopausal
Chinese women (aged 40 – 65) living in Guangzhou City, China.
Perimenopausal refers to the menopause transition phase,
characterized by irregular menstrual cycles, while postmenopausal
is defined by the cessation of menstrual periods for >1 year
(Lumsden, 2016). Women who had taken antibiotics or estrogens
within three months of enrollment were excluded.We also excluded
women with preexisting conditions relevant to bone mass
development such as serious residual effects from cerebral
vascular disease, diabetes mellitus, chronic renal failure, chronic
liver failure, chronic lung disease, alcohol abuse, corticosteroid
therapy for more than 6 months duration, evidence of other
metabolic or inherited bone disease, rheumatoid arthritis, collagen
disorders, and chronic gastrointestinal diseases. Each subject signed
an informed consent, and the study protocol was approved by the
Medical Ethics Committee of Southern Medical University.

BMD of the hip and spine were measured with DXA (Lunar,
GE Healthcare, Madison, WI, USA) by trained and certified
research staff. The machine was calibrated daily using a phantom
scan for quality assurance, and the accuracy of BMD
measurement was assessed by the coefficient of variation for
repeated measurements, which was 0.89% for spine BMD. To
minimize information loss from artificially dichotomizing
individuals into low/high BMD groups, BMD was considered
March 2022 | Volume 12 | Article 853499
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as a quantitative trait. BMD measurements were standardized to
have a mean of zero and standard deviation of one, and the
normalized values were used as the phenotype.

Each subject provided stool and blood samples for
metagenomic and metabolomics analyses, respectively. Stool
samples were frozen at -80°C after sample procurement until
DNA extraction. To avoid variation due to circadian rhythm,
which is known to affect the metabolome (Sahar and Sassone-
Corsi, 2012), 10 ml of blood was drawn from each subject after >8
hours of overnight fasting. Serum was extracted from the blood
samples according to the protein precipitation protocol (Bruce
et al., 2009) developed for metabolomics analysis, aliquoted, and
stored at -80°C until used for further analysis. The subjects also
completed a questionnaire to collect relevant covariate
information (e.g., demographic and lifestyle factors). Since sex
hormones are involved in metabolism in general (Guarner-Lans
et al., 2011), and bone metabolism more specifically (Drake et al.,
2013), the serum levels of follicle stimulating hormone (FSH) and
estradiol were measured using routine enzyme linked
immunoassay ELISA kits (Immunodiagnostic Systems,
Gaithersburg, MD, USA).

Metagenomic Sequencing
DNA was extracted from 200 mg of stool sample using the
E.Z.N.A.® Stool DNA Kit (Omega, Norcross, GA, USA)
following the manufacturer’s protocol. The total DNA was
eluted in 50 ml of elution buffer (QIAGEN, Hilden, Germany)
and stored at -80°C until metagenomic sequencing (LC-BIO
Technologies Co. LTD., Hang Zhou, China). We constructed a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
fecal DNA library, and used HiSeq 4000 (Illumina, San Diego, CA,
USA) with the paired end 150 bp strategy to conduct sequencing.
Fecal DNA was fragmented using dsDNA Fragmentase (New
England BioLabs, Ipswich, MA, USA) by incubating at 37°C for 30
min, and the DNA library was constructed by TruSeq Nano DNA
LT Library Preparation Kit (Illumina, San Diego, CA, USA).
Blunt-end DNA fragments were generated using a combination
of fill-in reactions and exonuclease activity, and size selection was
performed with the provided sample purification beads. An A-
base was added to the blunt ends of the strands, preparing them
for ligation to the indexed adapters. Each adapter contained a T-
base overhang for ligating the adapter to the A-tailed fragmented
DNA. The adapters were ligated to the fragments and the ligated
products were amplified with PCR by the following conditions:
initial denaturation at 95°C for 3 min, 8 cycles of denaturation at
98°C for 15 sec, annealing at 60°C for 15 sec, extension at 72°C for
30 sec, and then final extension at 72°C for 5 min.

The raw sequencing reads were then processed to obtain valid
reads for further analysis by removing sequencing adapters with
cutadapt v1.9 (Martin, 2011), trimming low quality reads using
fqtrim v0.94 (Pertea, 2015), and aligning reads to the human
reference genome (GRCh38/hg38) to remove host contamination
with Bowtie2 v2.2.0 (Langmead and Salzberg, 2012). The quality
filtered reads were de novo assembled to construct the
metagenome for each sample using SPAdes v3.10.0 (Bankevich
et al., 2012). All coding regions of metagenomic contigs were
predicted using MetaGeneMark v3.26 (Zhu et al., 2010), and the
coding sequences of all samples were clustered to obtain UniGenes
with CD-HIT v4.6.1 (Fu et al., 2012). The UniGene abundances for
FIGURE 1 | Overview of study workflow. 499 peri- and early post-menopausal women provided stool and blood samples for shotgun metagenomic sequencing and
untargeted serum metabolomics profiling. Single omics association analyses were first conducted to identify microbes and metabolites that are associated with BMD.
The paired microbiome and metabolite profiles were then integrated by performing a supervised feature selection with respect to BMD. The selected features were
used to conduct inter-omics network analysis to explore the crosstalk between these biological factors.
March 2022 | Volume 12 | Article 853499
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a given sample were estimated by transcripts per million (TPM)
based on the number of aligned reads, Gk =

rk
Lk
∗ 1

Sn
i=1

Gi
Li

∗ 106 where k

refers to the kthUniGene, r is the number of UniGene reads, and L
is the UniGene length.

The DIAMOND+MEGAN approach was then applied for
taxonomic annotation. The UniGenes were aligned against the
NCBI non-redundant protein database with DIAMOND v0.9.20
(Buchfink et al., 2015). The quality of the alignments was
determined based on the bit score, which represents the
required size of a sequence database in which the current
match could be found by chance, and E-value, which denotes
the likelihood that a given sequence match is due purely to
chance. The resulting alignments were then used as input for
taxonomic binning using the lowest common ancestor (LCA)
algorithm in MEGAN v6.12.3 (Huson et al., 2007), which places
a read on the lowest taxonomic node in the NCBI taxonomy that
lies above all taxa to which the read has a significant alignment.
We note that while the limitations of this local sequence
alignment approach have been documented (Koski and
Golding, 2001), it is a standard protocol for taxonomic
profiling (Bagci et al., 2021).

The microbiome data are relative abundances since the total
number of read counts per sample is highly variable and
constrained by the maximum number of reads the sequencer
can provide (Gloor et al., 2017), and the data are considered
compositional because the relative abundances of all bacteria
species within each sample are proportions which have a unit
sum. We eliminated the rare species with an average relative
abundance <0.01% to reduce the extreme sparsity of the data and
remove sequencing artifacts (Cao et al., 2020). The relative
abundances were then normalized by the centered log-ratio
(CLR) transformation, which has been shown to be effective in
transforming the compositional data to be approximately
multivariate normal (Gloor et al., 2017).

Serum Metabolomics Profiling
The serum samples were thawed on ice, and metabolites were
extracted with 50% methanol buffer. 20 ml of sample was
extracted with 120 ml of precooled 50% methanol, vortexed for
1 min, incubated at room temperature for 10 min, and stored
overnight at –20°C. After centrifugation at 4,000g for 20 min, the
supernatants were transferred into new 96-well plates and stored
at –80°C prior to the liquid chromatography mass spectrometry
(LC-MS) metabolomics analysis (LC-BIO Technologies Co.
LTD., Hang Zhou, China). Pooled quality control samples
were prepared by combining 10 ml of each extraction mixture.
All chromatographic separations were performed using an ultra-
performance liquid chromatography (UPLC) system (SCIEX,
UK), and an ACQUITY UPLC BEH Amide column
(100mm*2.1mm, 1.7mm, Waters, Wilmslow, UK) was used for
the reversed phase separation. The column oven was maintained
at 35°C, the flow rate was set to 0.4 ml/min, and the mobile phase
consisted of solvent A (25mM ammonium acetate+25 mM
NH4H2O) and solvent B (IPA: ACN=9:1+0.1% formic acid).
Gradient elution conditions were set as follows: 0 ~ 0.5 min, 95%
B; 0.5 ~ 9.5 min, 95% ~ 65% B; 9.5 ~ 10.5 min, 65% ~ 40% B; 10.5
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
~ 12 min, 40% B; 12 ~ 12.2 min, 40% ~ 95% B; 12.2 ~ 15 min,
95% B.

A high-resolution tandem mass spectrometer Triple
TOF5600plus (SCIEX, UK) was used to detect the metabolites
eluted from the column in both positive and negative ion modes.
The curtain gas was set to 30 PSI, ion source gas one and two
were both set to 60 PSI, and the interface heater temperature was
set to 650°C. The Ionspray voltage floating was 5000 V for
positive ion mode and –4500 V for negative ion mode. The mass
spectrometry data were acquired in IDA mode, and the TOF
mass range was from 60 to 1200 Da. The survey scans were
acquired in 150 ms, and as many as 12 product ion scans were
collected if exceeding a threshold of 100 counts per second and
with a 1+ charge-state. The total cycle time was fixed to 0.56 s.
Four different time bins were summarized for each scan at a
pulser frequency value of 11 kHz through monitoring of the 40
GHz multi-channel TDC detector with four-anode/channel
detection. Dynamic exclusion was set for 4 s. During the
acquisition, the mass accuracy was calibrated every 20 samples.
To evaluate the stability of the LC-MS during the whole
acquisition, a pooled quality control sample was acquired after
every 10 samples.

The acquired MS data pretreatments including peak picking,
peak grouping, retention time correction, and second peak
grouping were performed using XCMS v3.16.1 (Smith et al.,
2006). CAMERA v1.50 (Kuhl et al., 2012) was used to annotate
the identified features with related isotopic peaks and adducts.
Each ion was characterized by retention time and mass-to-charge
ratios (m/z), and the intensities of each peak were recorded.
Metabolite identification and data processing were performed
using metaX v1.0.3 (Wen et al., 2017). The Human Metabolome
Database (HMDB) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were used to annotate metabolites by
performing a mass-based search with a weight tolerance of 10
ppm. To provide more confident and reproducible study
findings, we retained metabolites with annotations that were
validated using an in-house fragment spectrum library.

Metabolite features detected in <50% of quality control
samples or <80% of biological samples were removed, and the
remaining peaks with missing values were imputed with the k-
nearest neighbor algorithm. Probabilistic quotient normalization
was applied to minimize technical artifacts, and robust spline
correction was used for the post-acquisition correction of batch
effects. In addition, the relative standard deviations of the
metabolite features were calculated across all quality control
samples, and those >30% were removed. The remaining
metabolite features were log transformed and scaled to have
zero mean and unit variance, which is a common normalization
technique (Zhao Q et al., 2018; Gong et al., 2021). The log
transformation converts skewed data to symmetric, while scaling
makes all metabolites of equal importance and enables
comparison based on correlations (Li et al., 2016).

Microbiome Association Analysis
Individual microbes were tested for association with BMD using
a constrained elastic net regression model, which is a commonly
used feature selection approach with compositional covariates
March 2022 | Volume 12 | Article 853499
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(Lin et al., 2014). The model imposes a sparsity penalty along
with a constraint that the regression coefficients of the CLR-
transformed relative abundances sum to zero, b̂ = argmin ( ‖ y
−Xb ‖2 +l1 ‖ b ‖1 +l2 ‖ b ‖2 ) subject to Ss

i=1bi = 0. The elastic
net regularization is a combination of both ridge and lasso
penalty functions, where ridge results in a nonzero coefficient
for every feature and lasso only assigns nonzero coefficients to
the most strongly associated features. Since the penalized
regression model does not provide conventional association p-
values, partial Spearman correlation analysis was used to
individually test each microbe selected in the initial
feature screening.

Functional Profiling of Microbiota
The abundances of metabolic pathways in the microbiome
community were profiled using the Human Microbiome
Project Unified Metabolic Analysis Network (HUMAnN2)
pipeline (Franzosa et al., 2018). HUMAnN2 first maps
metagenomic reads to the pangenomes (Huang et al., 2014) of
species identified by taxonomic profiling. The protein-coding
sequences in these pangenomes have been pre-annotated to their
respective UniRef90 families (Suzek et al., 2015), which serve as a
non-redundant protein sequence database. Metagenomic reads
that do not align to a known pangenome are subjected to a
translated search against the full UniRef90 database. All hits are
weighted by quality and sequence length to estimate the gene
abundances. These genes are then annotated to metabolic
enzymes and further analyzed to quantify the abundances of
complete metabolic pathways obtained from MetaCyc (Caspi
et al., 2016). HUMAnN2 assigns a coverage and abundance score
for each pathway in each sample based on the detection of all its
constituent genes. The coverage and abundance scores represent
the number and abundance of complete copies of the pathway in
each sample. Partial Spearman correlation analyses were used to
test the associations between the pathway abundances and BMD.

Fecal Metabolite Imputation
The Model-based Genomically Informed High-dimensional
Predictor of Microbial Community Metabolic Profiles
(MelonnPan) approach (Mallick et al., 2019) was applied to
predict the abundances of fecal metabolites from the
microbiome gene abundances estimated by HUMAnN2. Elastic
net prediction models were trained to select a sparse set of
microbiome genes that are predictive for each fecal metabolite
based on an independent set of 155 reference subjects for which
both metagenomic and metabolomic profiling of the stool samples
were both available (Franzosa et al., 2019). The fecal metabolite
concentrations were then imputed as a linear combination of the
microbiota gene abundances with weights learned from the
training set. We retained the well predicted fecal metabolites,
which had at least a moderate correlation (Spearman r >0.3)
between the observed and imputed metabolite abundances in the
training sample, as previously detailed (Mallick et al., 2019).

Metabolite Association Analysis
Partial least squares regression (PLS) is a multivariate approach
which combines aspects of principal component analysis (PCA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
and linear regression (Rohart et al., 2017). The principle is to
extract a set of orthogonal components that have large
covariance with the phenotype. PLS is well suited for the
metabolomics analysis due to the high degree of correlation
between functionally related metabolites (i.e., metabolites
involved in the same metabolic pathways). A variable
importance in projection (VIP) score is used to summarize the
contribution of each feature to the model, which is computed as a
weighted sum of the squared correlations between the PLS
components and phenotype. Metabolites with VIP ≥2.0 were
considered important for the phenotype. As a complementary
approach, all metabolites were also individually tested using
linear regression.

Coinertia Analysis
The global similarity between the gut microbiome and serum
metabolome was investigated using coinertia analysis, which
identifies successive axes of covariance between two datasets
measured on a single group of subjects (Dray and Dufour, 2007).
Principal coordinate analysis (PCoA) with Bray Curtis distance
and PCA were applied to the microbiome and metabolite
profiles, respectively, and the ordinations were used as input
for the coinertia analysis. The coinertia analysis produces
an RV coefficient, which is a multivariate extension of
the squared Pearson correlation coefficient computed as
RV = coinertia ðX,YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coinertia ðX,XÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coinertia ðY,YÞ
p where 0 < RV < 1. The coinertia

between two hyperspaces is defined as the sum of the squared
covariances between all variable pairs. Statistical significance of
the RV coefficient was determined through a Monte-Carlo
permutation test.

Supervised Multi-Omics Feature Selection
Canonical correlation analysis (CCA) has previously been
proposed as a promising approach for performing integration
analysis (Parkhomenko et al., 2009). Assuming two different data
modalities measured on the same subjects, CCA seeks weighted
linear combinations of the features from each dataset that have
large correlation. However, the conventional CCA model assigns
nonzero weights to every feature, which can result in overfitting
for high dimensional data, and CCA is traditionally unsupervised
since i t does not take the phenotype information
into consideration.

The overfitting issue can be addressed by introducing a
sparsity penalty into the CCA model, which allows for the
incorporation of feature selection. The sparse CCA model can
then be further extended to be supervised (sCCA), such that the
selected features are correlated across omics modalities with
importance for a quantitative phenotype (Parkhomenko et al.,
2009). The sCCA model is expressed as, uTXTYv subject to ‖ u
‖2 ≤ 1, ‖ v ‖2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2, uj = 0 ∀ j∉ Q1, vj =
0 ∀ j∉ Q2. X and Y denote the paired multi-omics datasets, u and
v are the canonical vectors containing the weights for each
feature, and Xu and Yv, taken to be the weighted linear
combinations of features within each subject, are the canonical
scores. The P1 and P2 represent lasso penalty functions on the
canonical variates, and the resulting u and v are sparse for c1
March 2022 | Volume 12 | Article 853499
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and c2 sufficiently small. Q1 and Q2 denote subsets of features in
X and Y that have large univariate correlation with the
phenotype, and features that are not strongly associated with
the phenotype are automatically assigned zero weights. The
optimal tuning parameters for the model were selected by
10-fold cross validation.

Inter-Omics Network Analysis
The sCCA selected microbes and metabolites were used as input
to construct the inter-omics Gaussian graphical model (GGM),
where the edges represent partial correlations between features.
The optimal GGM was selected by minimizing the extended
Bayesian information criterion (EBIC) of unregularized GGM
models (Foygel and Drton, 2010). We first selected the top 100
models by estimating a sparse inverse covariance matrix along a
path of regularization parameters using the graph lasso penalty
to select the significant edges. Each of these models was refit
without regularization, and the model with the smallest EBIC
was chosen as the optimal network.
RESULTS

Sample Characteristics
The sample consisted of 499 peri- and early post-menopausal
Chinese women that provided both stool and blood samples for
metagenomic and metabolomic profiling (Table 1). 84% of these
women were classified as postmenopausal (i.e., >1 year since final
menstrual period), while 16% were still in the perimenopause
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
transition period. The average time since menopause was 2.0
years (SD = 1.0), corresponding to the life stage when women
typically begin to experience rapid bone loss (Melton et al.,
1992). On average, the subjects were 53.0 years old (SD = 2.9)
with body mass index (BMI) of 23.0 kg/m2 (SD = 2.9) and
reported exercising approximately once per week (SD = 0.8).
62% of the women had undetectable estradiol levels (<18.35
pmol/L), an indicator of menopause, and the average level of
FSH was 76.2 mIU/ml (SD = 32.2). BMI, exercise, time since
menopause, estradiol, and FSH had significant bivariate
associations with BMD (p-values <0.05).

Microbiome Association Analyses
After shotgun metagenomic sequencing of the stool DNA
samples, we obtained approximately 7.35 giga base pairs of
sequencing data per subject. Among >10,000 microbial
features, there were 672 species with an average relative
abundance >0.01%, which accounted for approximately 96% of
the total microbiome across all subjects. 59.2% of these taxa
belong to the Firmicutes phylum, 31.5% to Bacteroidetes, 6.1% to
Proteobacteria, 2.2% to Actinobacteria, 0.5% to Fusobacteria, and
0.5% to Verrucomicrobia. On average, the Bacteroidetes and
Firmicutes phyla accounted for 50% and 45% of the
microbiome composition, respectively.

The SparCC approach (Friedman and Alm, 2012) was applied
to explore the strength of relationships between the microbiota.
SparCC accounts for the compositional nature of the data by
approximating the correlations between the log-ratio
transformed relative abundances. We observed that 8,697 pairs
TABLE 1 | Sample Characteristics (n = 499).

mean (sd)/n (%) b p-value

Age 52.8 (2.9) -0.01 0.42
Weight (kg) 57.3 (7.8) 0.05 <0.001
Height (cm) 157.9 (5.1) 0.05 <0.001
BMI (kg/m2) 23.0 (2.9) 0.11 <0.001
Family Income (Yuan)
<60,000 129 (25.8%) 0.10 0.07
60,000 – 120,000 217 (43.5%)
>120,000 153 (30.7%)

Exercise (times/week) 0.81 (0.8) 0.13 0.02
Years Since Menopause 2.0 (1.0) -0.13 0.003
Follicle Stimulating Hormone (mIU/ml) 76.2 (32.2) -0.01 <0.001
Estradiol
Low (<18.35 pmol/L) 308 (61.7%) 0.24 0.008
High 191 (38.3%)

Calcium Supplementation
Never 289 (57.9%) -0.01 0.83
Sometimes 137 (27.5%)
Often 73 (14.6%)

Alcohol
Sometimes
Never

143 (28.7%)
355 (71.1%)

0.02 0.81

Smoking
Sometimes 0 (0.0%) – –

Never 499 (100.0%)
Femoral Neck BMD (g/cm2) 0.86 (0.12) – –
March 2022 | Volume 12 | Article
Means and standard deviations are provided for continuous variables. Number of subjects and percentages are provided for categorical variables. b and p-value provide the bivariate
associations between each variable and BMD based on linear regression.
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of taxa had strong positive correlations (r’s > 0.5 and p-values <
0.001), while 898 had strong negative correlations (r’s < –0.5 and
p-values < 0.001). These relationships were visualized by the
microbiome co-occurrence network (Figure 2). The underlying
causes of these microbial interactions are complex. While
mutualistic and phylogenetically related bacteria may
sometimes co-occur, this is not always the case. Similarly,
microbes with antagonistic relationships, such as those
competing for the same niche, may sometimes have inverse
associations, while in other circumstances they may actually co-
occur due to variation in their shared environment (Levy and
Borenstein, 2013). Co-exclusions can also arise due to
incompatible abiotic factors in the microbiome community
(Weiss et al., 2016).

There were 44 taxa identified for potential association with
BMD in the initial feature selection by the constrained elastic net
regression model, including 22 which also had p-values <0.05
when tested individually using partial Spearman correlation
analysis adjusted for relevant covariates (Table 2). Among the
putative BMD associated microbes, 9 had FDR <0.05, and the
remaining 13 had FDR <0.1. Several of the identified species
including Bacteroides vulgatus , Bacteroides uniformis,
Bacteroides fragilis, and Bacteroides massiliensis, all of which
were negatively associated with BMD, were among the most
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
abundant species in the microbiome with average relative
abundances >1%. On the other hand, Firmicutes microbes,
such as Clostridium leptum and Ruminococcus lactaris, were
observed to be positively associated with BMD.

Functional profiling of the microbiome yielded pathway
abundances for 516 metabolic pathways in the microbial
community, all of which involve the microbiota producing
metabolic byproducts from the catabolism of dietary
components. Partial Spearman correlation analyses identified
22 pathways for putative association with BMD at a threshold
of p-value <0.05 (Table 3). However, due to the number of
pathways tested and the modest effect sizes, none of the pathway
associations remained significant after multiple testing
correction (FDR >0.2).

Predictive metabolomic profiling was performed to impute
the fecal metabolite profiles based on the gene abundances in the
microbiome communities. Among 80 predicted intestinal
metabolites, 3 were identified for potential association with
BMD based on VIP ≥2.0 in PLS, and 17 had p-values <0.05
with FDR of 0.2 when individually tested using linear regression
(Table 4). Several of these compounds including butyrate,
propionate, and valeric acid are short chain fatty acids
(SCFAs), a special class of microbial byproducts that play an
important role in gut and metabolic health (Blaak et al., 2020).
FIGURE 2 | Co-occurrence network showing strong interactions in the microbiome community (SparCC correlations >0.5 and <-0.5). Green/red edges correspond
to positive/negative relationships. The color of each node corresponds to the phylum of the given microbe.
March 2022 | Volume 12 | Article 853499
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Serum Metabolite Association Analyses
Based on LC-MS untargeted metabolomics profiling of the
serum samples, 3,202 unique metabolite features were
identified in positive ion mode and 2,674 were detected in
negative ion mode. Among the unique metabolite features, 381
had putatively confirmed identities. There were 12 serum
metabolites identified for potential association with BMD
based on VIP ≥2.0 in PLS, and 13 which had p-values <0.05
when tested individually by linear regression (Table 5). 8 serum
metabolites were detected by both approaches, but none of the
identified metabolites remained significant after the multiple
testing correction (FDR >0.2). Notably, several putative BMD
associated serum metabolites including 3-phenylpropanoic acid,
which is primarily derived from the degradation of plant
polyphenols (Trost et al., 2018), and glycolithocholic acid
(Taylor and Green, 2018), a secondary bile acid, are intricately
linked with the microbiota. While both these compounds were
imputed in the fecal metabolite analysis, no significant
associations were observed for the predicted fecal abundances.

Multi-Omics Integration
The coinertia analysis indicated that there were at least some
statistically significant correlations between the microbiome and
serum metabolome that should be further explored (RV = 0.064,
p-value = 0.01). The sCCA model was then applied to the paired
metagenomic and serum metabolite profiles, as has been done
previously (Lee-Sarwar et al., 2019). We identified 14 bacteria
species (Bacteroides vulgatus, Bacteroides fragilis, Bacteroides
ovatus, Bacteroides xylanisolvens, Parabacteroides distasonis,
Bacteroides sp. 4-3-47FAA, Bacteroides sp. 1-1-6, Bacteroides
sp. 3-1-40A, Bacteroides sp. 2-2-4, Bacteroides sp. 3-1-23,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Bacteroides sp. 1-1-30, Bacteroides sp. D22, Bacteroides sp. 2-1-
22, and Fusobacterium ulcerans) and 6 serum metabolites (3-
phenylpropanoic acid, hippuric acid, alpha-D-glucose,
chenodeoxycholate, deoxycholic acid, and glycolithocholic
acid) that were correlated across omics modalities with
importance for BMD (Figure 3).

The metabolite and microbiome canonical scores, taken to be
the weighted linear combination of features within each subject,
were correlated with each other (r = 0.45, p-value < 0.001) and
with BMD (badj = 0.09 and 0.03 with p-values = 0.002 and 0.03,
respectively), demonstrating the effectiveness of the supervised
integrative feature selection. Based on the magnitude of the
canonical loadings, which represent the contributions of each
feature to the inter-omics relationship, the most important
metabolites in the inter-omics relationship with respect to
BMD were 3-phenylpropanoic acid and glycolithocholic acid,
while the bacteria with the largest loadings were Fusobacterium
ulcerans and Bacteroides fragilis, each of which were also detected
in the single omics association analyses. The relationships
between the abundances of these features and BMD after
adjustment for covariates were visualized by added variable
partial regression plots (Figure 4).

The GGM (Figure 5) had an edge density of 0.22, which
represents the ratio of the number of edges and the number of
possible edges, and a transitivity of 0.46, which is defined as the
probability that adjacent nodes of a given node are connected.
Fusobacterium ulcerans was positively connected to deoxycholic
acid and negatively connected to both 3-phenylpropanoic acid
and glycolithocholic acid. Bacteroides fragilis was negatively
connected to glycolithocholic acid, while Bacteroides ovatus
was negatively connected to 3-phenylpropanoic acid. Alpha-D-
TABLE 2 | BMD associated microbial species.

radj P-value FDR Abundance Phylum

Prevotella sp. BV3P1 -0.14 0.001 0.02 0.03% Bacteroidetes
Prevotella disiens -0.14 0.002 0.02 0.03% Bacteroidetes
Bacteroides massiliensis -0.14 0.002 0.02 1.06% Bacteroidetes
Bacteroides fluxus -0.13 0.003 0.02 0.15% Bacteroidetes
Parabacteroides sp. D13 -0.13 0.003 0.02 0.15% Bacteroidetes
Bacteroides sp. 2-1-56FAA -0.12 0.007 0.04 0.03% Bacteroidetes
Anaerotruncus sp. CAG:528 0.12 0.007 0.04 0.03% Firmicutes
Odoribacter laneus -0.12 0.008 0.04 0.02% Bacteroidetes
Parabacteroides distasonis -0.12 0.010 0.04 0.51% Bacteroidetes
Clostridium leptum 0.11 0.015 0.05 0.05% Firmicutes
Bacteroides oleiciplenus -0.11 0.015 0.05 0.19% Bacteroidetes
Fusobacterium ulcerans -0.11 0.017 0.05 0.05% Fusobacteria
Bacteroides fragilis -0.11 0.020 0.05 2.58% Bacteroidetes
Bacteroides uniformis -0.10 0.020 0.05 2.76% Bacteroidetes
Ruminococcus lactaris 0.10 0.021 0.05 0.26% Firmicutes
Firmicutes bacterium CAG:341 0.10 0.024 0.05 0.05% Firmicutes
Coprobacillus sp. CAG:235 0.10 0.027 0.06 0.11% Firmicutes
Bacteroides vulgatus -0.10 0.034 0.07 5.64% Bacteroidetes
Bacteroides sp. 2-2-4 -0.10 0.033 0.07 0.25% Bacteroidetes
Bacteroides sp. 4-3-47FAA -0.09 0.038 0.07 0.41% Bacteroidetes
Blautia sp. CAG:237 0.09 0.038 0.07 0.07% Firmicutes
Bacteroides sp. 3-1-40A -0.09 0.039 0.07 0.28% Bacteroidetes
March 2022 | Volume 12 |
Correlation coefficients and p-values correspond to the effects of the microbes individually tested in partial Spearman correlation analyses. Associations are adjusted for age, BMI, exercise,
years since menopause, FSH, and estradiol. FDR correction accounts for testing the subset of bacteria species selected in the initial feature screening by constrained elastic net regression.
Abundance refers to the average relative abundance across all samples.
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glucose and deoxycholic acid were positively and negatively
connected to BMD, respectively.
DISCUSSION

In this systematic multi-omics analysis of a relatively large
sample of peri- and early postmenopausal Chinese women, we
characterized the microbiota, serum metabolites, and possible
crosstalk between these biological factors that may influence
bone physiology. To our knowledge, this is one of the first reports
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
to integrate paired metagenomic and metabolomic profiles to
provide novel insights into the molecular mechanisms of skeletal
remodeling. The findings, although biologically plausible, still
require replication and functional validation in future studies.

Many of the putative BMD associated microbes belong to the
Bacteroides genus, which were inversely associated with bone
mass. Bacteroides vulgatus and Bacteroides fragilis, which were
identified in both the single omics and integrative analyses, have
previously been reported to induce activation of the pro-
inflammatory NF-kb signaling pathway, which is associated
with bone loss (Kim et al., 2002). Additionally, Bacteroides
TABLE 3 | BMD associated microbial metabolic pathways.

MetaCyc ID Pathway radj P-value

PWY-5941 Glycogen degradation II 0.13 0.005
PWY-5181 Toluene degradation III (via p-cresol) 0.13 0.006
PWY-6185 4-methylcatechol degradation 0.12 0.006
PWY-5695 Urate biosynthesis –0.11 0.011
CATECHOL-ORTHO-CLEAVAGE-PWY Catechol degradation to b-ketoadipate 0.11 0.012
PWY-5417 Catechol degradation III 0.11 0.012
PWY-5659 GDP-mannose biosynthesis 0.11 0.013
CRNFORCAT-PWY Creatinine degradation I 0.10 0.021
GLYCOGENSYNTH-PWY Glycogen biosynthesis I (from ADP-D-Glucose) 0.10 0.023
PWY-6182 Superpathway of salicylate degradation 0.10 0.024
GALACTUROCAT-PWY D-galacturonate degradation I 0.10 0.026
PWY-1861 Formaldehyde assimilation II 0.10 0.030
PWY-3841 Folate transformations II –0.10 0.032
HOMOSER-METSYN-PWY L-methionine biosynthesis I 0.09 0.037
PWY-7374 1,4-dihydroxy-6-naphthoate biosynthesis I –0.09 0.037
1CMET2-PWY N10-formyl-tetrahydrofolate biosynthesis –0.09 0.038
PWY-6703 PreQ0 biosynthesis –0.09 0.040
ARGININE-SYN4-PWY L-ornithine de novo biosynthesis –0.09 0.040
P124-PWY Bifidobacterium shunt 0.09 0.042
PWY-5347 Superpathway of L-methionine biosynthesis 0.09 0.042
CITRULBIO-PWY L-citrulline biosynthesis –0.09 0.043
METSYN-PWY L-homoserine and L-methionine biosynthesis 0.09 0.043
March
 2022 | Volume 12 | Article
radj denoted partial Speraman correlation coefficient with adjustment for age, BMI, exercise, years since menopause, FSH, and estradiol.
TABLE 4 | BMD associated imputed fecal metabolites.

VIP badj P-value FDR

Nicotinate 2.27 0.11 0.009 0.20
Deoxyinosine 1.82 0.10 0.015 0.20
N-oleoylethanolamine 1.75 -0.10 0.016 0.20
Linoleoyl ethanolamide 1.64 -0.10 0.018 0.20
Docosapentaenoate 1.45 -0.10 0.018 0.20
Xanthine 2.33 0.10 0.019 0.20
Docosapentanoic acid 1.44 -0.10 0.020 0.20
Butyrate 1.83 0.10 0.020 0.20
Propionate 2.52 0.09 0.025 0.22
C18:0 Monoacylglycerol 1.30 -0.09 0.036 0.22
Eicosatrienoic acid 1.31 -0.09 0.037 0.22
Stearoyl ethanolamide 1.12 -0.08 0.043 0.22
Glutamate 1.20 0.08 0.044 0.22
Valeric acid 1.47 0.08 0.046 0.22
C16:0 ceramide 1.16 -0.08 0.046 0.22
Bilirubin 1.37 -0.08 0.046 0.22
Adrenic acid 1.21 -0.09 0.047 0.22
85
VIP refers to the variable importance in projection score provided by PLS. badj and p-values correspond to the effects of metabolites individually tested in linear regression adjusted for age,
BMI, exercise, years since menopause, FSH, and estradiol. Metabolite identities were validated in the original publication for the reference samples used to train the MelonnPan model
(see methods).
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vulgatus was recently shown to increase serum levels of the bone
resorption marker CTX-1 and decrease serum levels of the bone
formation marker osteocalcin in vivo in an ovariectomized
(OVX) mouse model (Lin et al., 2020). On the other hand, we
observed a positive effect for the Firmicutes microbe Clostridium
leptum, a probiotic species that is known to be an important
producer of beneficial metabolic byproducts such as butyrate
(Canani et al., 2012). We further observed a negative effect of
Fusobacterium ulcerans, which also played an important role in
the multi-omics integration analysis. Fusobacteria have been
shown to promote M1 macrophage production via AKT2
signaling (Liu et al., 2019), which induces inflammation and
has been associated with the development of osteoporosis (Yang
and Yang, 2019).

To investigate the potential mechanisms by which the
microbiota may influence BMD, we profiled the abundances of
metabolic pathways in the microbial community and assessed
their associations with BMD variation. Although the pathway
associations were not significant at a stringent threshold
accounting for multiple testing, several were still interesting
due to their known roles in bone metabolism. We observed a
positive association between BMD and several glycolytic
pathways, such as glycogen biosynthesis/degradation, which
are essential for cellular energy (Adeva-Andany et al., 2016).
We further identified a negative association for urate
biosynthesis, and it has been reported that uric acid induces
intracellular oxidative stress and inflammatory cytokines that
stimulate bone resorption by osteoclasts and inhibit bone
formation by osteoblasts (Austermann et al., 2019). Lastly, we
detected a positive association for L-methionine biosynthesis, an
amino acid which has been shown to down-regulate NF- kb
signaling in osteoclast precursors to reduce bone loss (Vijayan
et al., 2014).

Since microbial metabolites contribute to host-microbiome
interactions (Rooks and Garrett, 2016), we performed
metabolomic imputation to predict the intestinal metabolite
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
profiles based on the observed genes in the microbiome
community. Similar techniques are frequently used in genetic
association studies to impute the gene expression levels based on
genotype information (Gamazon et al., 2015). We identified
positive associations between BMD and several SCFAs, which
are exclusively produced by the microbiota through the
breakdown of non-digestible dietary fiber. The SCFAs are
potent signaling molecules that modulate host gene expression
by interacting with various epigenetic factors such as DNA
methylation and histone acetylation (Alenghat and Artis,
2014). Butyrate and propionate have previously been reported
to induce metabolic alterations of osteoclasts that lead to down-
regulation of crucial genes such as TRAF6 and NFATc1 (Lucas
et al., 2018). Butyrate has also been shown to stimulate bone
formation through regulatory T cell mediated regulation of
Wnt10b expression (Tyagi et al., 2018). Furthermore, valeric
acid was recently demonstrated to promote/inhibit osteoblast/
osteoclast differentiation in vitro (Lin et al., 2020). We note that
the precision of fecal metabolite imputation by MelonnPan has
room for improvement (Yin et al., 2020). Additionally, the
prediction models were trained in a different study population
(mixed sexes, North American, some with irritable bowel
disease), and therefore the accuracy of the imputation in this
sample is unknown.

While the fecal metabolites are the most representative of the
direct metabolic output of the gut, many of those compounds are
excreted from the body without ever having any influence on
human health. The serum metabolome, which includes both host
andmicrobiota derivedmetabolites, provides a window into which
gut metabolic byproducts are absorbed into the circulating blood
to potentially impact host physiology. We observed that
metabolites involved in energy metabolism, such as alpha-D-
glucose, were positively associated with BMD. Energy
metabolism is critical for bone remodeling, and it has also been
demonstrated that there is a feedback loop where bone can act as
an endocrine gland by secreting bone specific proteins such as
TABLE 5 | BMD associated serum metabolites.

m/z RT VIP badj P-value FDR

Alpha-D-Glucose 179.05 192.7 2.83 0.13 0.003 0.92
Hippuric acid 178.05 192.7 2.10 0.10 0.017 0.92
Glycolithocholic acid 432.31 191.3 1.50 0.10 0.017 0.92
LysoPC (18:0) 524.37 40.6 2.14 -0.10 0.019 0.92
D-Ribose 149.04 303.0 1.70 0.10 0.020 0.92
3-Phenylpropanoic acid 149.06 83.5 1.95 0.10 0.022 0.92
Palmitic acid 315.25 41.2 1.94 -0.10 0.022 0.92
1,7-Dimethylxanthine 181.07 57.5 2.47 0.09 0.026 0.92
Dodecanoic acid 199.17 88.2 2.52 -0.09 0.028 0.92
Histidinyl glycine 195.09 36.8 2.77 0.09 0.028 0.92
Quinate 191.05 326.0 2.57 0.09 0.039 0.92
3-Hydroxydodecanoic acid 431.34 36.6 2.07 -0.09 0.033 0.92
DAG (18:0/20:4) 627.53 189.3 1.90 -0.09 0.042 0.92
PC (18:0/18:1(9Z)) 832.58 41.5 2.27 -0.08 0.057 0.92
Alpha-linolenic acid 277.21 37.2 2.03 -0.07 0.093 0.92
Urea 61.04 86.5 2.11 -0.07 0.120 0.92
2-Methyl-3-hydroxybutyrate 182.08 305.2 2.05 0.05 0.211 0.92
March 2022
 | Volume 12 | Article 85
m/z denotes mass-to-charge ratio, RT indicates retention time. VIP refers to the variable importance in projection score provided by PLS. badj and p-values correspond to the effects of
metabolites individually tested in linear regression adjusted for age, BMI, exercise, years since menopause, FSH, and estradiol.
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osteocalcin and osteoprotegerin, which can regulate insulin
function and glucose metabolism (Faienza et al., 2015).
Additionally, we detected the amino acid histidinyl glycine, a
conjugation of histidine and glycine. Targeted deletion of histidine
decarboxylase in mice, which converts histidine to histamine, was
found to increase bone formation and protect against bone loss
(Fitzpatrick et al., 2003). Glycine is reported to improve bone
health by increasing the production of collagen, which is a major
building block of bone (Jennings et al., 2016).

Several of the BMD associated serummetabolites are involved
in lipid metabolism, and accumulating evidence has
demonstrated that alterations in lipid levels are associated with
changes in bone metabolism (Tian and Yu, 2015). Lipid
metabolism is regulated PPARg , which inhibits the
differentiation of osteoblasts and promotes the formation of
adipocytes (Wan, 2010). Dodecanoic acid was recently
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
reported to have a causal effect on BMD, which was validated
using bone cells cultured in vitro as well as in vivo in an OVX
mouse model (Gong et al., 2021). Palmitic acid is a saturated fatty
acid which has been shown to increase bone loss by promoting
osteoclast survival (Oh et al., 2010). The increase of LysoPC
(18:0), a lysophoshpatidylcholine, is indicative of oxidative stress,
and LysoPCs have been detected at elevated levels in the serum of
osteoporotic mice (Zhao H et al., 2018).

Most notably, the serum metabolite analysis identified several
microbiota-linked compounds for association with BMD. 3-
phenylpropanoic acid, also known as hydrocinnamic acid, is
mainly produced by the microbial catabolism of dietary
polyphenols, which are acquired from plant-based food sources
such as leafy greens, tea/coffee, wheat, berries, fruits, and other
vegetables (Trost et al., 2018). Dietary polyphenols have been
reported to reduce the risk of various age-related diseases and
FIGURE 3 | Correlation heatmap of sCCA selected microbes (rows) and metabolites (columns) that are correlated with each other and with BMD. Canonical
loadings are provided for each feature, which represent the contributions to the inter-omics relationship. Positive correlations are represented by blue, negative
correlations are shown in red, and intensity of the color represents the strength of association.
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have a lot of promise for protecting against bone loss due to their
antioxidant properties (Sato et al., 2011). One study found that
phenolic acids in the serum of rats fed a blueberry diet stimulated
osteoblast differentiation, resulting in elevated bone mass (Chen
et al., 2010). Additionally, in vitro experiments with phenolic
acids using bone marrow stroma cells demonstrated stimulation
of osteoblast differentiation and inhibition of adipogenesis (Chen
and Anderson, 2014). Plant polyphenols are also an established
source of Hippuric acid, which was recently observed to inhibit
osteoclast formation in vitro (Zhao et al., 2020). On the other
hand, Hippuric acid can also be derived from aromatic organic
acids such as phenylalanine and tryptophan (Wikoff et al., 2009).

Glycolithocholic acid and deoxycholic acid are secondary bile
acids that are formed when primary bile acids produced by the
liver, such as cholic acid and chenodeoxycholate, enter into the
intestine via the bile duct and are acted on by the microbiota
(Taylor and Green, 2018). It has previously been reported that
bile acids are essential for the intestinal absorption of lipids and
lipid-soluble compounds such as vitamin D (Nehring et al.,
2007), and abnormal bile acid turnover has been linked with
osteoporosis in postmenopausal women (Hanly et al., 2013).
Lithocholic acid and deoxycholic acid have been shown to
enhance and reduce calcium absorption, respectively
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
(Marchionatti et al., 2018). Additionally, a growing body of
evidence suggests that bile acids may regulate skeletal
remodeling processes through direct interactions with
osteoblasts and osteoclasts (Cho et al., 2013).

The network analysis revealed several inter-omics
relationships that could potentially play a role in the regulation
of BMD. First, we observed a positive connection between
Fusobacterium ulcerans and deoxycholic acid. Sulfate
esterification of bile acids in the liver enhances their excretion
(Alnouti, 2009), and Fusobacteria have been reported to be
involved in desulfatation, which keeps them in circulation (Jia
et al., 2018). Second, we observed a negative connection between
Fusobacterium ulcerans and 3-phenylpropanoic acid. It has
previously been reported that polyphenol compounds have
antimicrobial properties that inhibit the growth and virulence
of Fusobacteria (Ben Lagha et al., 2017). Third, we observed a
negative relationship between Bacteroides fragilis and
glycolithocholic acid. Bacteroides are reported to promote
deconjugation of bile acids, and individuals with higher
abundance of Bacteroides have been shown to have lower
plasma levels of secondary bile acid metabolites (Gu et al.,
2017). Lastly, we observed a negative connection between
3-phenylpropanoic acid and Bacteroides ovatus. Previous studies
A B

C D

FIGURE 4 | Added variable partial regression plots for (A) Bacteroides fragilis, (B) Fusobacterium ulcerans, (C) 3-Phenylpropanoic acid, and (D) Glycolithocholic
acid. The plots illustrate the relationships between the abundance of a given microbe/metabolite and BMD after adjustment for age, BMI, exercise, years since
menopause, FSH, and estradiol. The x-axes correspond to the residuals from regressing the microbe/metabolite on the covariates. The y-axes correspond to the
residuals from regressing the phenotype on the covariates. The blue line represents the line of best fit from linear regression, and the corresponding confidence
interval is shown in gray.
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have demonstrated that dietary polyphenols can inhibit the
growth of Bacteroides microbes (Cardona et al., 2013).
However, further analyses are needed to determine the precise
mechanisms of these relationships and how they may be relevant
for bone physiology.

Despite the novelty of this study in the bone field, there are
several limitations that should be taken into consideration. First,
among thousands of unique metabolite features, we were only
able to produce high confidence annotations for a relatively small
number, and there could be important compounds in the serum,
especially gut metabolites, that were ignored. Second, we have
only considered linear relationships between the molecular
features. In the future, this could be addressed through
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
nonlinear extensions of the applied methods, which may
capture complex statistical dependencies that conventional
correlation approaches fail to detect (Szekely et al., 2007).
Third, we can only speculate about the directionality of the
inter-omics relationships observed in the network based on
previously reported findings. Lastly, it is unclear if the findings
can be generalized to other populations. Different ethnicities
have vastly different diets, and metabolomic patterns are
influenced by various factors including age, genetics, and
menopause (Auro et al., 2014).

In summary, we conducted a comprehensive multi-omics
integration analysis and provided novel insights into the
interactions between the gut microbiome and serum
FIGURE 5 | Inter-omics Gaussian graphical model for sCCA selected features. The edges represent partial correlations, and significant edges were selected by the
graph lasso penalty. Blue/red nodes correspond to microbe/metabolite features, BMD is shown in purple, and green/red edges correspond to positive/negative
partial correlations. The edge width indicates the strength of association.
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metabolome that may be relevant for the regulation of BMD. We
hope that these findings will stimulate future studies to further
explore the relationships between the microbiome and host
omics factors that may be involved in bone health.
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Fernández, C., and Ameneiros-Rodrıǵuez, E. (2016). Glycogen Metabolism in
Humans. BBA Clin. 5, 85–100. doi: 10.1016/j.bbacli.2016.02.001

Alenghat, T., and Artis, D. (2014). Epigenomic Regulation of Host-Microbiota
Interactions. Trends Immunol. 35, 518–525. doi: 10.1016/j.it.2014.09.007

Alnouti, Y. (2009). Bile Acid Sulfation: A Pathway of Bile Acid Elimination and
Detoxification. Toxicol. Sci. 108, 225–246. doi: 10.1093/toxsci/kfn268

Auro, K., Joensuu, A., Fischer, K., Kettunen, J., Salo, P., Mattsson, H., et al. (2014).
A Metabolic View on Menopause and Ageing. Nat. Commun. 5, 4708. doi:
10.1038/ncomms5708

Austermann, K., Baecker, N., Stehle, P., and Heer, M. (2019). Putative Effects of
Nutritive Polyphenols on Bone Metabolism In Vivo-Evidence From Human
Studies. Nutrients 11, 1–14. doi: 10.3390/nu11040871

Bagci, C., Patz, S., and Huson, D. H. (2021). DIAMOND+MEGAN: Fast and Easy
Taxonomic and Functional Analysis of Short and Long Microbiome
Sequences. Curr. Protoc. 1, e59. doi: 10.1002/cpz1.59

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
et al. (2012). SPAdes: A New Genome Assembly Algorithm and Its
Applications to Single-Cell Sequencing. J. Comput. Biol. 19, 455–477. doi:
10.1089/cmb.2012.0021

Ben Lagha, A., Haas, B., and Grenier, D. (2017). Tea Polyphenols Inhibit the
Growth and Virulence Properties of Fusobacterium Nucleatum. Sci. Rep. 7,
44815. doi: 10.1038/srep44815

Blaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G., et al.
(2020). Short Chain Fatty Acids in Human Gut and Metabolic Health. Benef
Microbes 11, 411–455. doi: 10.3920/BM2020.0057

Bliziotes, M. (2010). Update in Serotonin and Bone. J. Clin. Endocrinol. Metab. 95,
4124–4132. doi: 10.1210/jc.2010-0861

Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., and Guy, P. A. (2009).
Investigation of Human Blood Plasma Sample Preparation for Performing
Metabolomics Using Ultrahigh Performance Liquid Chromatography/Mass
Spectrometry. Anal. Chem. 81, 3285–3296. doi: 10.1021/ac8024569

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and Sensitive Protein
Alignment Using DIAMOND. Nat. Methods 12, 59–60. doi: 10.1038/
nmeth.3176

Canani, R. B., Di Costanzo, M., and Leone, L. (2012). The Epigenetic Effects of
Butyrate: Potential Therapeutic Implications for Clinical Practice. Clin.
Epigenet. 4, 1–7. doi: 10.1186/1868-7083-4-4
Cao, Q., Sun, X., Rajesh, K., Chalasani, N., Gelow, K., Katz, B., et al. (2020). Effects
of Rare Microbiome Taxa Filtering on Statistical Analysis. Front. Microbiol. 11,
607325. doi: 10.3389/fmicb.2020.607325

Cardona, F., Andres-Lacueva, C., Tulipani, S., Tinahones, F. J., and Queipo-
Ortuno, M. I. (2013). Benefits of Polyphenols on Gut Microbiota and
Implications in Human Health. J. Nutr. Biochem. 24, 1415–1422. doi:
10.1016/j.jnutbio.2013.05.001

Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., et al.
(2016). The MetaCyc Database of Metabolic Pathways and Enzymes and the
BioCyc Collection of Pathway/Genome Databases. Nucleic Acids Res. 44,
D471–D480. doi: 10.1093/nar/gkv1164

Chen, X., and Anderson, J. J. (2014). Diet and the Bone Marrow Niche for Stem
Cell Recruitment. J. Bone Miner Res. 29, 1041–1042. doi: 10.1002/jbmr.2234

Chen, Y. C., Greenbaum, J., Shen, H., and Deng, H. W. (2017). Association
Between Gut Microbiota and Bone Health: Potential Mechanisms and
Prospective. J. Clin. Endocrinol. Metab. 102, 3635–3646. doi: 10.1210/
jc.2017-00513

Chen, J. R., Lazarenko, O. P., Wu, X., Kang, J., Blackburn, M. L., Shankar, K., et al.
(2010). Dietary-Induced Serum Phenolic Acids Promote Bone Growth via P38
MAPK/beta-Catenin Canonical Wnt Signaling. J. Bone Miner Res. 25, 2399–
2411. doi: 10.1002/jbmr.137

Cho, S. W., An, J. H., Park, H., Yang, J. Y., Choi, H. J., Kim, S. W., et al. (2013).
Positive Regulation of Osteogenesis by Bile Acid Through FXR. J. Bone Miner
Res. 28, 2109–2121. doi: 10.1002/jbmr.1961

Cryan, J. F., O'riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S.,
Boehme, M., et al. (2019). The Microbiota-Gut-Brain Axis. Physiol. Rev. 99,
1877–2013. doi: 10.1152/physrev.00018.2018

Das, M., Cronin, O., Keohane, D. M., Cormac, E. M., Nugent, H., Nugent, M., et al.
(2019). Gut Microbiota Alterations Associated With Reduced Bone Mineral
Density in Older Adults. Rheumatol. (Oxf.) 58, 2295–2304. doi: 10.1093/
rheumatology/kez302

Drake, M. A., Khosla, S.American Society for Bone and Mineral Research (2013).
“The Role of Sex Steroids in the Pathogenesis of Osteoporosis,” in Primer on
the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 8th ed, vol.
xxvi . Ed. C. J. Rosen (Ames, Iowa: Wiley-Blackwell), 1078 p.

Dray, S., and Dufour, A.-B. (2007). The Ade4 Package: Implementing the Duality
Diagram for Ecologists. J. Stat. Software 22, 1–20. doi: 10.18637/jss.v022.i04

Faienza, M. F., Luce, V., Ventura, A., Colaianni, G., Colucci, S., Cavallo, L., et al.
(2015). Skeleton and Glucose Metabolism: A Bone-Pancreas Loop. Int. J.
Endocrinol. 2015, 758148. doi: 10.1155/2015/758148
March 2022 | Volume 12 | Article 853499

https://www.ebi.ac.uk/metagenomics/
https://www.ebi.ac.uk/metagenomics/
https://doi.org/10.1016/j.bbacli.2016.02.001
https://doi.org/10.1016/j.it.2014.09.007
https://doi.org/10.1093/toxsci/kfn268
https://doi.org/10.1038/ncomms5708
https://doi.org/10.3390/nu11040871
https://doi.org/10.1002/cpz1.59
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/srep44815
https://doi.org/10.3920/BM2020.0057
https://doi.org/10.1210/jc.2010-0861
https://doi.org/10.1021/ac8024569
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1186/1868-7083-4-4
https://doi.org/10.3389/fmicb.2020.607325
https://doi.org/10.1016/j.jnutbio.2013.05.001
https://doi.org/10.1093/nar/gkv1164
https://doi.org/10.1002/jbmr.2234
https://doi.org/10.1210/jc.2017-00513
https://doi.org/10.1210/jc.2017-00513
https://doi.org/10.1002/jbmr.137
https://doi.org/10.1002/jbmr.1961
https://doi.org/10.1152/physrev.00018.2018
https://doi.org/10.1093/rheumatology/kez302
https://doi.org/10.1093/rheumatology/kez302
https://doi.org/10.18637/jss.v022.i04
https://doi.org/10.1155/2015/758148
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Greenbaum et al. Microbiota, Metabolites, and Bone
Fitzpatrick, L. A., Buzas, E., Gagne, T. J., Nagy, A., Horvath, C., Ferencz, V., et al.
(2003). Targeted Deletion of Histidine Decarboxylase Gene in Mice Increases
Bone Formation and Protects Against Ovariectomy-Induced Bone Loss. Proc.
Natl. Acad. Sci. U. S. A. 100, 6027–6032. doi: 10.1073/pnas.0934373100

Foygel, R., and Drton, M. (2010). Extended Bayesian Information Criteria for
Gaussian Graphical Models. Adv. Neural Inf. Process. Syst. 23, 2020–2028.

Franzosa, E. A., Mciver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M.,
Weingart, G., et al. (2018). Species-Level Functional Profiling of Metagenomes
and Metatranscriptomes. Nat. Methods 15, 962–968. doi: 10.1038/s41592-018-
0176-y

Franzosa, E. A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H. J.,
Reinker, S., et al. (2019). Gut Microbiome Structure and Metabolic Activity in
Inflammatory Bowel Disease. Nat. Microbiol. 4, 293–305. doi: 10.1038/s41564-
018-0306-4

Friedman, J., and Alm, E. J. (2012). Inferring Correlation Networks From
Genomic Survey Data. PloS Comput. Biol. 8, e1002687. doi: 10.1371/
journal.pcbi.1002687

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: Accelerated for
Clustering the Next-Generation Sequencing Data. Bioinformatics 28, 3150–
3152. doi: 10.1093/bioinformatics/bts565

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K.,
Carroll, R. J., et al. (2015). A Gene-Based Association Method for Mapping
Traits Using Reference Transcriptome Data. Nat. Genet. 47, 1091–1098. doi:
10.1038/ng.3367

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
Microbiome Datasets Are Compositional: And This Is Not Optional. Front.
Microbiol. 8, 2224. doi: 10.3389/fmicb.2017.02224

Gong, R., Xiao, H.-M., Zhang, Y.-H., Zhao, Q., Su, K.-J., Lin, X., et al. (2021).
Identification and Functional Characterization of Metabolites for Bone Mass in
Peri-/Post Menopausal Chinese Women. J. Clin. Endocrinol. Metab. 106,
e3159–e3177. doi: 10.1210/clinem/dgab146

Guarner-Lans, V., Rubio-Ruiz, M. E., Perez-Torres, I., and Banos De Maccarthy,
G. (2011). Relation of Aging and Sex Hormones to Metabolic Syndrome and
Cardiovascular Disease. Exp. Gerontol. 46, 517–523. doi: 10.1016/
j.exger.2011.02.007

Gu, Y., Wang, X., Li, J., Zhang, Y., Zhong, H., Liu, R., et al. (2017). Analyses of Gut
Microbiota and Plasma Bile Acids Enable Stratification of Patients for
Antidiabetic Treatment. Nat. Commun. 8, 1785. doi: 10.1038/s41467-017-
01682-2

Hanly, R., Ryan, N., Snelling, H., Walker-Bone, K., Dizdarevic, S., and Peters, A.
M. (2013). Association Between Bile Acid Turnover and Osteoporosis in
Postmenopausal Women. Nucl. Med. Commun. 34, 597–600. doi: 10.1097/
MNM.0b013e3283608993

Hernandez, C. J., Guss, J. D., Luna, M., and Goldring, S. R. (2016). Links Between
the Microbiome and Bone. J. Bone Miner Res. 31, 1638–1646. doi: 10.1002/
jbmr.2887

Huang, K., Brady, A., Mahurkar, A., White, O., Gevers, D., Huttenhower, C., et al.
(2014). MetaRef: A Pan-Genomic Database for Comparative and Community
Microbial Genomics. Nucleic Acids Res. 42, D617–D624. doi: 10.1093/nar/
gkt1078

Huson, D. H., Auch, A. F., Qi, J., and Schuster, S. C. (2007). MEGAN Analysis of
Metagenomic Data. Genome Res. 17, 377–386. doi: 10.1101/gr.5969107

Jennings, A., Macgregor, A., Spector, T., and Cassidy, A. (2016). Amino Acid
Intakes Are Associated With Bone Mineral Density and Prevalence of Low
Bone Mass in Women: Evidence From Discordant Monozygotic Twins. J. Bone
Miner Res. 31, 326–335. doi: 10.1002/jbmr.2703

Jia, W., Xie, G., and Jia, W. (2018). Bile Acid-Microbiota Crosstalk in
Gastrointestinal Inflammation and Carcinogenesis. Nat. Rev. Gastroenterol.
Hepatol. 15, 111–128. doi: 10.1038/nrgastro.2017.119

Johnson, C. H., Ivanisevic, J., and Siuzdak, G. (2016). Metabolomics: Beyond
Biomarkers and Towards Mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459.
doi: 10.1038/nrm.2016.25

Kanis, J. A., Borgstrom, F., De Laet, C., Johansson, H., Johnell, O., Jonsson, B., et al.
(2005). Assessment of Fracture Risk. Osteoporos Int. 16, 581–589. doi: 10.1007/
s00198-004-1780-5

Kim, J. M., Cho, S. J., Oh, Y.-K., Jung, H.-Y., Kim, Y.-J., and Kim, N. (2002).
Nuclear Factor-Kappa B Activation Pathway in Intestinal Epithelial Cells Is a
Major Regulator of Chemokine Gene Expression and Neutrophil Migration
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
Induced by Bacteroides Fragilis Enterotoxin. Clin. Exp. Immunol. 130, 59–66.
doi: 10.1046/j.1365-2249.2002.01921.x

Koski, L. B., and Golding, B. G. (2001). The Closest BLAST Hit Is Often Not the
Nearest Neighbor. J. Mol. Evol. 52, 540–542. doi: 10.1007/s002390010184

Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., and Neumann, S. (2012).
CAMERA: An Integrated Strategy for Compound Spectra Extraction and
Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal.
Chem. 84, 283–289. doi: 10.1021/ac202450g

Lamichhane, S., Sen, P., Dickens, A. M., Oresic, M., and Bertram, H. C. (2018). Gut
Metabolome Meets Microbiome: A Methodological Perspective to Understand
the Relationship Between Host and Microbe. Methods 149, 3–12. doi: 10.1016/
j.ymeth.2018.04.029

Langmead, B., and Salzberg, S. L. (2012). Fast Gapped-Read Alignment With
Bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Leblanc, K. E., Muncie, H. L., and Leblanc, L. L. (2014). Hip Fracture: Diagnosis,
Treatment, and Secondary Prevention. Am. Family Physician 89. doi: , 945–951

Lee-Sarwar, K. A., Kelly, R. S., Lasky-Su, J., Zeiger, R. S., O'connor, G. T., Sandel,
M. T., et al. (2019). Integrative Analysis of the Intestinal Metabolome of
Childhood Asthma. J. Allergy Clin. Immunol. 144, 442–454. doi: 10.1016/j/
jaci.2019.02.032

Levy, R., and Borenstein, E. (2013). Metabolic Modeling of Species Interaction in
the Human Microbiome Elucidates Community-Level Assembly Rules. Proc.
Natl. Acad. Sci. U.S.A. 110, 12804–12809. doi: 10.1073/pnas.1300926110

Lin, W., Shi, P., Feng, R., and Li, H. (2014). Variable Selection in Regression With
Compositional Covariates. Biometrika 101, 785–797. doi: 10.1093/biomet/
asu031

Lin, X., Xiao, H.-M., Liu, H.-M., Lv, W.-Q., Greenbaum, J., Yuan, S.-J., et al.
(2020). Gut Microbiota Impacts Bone via B.vulgatus-Valeric Acid-Related
Pathways. medRxiv.

Li, B., Tang, J., Yang, Q., Cui, X., Li, S., Chen, S., et al. (2016). Performance
Evaluation and Online Realization of Data-Driven Normalization Methods
Used in LC/MS Based Untargeted Metabolomics Analysis. Sci. Rep. 6, 38881.
doi: 10.1038/srep38881

Liu, L., Liang, L., Liang, H., Wang, M., Lu, B., Xue, M., et al. (2019). Fusobacterium
Nucleatum Aggravates the Progression of Colitis by Regulating M1
Macrophage Polarization via AKT2 Pathway. Front. Immunol. 10, 1324. doi:
10.3389/fimmu.2019.01324

Lucas, S., Omata, Y., Hofmann, J., Bottcher, M., Iljazovic, A., Sarter, K., et al.
(2018). Short-Chain Fatty Acids Regulate Systemic Bone Mass and Protect
From Pathological Bone Loss. Nat. Commun. 9, 55. doi: 10.1038/s41467-017-
02490-4

Lumsden, M. A. (2016). The NICE Guideline - Menopause: Diagnosis and
Management. Climacteric J. Int. Menopause Soc . doi: 10.1080/
13697137.2016.1222483

Lv, H., Jiang, F., Guan, D., Lu, C., Guo, B., Chan, C., et al. (2016). Metabolomics
and Its Application in the Development of Discovering Biomarkers for
Osteoporosis Research. Int. J. Mol. Sci. 17, 1–22. doi: 10.3390/ijms17122018

Mallick, H., Franzosa, E. A., Mclver, L. J., Banerjee, S., Sirota-Madi, A., Kostic, A.
D., et al. (2019). Predictive Metabolomic Profiling of Microbial Communities
Using Amplicon or Metagenomic Sequences. Nat. Commun. 10, 3136. doi:
10.1038/s41467-019-10927-1

Marchionatti, A., Rivoira, M., Rodriguez, V., Perez, A., and Tolosa De Talamoni,
N. (2018). Molecular Mechanisms Triggered by Bile Acids on Intestinal Ca2+
Absorpt ion. Curr . Medi Chem. 25, 2122–2132. doi : 10 .2174/
0929867324666171116125131

Martin, M. (2011). Cutadapt Removes Adapter Sequences From High-
Throughput Sequencing Reads. EMBnet.journal 17, 10–12. doi: 10.14806/
ej.17.1.200

Melton, L., Chrischilles, E. A., Cooper, C., Lane, A. W., and Riggs, L. B. (1992).
Perspective. How Many Women Have Osteoporosis? J. Bone Mineral Res. 7,
1005–1010. doi: 10.1002/jbmr.5650070902

Miyamoto, T., Hirayama, A., Sato, Y., Koboyashi, T., Katsuyama, E., Kanagawa,
H., et al. (2018). Metabolomics-Based Profiles Predictive of Low Bone Mass in
Menopausal Women. Bone Rep. 9, 11–18. doi: 10.1016/j.bonr.2018.06.004

Moayyeri, A., Cheung, C. L., Tan, K. C., Morris, J. A., Cerani, A., Mohney, R. P.,
et al. (2018). Metabolomic Pathways to Osteoporosis in Middle-Aged Women:
A Genome-Metabolome-Wide Mendelian Randomization Study. J. Bone
Miner Res. 33, 643–650. doi: 10.1002/jbmr.3358
March 2022 | Volume 12 | Article 853499

https://doi.org/10.1073/pnas.0934373100
https://doi.org/10.1038/s41592-018-0176-y
https://doi.org/10.1038/s41592-018-0176-y
https://doi.org/10.1038/s41564-018-0306-4
https://doi.org/10.1038/s41564-018-0306-4
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1038/ng.3367
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1210/clinem/dgab146
https://doi.org/10.1016/j.exger.2011.02.007
https://doi.org/10.1016/j.exger.2011.02.007
https://doi.org/10.1038/s41467-017-01682-2
https://doi.org/10.1038/s41467-017-01682-2
https://doi.org/10.1097/MNM.0b013e3283608993
https://doi.org/10.1097/MNM.0b013e3283608993
https://doi.org/10.1002/jbmr.2887
https://doi.org/10.1002/jbmr.2887
https://doi.org/10.1093/nar/gkt1078
https://doi.org/10.1093/nar/gkt1078
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1002/jbmr.2703
https://doi.org/10.1038/nrgastro.2017.119
https://doi.org/10.1038/nrm.2016.25
https://doi.org/10.1007/s00198-004-1780-5
https://doi.org/10.1007/s00198-004-1780-5
https://doi.org/10.1046/j.1365-2249.2002.01921.x
https://doi.org/10.1007/s002390010184
https://doi.org/10.1021/ac202450g
https://doi.org/10.1016/j.ymeth.2018.04.029
https://doi.org/10.1016/j.ymeth.2018.04.029
https://doi.org/10.1038/nmeth.1923
https://doi.org/, 945&ndash;951
https://doi.org/10.1016/j/jaci.2019.02.032
https://doi.org/10.1016/j/jaci.2019.02.032
https://doi.org/10.1073/pnas.1300926110
https://doi.org/10.1093/biomet/asu031
https://doi.org/10.1093/biomet/asu031
https://doi.org/10.1038/srep38881
https://doi.org/10.3389/fimmu.2019.01324
https://doi.org/10.1038/s41467-017-02490-4
https://doi.org/10.1038/s41467-017-02490-4
https://doi.org/10.1080/13697137.2016.1222483
https://doi.org/10.1080/13697137.2016.1222483
https://doi.org/10.3390/ijms17122018
https://doi.org/10.1038/s41467-019-10927-1
https://doi.org/10.2174/0929867324666171116125131
https://doi.org/10.2174/0929867324666171116125131
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1002/jbmr.5650070902
https://doi.org/10.1016/j.bonr.2018.06.004
https://doi.org/10.1002/jbmr.3358
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Greenbaum et al. Microbiota, Metabolites, and Bone
Nehring, J. A., Zierold, C., and Deluca, H. F. (2007). Lithocholic Acid Can Carry
Out In Vivo Functions of Vitamin D. Proc. Natl. Acad. Sci. U.S.A. 104, 10006–
10009. doi: 10.1073/pnas.0703512104

Oh, S.-R., Sul, O.-J., Kim, Y.-Y., Kim, H.-J., Yu, R., Suh, J.-H., et al. (2010).
Saturated Fatty Acids Enhance Osteoclast Survival. J. Lipid Res. 51.

Parkhomenko, E., Tritchler, D., and Beyene, J. (2009). Sparse Canonical
Correlation Analysis With Application to Genomic Data Integration. Stat.
Appl. Genet. Mol. Biol. 8, 1–34. doi: 10.2202/1544-6115.1406

Pertea, G. (2015). Fqtrim: V0.9.4 Release.
Qi, H., Bao, J., An, G., Ouyang, G., Zhang, P., Wang, C., et al. (2016). Association

Between the Metabolome and Bone Mineral Density in Pre- and Post-
Menopausal Chinese Women Using GC-MS. Mol. Biosyst. 12, 2265–2275.
doi: 10.1039/C6MB00181E

Reginster, J. Y., and Burlet, N. (2006). Osteoporosis: A Still Increasing Prevalence.
Bone 38, S4–S9. doi: 10.1016/j.bone.2005.11.024

Rohart, F., Gautier, B., Singh, A., and Le Cao, K. A. (2017). Mixomics: An R
Package for 'Omics Feature Selection and Multiple Data Integration. PloS
Comput. Biol. 13, e1005752. doi: 10.1371/journal.pcbi.1005752

Rooks, M. G., and Garrett, W. S. (2016). Gut Microbiota, Metabolites and Host
Immunity. Nat. Rev. Immunol. 16, 341–352. doi: 10.1038/nri.2016.42

Sahar, S., and Sassone-Corsi, P. (2012). Regulation of Metabolism: The Circadian
Clock Dictates the Time. Trends Endocrinol. Metab. 23, 1–8. doi: 10.1016/
j.tem.2011.10.005

Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., et al.
(2011). In Vitro and In Vivo Antioxidant Properties of Chlorogenic Acid and
Caffeic Acid. Int. J. Pharm. 403, 136–138. doi: 10.1016/j.ijpharm.2010.09.035

Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., et al. (2017).
Influence of Diet on the Gut Microbiome and Implications for Human Health.
J. Transl. Med. 15, 73. doi: 10.1186/s12967-017-1175-y

Sjogren, K., Engdahl, C., Henning, P., Lerner, U. H., Tremaroli, V., Lagerquist, M.
K., et al. (2012). The Gut Microbiota Regulates Bone Mass in Mice. J. Bone
Miner Res. 27, 1357–1367. doi: 10.1002/jbmr.1588

Smith, C. A., Want, E. J., O’maille, G., Abagyan, R., and Siuzdak, G. (2006). XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear
Peak Alignment, Matching, and Identification. Anal Chem. 78, 779–787. doi:
10.1021/ac051437y

Suzek, B. E., Wang, Y., Huang, H., Mcgarvey, P. B., Wu, C. H., and Uniprot, C.
(2015). UniRef Clusters: A Comprehensive and Scalable Alternative for
Improving Sequence Similarity Searches. Bioinformatics 31, 926–932. doi:
10.1093/bioinformatics/btu739

Szekely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and Testing
Dependence by Correlation of Distances. Ann. Stat 35, 2769–2794. doi:
10.1214/009053607000000505

Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., et al.
(2013). Intestinal Microbial Metabolism of Phosphatidylcholine and
Cardiovascular Risk. N Engl. J. Med. 368, 1575–1584. doi: 10.1056/
NEJMoa1109400

Taylor, S. A., and Green, R. M. (2018). Bile Acids, Microbiota, and Metabolism.
Hepatology 68, 1229–1231. doi: 10.1002/hep.30078

Tian, L., and Yu, X. (2015). Lipid Metabolism Disorders and Bone Dysfunction–
Interrelated and Mutually Regulated (Review). Mol. Med. Rep. 12, 783–794.
doi: 10.3892/mmr.2015.3472

Trost, K., Ulaszewska, M. M., Stanstrup, J., Albanese, D., De Filippo, C., Tuohy, K.
M., et al. (2018). Host: Microbiome Co-Metabolic Processing of Dietary
Polyphenols - An Acute, Single Blinded, Cross-Over Study With Different
Doses of Apple Polyphenols in Healthy Subjects. Food Res. Int. 112, 108–128.
doi: 10.1016/j.foodres.2018.06.016

Tyagi, A. M., Yu, M., Darby, T. M., Vaccaro, C., Li, J. Y., Owens, J. A., et al. (2018).
The Microbial Metabolite Butyrate Stimulates Bone Formation via T
Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity 49,
1116–1131 e1117. doi: 10.1016/j.immuni.2018.10.013

Vijayan, V., Khandelwal, M., Manglani, K., Gupta, S., and Surolia, A. (2014).
Methionine Down-Regulates TLR4/MyD88/NF-kappaB Signalling in
Osteoclast Precursors to Reduce Bone Loss During Osteoporosis. Br. J.
Pharmacol. 171, 107–121. doi: 10.1111/bph.12434
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
Wan, Y. (2010). PPARgamma in Bone Homeostasis. Trends Endocrinol. Metab.
21, 722–728. doi: 10.1016/j.tem.2010.08.006

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al.
(2011). Gut Flora Metabolism of Phosphatidylcholine Promotes
Cardiovascular Disease. Nature 472, 57–63. doi: 10.1038/nature09922

Wang, Z., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W., Org, E., et al. (2015).
Non-Lethal Inhibition of Gut Microbial Trimethylamine Production for the
Treatment of Atherosclerosis. Cell 163, 1585–1595. doi: 10.1016/
j.cell.2015.11.055

Wang, J., Wang, Y., Gao, W., Wang, B., Zhao, H., Zeng, Y., et al. (2017). Diversity
Analysis of Gut Microbiota in Osteoporosis and Osteopenia Patients. PeerJ 5,
e3450. doi: 10.7717/peerj.3450

Weaver, C. M. (2015). Diet, Gut Microbiome, and Bone Health. Curr. Osteoporosis
Rep. 13, 125–130. doi: 10.1007/s11914-015-0257-0

Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., et al.
(2016). Correlation Detection Strategies in Microbial Data Sets Vary Widely in
Sensitivity and Precision. ISME J. 10, 1669–1681. doi: 10.1038/ismej.2015.235

Wen, B., Mei, Z., Zeng, C., and Liu, S. (2017). Metax: A Flexible and
Comprehensive Software for Processing Metabolomics Data. BMC Bioinf. 18,
183. doi: 10.1186/s12859-017-1579-y

Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al.
(2009). Metabolomics Analysis Reveals Large Effects of Gut Microflora on
Mammalian Blood Metabolites. Proc. Natl. Acad. Sci. U.S.A. 106, 3698–3703.
doi: 10.1073/pnas.0812874106

Xu, Z., Xie, Z., Sun, J., Huang, S., Chen, Y., Li, C., et al. (2020). Gut Microbiome
Reveals Specific Dysbiosis in Primary Osteoporosis. Front. Cell Infect.
Microbiol. 10, 160. doi: 10.3389/fcimb.2020.00160

Yang, D. H., and Yang, M. Y. (2019). The Role of Macrophage in the Pathogenesis
of Osteoporosis. Int. J. Mol. Sci. 20. doi: 10.3390/ijms20092093

Yin, X., Altman, T., Rutherford, E., West, K. A., Wu, Y., Choi, J., et al. (2020). A
Comparative Evaluation of Tools to Predict Metabolite Profiles From
Microbiome Sequencing Data. Front. Microbiol. 11, 595910. doi: 10.3389/
fmicb.2020.595910

Zhao, H., Lazarenko, O. P., and Chen, J. R. (2020). Hippuric Acid and 3-(3-
Hydroxyphenyl) Propionic Acid Inhibit Murine Osteoclastogenesis Through
RANKL-RANK Independent Pathway. J. Cell Physiol. 235, 599–610. doi:
10.1002/jcp.28998

Zhao, H., Li, X., Zhang, D., Chen, H., Chao, Y., Wu, K., et al. (2018). Integrative
Bone Metabolomics-Lipidomics Strategy for Pathological Mechanism of
Postmenopausal Osteoporosis Mouse Model. Sci. Rep. 8, 16456. doi: 10.1038/
s41598-018-34574-6

Zhao, Q., Shen, H., Su, K. J., Zhang, J. G., Tian, Q., Zhao, L. J., et al. (2018).
Metabolomic Profiles Associated With Bone Mineral Density in US Caucasian
Women. Nutr. Metab. (Lond) 15, 57. doi: 10.1186/s12986-018-0296-5

Zhu, W., Lomsadze, A., and Borodovsky, M. (2010). Ab Initio Gene Identification
in Metagenomic Sequences. Nucleic Acids Res. 38, e132. doi: 10.1093/nar/
gkq275

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Greenbaum, Lin, Su, Gong, Shen, Shen, Xiao and Deng. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
March 2022 | Volume 12 | Article 853499

https://doi.org/10.1073/pnas.0703512104
https://doi.org/10.2202/1544-6115.1406
https://doi.org/10.1039/C6MB00181E
https://doi.org/10.1016/j.bone.2005.11.024
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1038/nri.2016.42
https://doi.org/10.1016/j.tem.2011.10.005
https://doi.org/10.1016/j.tem.2011.10.005
https://doi.org/10.1016/j.ijpharm.2010.09.035
https://doi.org/10.1186/s12967-017-1175-y
https://doi.org/10.1002/jbmr.1588
https://doi.org/10.1021/ac051437y
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1056/NEJMoa1109400
https://doi.org/10.1056/NEJMoa1109400
https://doi.org/10.1002/hep.30078
https://doi.org/10.3892/mmr.2015.3472
https://doi.org/10.1016/j.foodres.2018.06.016
https://doi.org/10.1016/j.immuni.2018.10.013
https://doi.org/10.1111/bph.12434
https://doi.org/10.1016/j.tem.2010.08.006
https://doi.org/10.1038/nature09922
https://doi.org/10.1016/j.cell.2015.11.055
https://doi.org/10.1016/j.cell.2015.11.055
https://doi.org/10.7717/peerj.3450
https://doi.org/10.1007/s11914-015-0257-0
https://doi.org/10.1038/ismej.2015.235
https://doi.org/10.1186/s12859-017-1579-y
https://doi.org/10.1073/pnas.0812874106
https://doi.org/10.3389/fcimb.2020.00160
https://doi.org/10.3390/ijms20092093
https://doi.org/10.3389/fmicb.2020.595910
https://doi.org/10.3389/fmicb.2020.595910
https://doi.org/10.1002/jcp.28998
https://doi.org/10.1038/s41598-018-34574-6
https://doi.org/10.1038/s41598-018-34574-6
https://doi.org/10.1186/s12986-018-0296-5
https://doi.org/10.1093/nar/gkq275
https://doi.org/10.1093/nar/gkq275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density
	Introduction
	Materials and Methods
	Sample Recruitment
	Metagenomic Sequencing
	Serum Metabolomics Profiling
	Microbiome Association Analysis
	Functional Profiling of Microbiota
	Fecal Metabolite Imputation
	Metabolite Association Analysis
	Coinertia Analysis
	Supervised Multi-Omics Feature Selection
	Inter-Omics Network Analysis

	Results
	Sample Characteristics
	Microbiome Association Analyses
	Serum Metabolite Association Analyses
	Multi-Omics Integration

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




