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Abstract: Halophytes can survive and complete their 
life cycle in the presence of ≥200 mM NaCl. These 
remarkable plants have developed various strategies to 
tolerate salinity and thrive in high-salt environments. At 
the appropriate levels, salt has a beneficial effect on the 
vegetative growth of halophytes but inhibits the growth 
of non-halophytes. In recent years, many studies have 
focused on elucidating the salt-tolerance mechanisms of 
halophytes at the molecular, physiological, and individual 
level. In this review, we focus on the mechanisms, from the 
macroscopic to the molecular, underlying the successful 
growth of halophytes in saline environments to explain 
why salt has beneficial effects on halophytes but harmful 
effects on non-halophytes. These mechanisms include 
the specialized organs of halophytes (for example, ion 
compartmentalization in succulent leaves), their unique 
structures (salt glands and hydrophobic barriers in roots), 
and their salt-tolerance genes. We hope to shed light on the 
use of halophytes for engineering salt-tolerant crops, soil 
conservation, and the protection of freshwater resources 
in the near future. 

Keywords: Hydrophobic barriers, Ion 
compartmentalization, Molecular, Salt gland, Salt 
tolerance

1  Introduction
Salt water accounts for approximately 97% of the Earth’s 
water supply, and humans can only use 1% of the fresh 
water found worldwide [1]. Saving fresh water and making 
good use of salt water pose new challenges, especially in 
arid and semi-arid countries. Halophytes naturally grow 
in saline environments [2,3], and some species, such as 
mangroves, can even grow in seawater [4]. Halophyte 
plants can be used as forage grasses, in medicines, as 
vegetables, and as papermaking materials [1]. Therefore, 
investigating the mechanisms by which halophytes 
tolerate saline environments is crucial for sustainable 
development.

Salt can damage plants through its osmotic effect 
(physiological drought under high-salinity conditions), 
ion toxicity (especially Na+ and Cl-), and secondary 
stresses such as oxidative stress [5,6]. Halophytes and 
non-halophytes show distinct differences in maximum 
salt tolerance [7-9]. Plants that can survive and complete 
their life cycle in a salt concentration of ≥200 mM NaCl 
are usually defined as halophytes [5,10,11-13]. Halophytes 
actively control the uptake, storage, exclusion, and 
secretion of ions under saline conditions [14-17]. The 
most salt-tolerant halophytes such as Suaeda salsa can 
complete their life cycle in soils containing 200 to 500 
mM NaCl [18-20], whereas non-halophytes show limited 
salt tolerance and can be damaged in soils with NaCl 
concentrations <50 mM [21]. 

Halophytes do not simply tolerate high-salt 
conditions. True halophytes thrive at the appropriate salt 
concentrations and show optimal growth in the presence 
of significant amounts of NaCl, e.g., 200 mM for S. salsa 
[22,23], 150 mM for Chenopodium quinoa [24], and 100 
mM for Cakile maritima [25]. The halophyte Plantago 
crassifolia exhibits highly efficient responses to salt stress 
during early seedling development [26,27]. Appropriate 
salt concentrations can promote the vegetative growth of 
halophytes and are conducive to the completion of their 
life cycle, as described by Flowers & Colmer [10]. Salt 
has a beneficial effect on halophytes, as they grow larger 
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and more rapidly in the presence of the appropriate salt 
concentration, compared to conditions with little or no 
salt [20]. More specifically, the majority of halophytes 
benefit from the presence of high concentrations of salt 
during processes ranging from seed germination to 
seedling growth. For example, many halophytes such as 
Cakile maritima [25] and Chloris virgata [28] have been 
shown to have higher germination percentages at slightly 
elevated salinity levels (0.5% NaCl, or around 50–90 mM) 
vs. distilled water [28,29]. In addition to seed germination, 
appropriate NaCl concentrations also enhance the seedling 
growth of halophytes compared to non-salt conditions. 
This is evidenced by higher seedling biomass, larger leaf 
area [30], and enhanced photosynthetic efficiency [17,31] 
and yield, thus leading to increased seed production for 
the next generation [18,19].

By contrast, non-halophytes are salt sensitive 
and suffer from salt-induced damage. These plants 
are classified as salt-sensitive and salt-tolerant non-
halophytes based on their level of salt tolerance. Plants 
in both categories show inhibited growth under saline 
conditions, but salt-sensitive non-halophytes, such as 
soybean and rice, may suffer irreparable damage in 
response to low concentrations of NaCl (less than 50 
mM) [32,33], whereas salt-tolerant non-halophytes such 
as cotton, beets, and barley can tolerate higher salt 
concentrations (200–300 mM NaCl) [34-36]. However, all 
non-halophytes show decreased biomass when grown 
in the presence of salt with one exception: Eutrema 
salsugineum (formerly misclassified as Thellungiella 
salsuginea, Brassicaceae [37,38]). This plant is widely 
considered to be a model halophyte [39] because it has 
a certain degree of salt tolerance and was reported to 
survive under 250 mM NaCl conditions [40,41], although 
its growth sharply declines with increasing NaCl level 
[42,43]. Studies of E. salsugineum performed over the past 
15 years have contributed to our understanding of salt 
tolerance mechanisms in halophytes.

Why does the appropriate salinity level enhance 
the vegetative growth of halophytes and inhibit the 
growth of non-halophytes? Do halophytes have special 
characteristics that allow them to adapt to saline 
environments? In the past decade, many studies have 
investigated possible underlying mechanism. In the 
current review, we focus on the vegetative growth of 
halophytes to illustrate the mechanisms underlying the 
robust growth of halophytes in saline environments, from 
the morphological to the cellular and molecular levels. 

2  Morphological, cellular, and sub-
cellular adaptations
All plants, including non-halophytes, compartmentalize 
excess ions into their vacuoles, which is considered the 
physiological foundation of salt tolerance in all plants 
[44]. Halophytes have evolved several specific structures 
or mechanisms to adapt to saline environments (Fig. 1). 
However, non-halophytes have not evolved the unique 
morphological features needed to cope with salt stress, 
and if forced to live in saline soil, their biomass is reduced 
and they cannot complete their life cycles. By contrast, 
halophytes can survive high-salt conditions due to leaf 
succulence and the functions of specialized organs (e.g., 
salt glands, as described below). There are three types 
of halophytes: euhalophytes, recretohalophytes, and 
pseudohalophytes [45]. Euhalophytes such as Kalidium 
foliatum and S. salsa are salt accumulators that can take 
up large amounts of ions and compartmentalize them in 
vacuoles to maintain cell turgor. These plants also develop 
leaf or stem succulence when the soil water potential is 
low [20]. 

Leaf succulence is a typical visible characteristic 
of euhalophytes such as S. salsa under high-salinity 
conditions (Fig. 2) [46,47], although this feature is not 
unique to halophytic plants as certain xerophytes, such as 
cacti and Kalanchoe daigremontiana, also have succulent 
leaves under drought conditions. However, halophytes 
and xerophytes have evolved different strategies leading 
to the formation of succulence. Under saline conditions, 
ion accumulation in vacuoles results in succulence, which 
may be caused by the presence of carbon as a driving force 
and ion compartmentalization to relieve salt damage. For 
example, S. salsa actively accumulates ions and proline 
in its vacuoles and cytosol to reduce plant water potential 
[48]. A possible mechanism underlying leaf succulence 
in S. salsa is suggested by the finding that the presence 
of aquaporins in the plasma membrane is correlated 
with Na+ accumulation in the vacuole [23,49,50]. Under 
drought conditions, however, succulence is induced by 
the accumulation of organic compounds such as malate 
via a carbon gradient [51].

Halophytes and non-halophytes show distinct 
differences in ion compartmentalization. Photosynthesis 
and chloroplasts in non-halophytes are markedly damaged 
by salinity due to a weak ion compartmentalization [52]. 
For example, in Arabidopsis thaliana, electron transport 
though photosystem II is dramatically inhibited and 
nonphotochemical quenching of chlorophyll fluorescence 
increases in response to 150 mM NaCl [39]. By contrast, 
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Figure 1 Salt-tolerance mechanisms in halophytes.  Seeds that rapidly germinate under saline conditions benefit from dimorphism or 
mobilization. Vegetative growth is maximal and reproductive growth is stimulated under appropriate salt concentrations because of the 
following salt-tolerance mechanisms: 1) ion compartmentalization; 2) salt secretion; and 3) ion intraveinal recycling and the root apoplastic 
barrier.  In the first mechanism- ion compartmentalization- Na+ actively accumulates in the vacuoles, thus preventing protoplast damage. 
The second mechanism- salt secretion- is described in Yuan et al. [3], which showed the typical multi-cellular salt gland and salt bladder. 
SC, secretory cell; AC, accessory cell; IC, inner cup cell; OC, outer cup cell; MC, mesophyll cell; EC, epidermal cell. The third mechanism- the 
root apoplastic barrier- includes the Casparian strip and suberin lamellae, which can effectively block the apoplastic pathway. Ions can only 
enter endothelial cells via passage cells (PC), i.e., the symplastic pathway. XY, xylem; CO, cortex; EN, endodermis; PC: passage cell.  The 
plant was drawn with Photoshop CS6.

Figure 2 The succulent blades of euhalophyte Suaeda salsa grown in intertidal zone (left, red leaves) and inland saline soils (right, green 
leaves) of the Yellow River Delta (N 37°25′; E 118°54′). 
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the chloroplasts and mitochondria of halophytes are 
protected under salt-stress conditions due to a strong ion 
compartmentalization. The ultrastructure of thylakoids 
in the chloroplasts of two euhalophytic species Haloxylon 
ammodendron and Suaeda physophora showed no 
observable damage when treated with 700 mM NaCl [17]. 
In the halophyte Artemisia anethifolia, the thylakoids in 
chloroplasts were intact, and the number of cristae in 
the mitochondria did not decrease until the plants were 
treated with 200 mM NaCl [53]. The halophyte Suaeda 
altissima also retained normal chloroplast function under 
750 mM NaCl conditions [31].

The two other types of halophytes are considered to be 
salt regulators. Recretohalophytes can secrete excessive 
ions via specific salt-secreting structures, e.g., salt 
bladders in Atriplex centralasiatica [54] and salt glands 
in L. bicolor [55,56]. These unique epidermal structures 
distinguish these plants from other halophytes and all 
non-halophytes [3,57]. Vesicle transport is the main 
pathway for salt secretion [2,58]. The subcellular structures 
of recretohalophytes also exhibit specific characteristics. 
Most reports have focused on salt-secretory ultrastructures 
such as highly developed plasmodesmata, mitochondria, 
vesicles, the lack of chloroplasts, cuticles, and so on (this 
information can be found in Yuan et al. [3] and Shabala 
et al. [54]). A review by Dassanayake [59] discusses the 
morphology and evolution of salt glands, suggesting that 
these structures emerged independently at least 12 times 
in recretohalophytes.

The roots of non-halophytes and halophytes behave 
quite differently. In root cells of the non-halophyte 
common bean (Phaseolus vulgaris), the addition of 80 mM 
NaCl leads to membrane vesiculation and increased solute 
leakage [60]. By contrast, the roots of pseudohalophytes 
such as mangroves in the Rhizophoraceae family and reeds 
in the Gramineae family show high salt exclusion ability, 
thereby protecting the shoots from salinity. The possible 
mechanism underlying salt exclusion in plants such as 
reeds is described as interveinal recycling and apoplastic 
barriers in the roots. During interveinal recycling, the Na+ 
absorbed by roots is transported into the shoots through 
xylem vessels and is then loaded into the phloem by HKT1 
(a high-affinity K+ transporter) [61,62]. Finally, this Na+ is 
unloaded back into the soil by SOS1 (a plasma membrane 
Na+/H+ antiporter) [63,64] in roots cells [65,66] (detailed 
in the “Salt-tolerance genes” section). In recent years, 
lignin and suberin lamellae in the root endodermis have 
also been shown to be involved in the salt exclusion 
pathway. Root hydrophobic barriers play an important 
role in salt exclusion in Avicennia officinalis [4]. The same 
group reported that, although rice is a representative 

non-halophyte, it can also tolerate low concentrations 
of salt (50–100 mM NaCl), mainly due to the presence of 
apoplastic transport barriers in the roots [67]. 

As mentioned in the Introduction, E. salsugineum 
is a special type of halophyte that has been used as a 
model plant to unravel the molecular mechanisms of 
salt tolerance in halophytes [68,69]. Although this plant 
does not possess the typical characteristics of halophytes 
(such as salt glands or salt bladders) and shows a marked 
decrease in vegetative growth under high salinity, studies 
of E. salsugineum have shed light on the mechanisms 
underlying salt tolerance. Under high-salt conditions, E. 
salsugineum undergoes differential regulation of Na+/K+ 
ions and re-establishes Na+/K+ homeostasis [70], including 
a reduction in Na+ absorption [71] and an increase in Na+ 
compartmentalization [72,73]. The genes controlling Na+ 
absorption are described in the following section and 
listed in Table 1. The osmotic balance in E. salsugineum 
can also be maintained by proline accumulation in 
addition to ion accumulation [74], which helps this plant 
survive in saline environments. 

In short, halophytes have evolved several structural 
or ultrastructural adaptations to salt stress, whereas non-
halophytes do not develop these adaptive structures, and 
their ultrastructure is significantly injured under low-salt 
conditions. Therefore, specific cellular and subcellular 
structures facilitate the strong growth of halophytes under 
the appropriate salt concentrations. 

3  Salt-tolerance genes 
All traits, including salt tolerance and salt sensitivity, 
are ultimately controlled by genes. Certain salt tolerance 
genes are constitutively expressed in halophytes while 
other genes are induced by salt [75], exhibiting increased 
expression under salt treatment [76,77]. Although many 
reports involving salt-tolerance genes have focused 
on non-halophytes such as Arabidopsis [64,78,79] and 
rice [80], we will concentrate on salt-tolerance genes 
in halophytes. Table 1 lists the genes involved in Na+ 
transport across the membrane and the three salt-
tolerance mechanisms used by halophytes (also see Fig. 
1). Na+ flux occurs from root to leaf in halophytes based 
on the genes described to date. Na+ may enter the cell 
by HKT1, KT, KUP/HAK/KT-type transporters, AKT1-type 
channels, and NSCCs (nonselective cation channels). To 
avoid salt damage to the cytoplasm, many genes involved 
in the three salt-tolerance mechanisms are upregulated, 
such as NHX (encoding a vacuolar-type Na+/H+ antiporter 
that participates in ion compartmentation in vacuoles); 
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SOS pathway genes such as SOS1; PIP (aquaporin involved 
in salt secretion); and cytochrome P450 (involved in the 
root hydrophobic barrier).

To date, to the best of our knowledge, only one 
halophyte gene has been tested in a halophyte to verify 
its function. Silencing KcNHX1 in the halophyte Karelinia 
caspica led to reduced tolerance to high concentrations of 
NaCl, suggesting that KcNHX1 plays an essential role in the 
response of K. caspica to salt stress [81]. Most of the same 
genes may be present in halophytes and non-halophytes 
but exhibit different expression patterns due to different 
long-term survival strategies [82]. Therefore, all salt-
tolerance genes that have been cloned in halophytes to 
date have been tested by heterologous expression in non-
halophytes to explore their functions [83-88]. The highest 
concentration of NaCl that these transgenic plants could 
tolerate was reported as 400 mM [89,90]. For example, 
transgenic tobacco (Nicotiana tabacum) transformed with 
AlNHX (encoding a vacuolar-typed Na+/H+ antiporter) 
from the halophyte Aeluropus littoralis exhibited high 

salt tolerance (400 mM NaCl) [91]. Transgenic tobacco 
also compartmentalized more Na+ in its roots than wild 
type tobacco to maintain a relatively high K+/Na+ ratio in 
its leaves [91]. Overexpression of a similar gene SsNHX1 
(encoding a putative vacuolar Na+/H+ antiporter) from 
Salsola soda allowed Medicago sativa to survive in high 
concentrations of NaCl (up to 400 mM) due to improved 
Na+ sequestration in the vacuole [90]. 

In addition to the role of NHX genes in ion 
compartmentation, studies in non-halophytes have also 
verified the functions of many other groups of halophyte 
genes controlling primary salt-tolerance traits, showing 
that heterologous expression of these genes significantly 
improved the salt tolerance of these plants. The first 
group of genes includes HKT1 (encoding a high-affinity K+ 
transporter) and SOS1 (encoding a plasma membrane Na+/
H+ antiporter). Transgenic Arabidopsis transformed with 
SsHKT1;1 from S. salsa showed enhanced salt tolerance 
and increased K+ concentrations in shoots [92]. Transgenic 
tobacco harboring SbSOS1 from Salicornia brachiata 

Table 1. Genes involved in Na+ influx and the three salt tolerance mechanisms of halophytes

Salt-tolerance mechanism Gene Likely function in salt tolerance Halophyte species References

Na+ influx HKT1 High-affinity K+ transporter 1 Suaeda salsa [92]
Salicornia dolichostachya [111]
Leptochloa fusca [112]
Aeluropus lagopoides [113]

AKT1 Inward-rectifying K channel 1 Suaeda maritima [114]

KUP/HAK/KT KUP/HAK/KT type transporter Suaeda maritime
Eutrema salsugineum

[115]
[71]

KT Potassium transporter Reaumuria trigyna [104] 
Limonium bicolor [56]

1) Ion compart-
mentation in vacuoles

NHX Encodes a vacuolar-type Na+/H+ antiporter that 
is located on the vacuolar membrane and pumps 
excessive Na+ into the vacuole to avoid toxic Na+ 
concentrations in the cytoplasm.

Limonium gmelinii [116] 
Karelinia caspica [81]
Salicornia brachiate [117]
Aeluropus littoralis [118,91]

CLC Chloride channel on vacuolar membrane Mesembryanthemum crystallinum [119]

AQP Encodes aquaporin Sesuvium portulacastrum [76]
Suaeda salsa [50]

2) Salt secretion SOS1 Encodes a Na+/H+ antiporter located on the plasma 
membrane that pumps excess Na+ out of the cell.

Avicennia marina [120]

HA1 PM H+-ATPase Avicennia marina [120]

NHX Na+/H+ antiporter on the vacuolar membrane Avicennia marina [120]

VAMP Vesicle-associated membrane protein Limonium bicolor [56]

CLC Chloride channel on the plasma membrane Limonium bicolor [56]

PIP and TIP Aquaporin genes Avicennia officinalis [121]

3) Intravein recycling and 
root hydrophobic barriers

SOS1 Encodes a Na+/H+ antiporter located on the plasma 
membrane that plays a role in Na+ efflux from roots

Salicornia dolichostachya [111]

AoCYP86B1 Encodes cytochrome P450 that regulates suberin 
biosynthesis and prevents some Na+ from entering 
the roots

Avicennia officinalis [4]
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showed a high degree of salt tolerance, growing in 200 
mM NaCl [93]. 

The second group of genes, including 
H+-pyrophosphatase and vacuolar ATPase genes, is 
involved in energy supply. For example, transgenic 
Arabidopsis transformed with SsVP (encoding a vacuolar 
H+ -pyrophosphatase) from S. salsa [94] or KfVP1 (encoding 
H+-pyrophosphatase) from Kalidium foliatum [95] showed 
increased salt tolerance due to enhanced V-ATPase 
and V-PPase activity. Transgenic rice transformed with 
SaVHAc1 (a vacuolar H+-ATPase subunit c1 gene) from the 
halophyte Spartina alterniflora performs better under salt 
stress than control [96].

The third group of genes is involved in the ROS 
scavenging system. Transgenic tobacco transformed with 
SbpAPX (encoding Peroxisomal Ascorbate Peroxidase) 
from S. brachiata showed enhanced vegetative growth 
compared to wild type when grown at 300 mM NaCl 
[97]. Transformation with Ss.sAPX (encoding a stromal 
ascorbate peroxidase) from S. salsa improved the growth 
of Arabidopsis plants under high-salt conditions [84]. 

The remaining groups of genes are related to plant 
hormones and aquaporin. Transgenic tobacco expressing 
high levels of SbASR-1 (encoding abscisic acid stress 
ripening-1) from S. brachiata showed better germination 
and seedling growth than wild type when grown on 400 
mM NaCl [89]. Transgenic tobacco harboring SpAQP1 
(aquaporin-related gene induced by salt) from Sesuvium 
portulacastrum showed enhanced seed germination and 
root growth under high-salt conditions due to increased 
antioxidant enzyme activity [76].

The heterologous expression of halophytic salt-
tolerance genes improves salt resistance in non-halophytes 
to some degree, but transgenic plants often cannot finish 
their life cycles in naturally saline soils due to the great 
spatial and temporal variation of salt content. Moreover, to 
the best of our knowledge, no transgenic non-halophytes 
show typical halophyte characteristics such as improved 
growth under the appropriate salt concentration. In 
general, salt-tolerance traits are controlled by a series of 
genes rather than one or two genes. Therefore, it might 
be necessary to identify salt-tolerance gene networks and 
explore their effects under controlled conditions.

4  Conclusions and Perspective
The vegetative growth of halophytes can benefit from 
appropriate salt concentrations. Although different 
halophytes have evolved diverse salt-tolerance 
mechanisms, these can primarily be divided into three 

categories: the use of specialized organs (succulent 
leaves via ion compartmentalization), unique structures 
(salt glands and hydrophobic barriers in roots), and 
salt-tolerance genes. In this review, we focused on the 
mechanisms that could explain the beneficial effects of salt 
on vegetative growth in halophytes (i.e., better and more 
rapid growth than under non-salt conditions, resulting in 
increased seed production), including the morphological, 
cellular, and molecular aspects of these mechanisms. 
Additional reviews about various salt-tolerance 
mechanisms can be found in [82,98,99,100]. Many reports 
emphasize the important role of halophytes in improving 
saline soil conditions and the cultivation of salt-tolerant 
crops [1,3,20,44,82,100,101]. Several researchers have 
proposed a series of possible ways to realize these dreams, 
such as transforming non-halophytes with salt-tolerance 
genes to improve their salt resistance [82]. Indeed, salt-
tolerance genes isolated from halophytes are often used to 
transform non-halophytes. 

However, it is still difficult to apply these solutions to 
plants grown in the field and these solutions face many 
challenges. To date, no glycophytes/non-halophytes 
transformed with salt-tolerance genes have been 
successfully grown in natural saline environments. On 
the one hand, all known salt-tolerance genes have been 
heterologously overexpressed in non-halophytes to clarify 
their functions, which is not a very precise method. The 
functions of salt-tolerance genes should be verified in the 
halophyte itself via silencing or knockout, but this type 
of experiment has only been reported for the halophyte 
K. caspica [81]. On the other hand, salt tolerance in 
halophytes is a complex trait that is controlled by gene 
families or networks. Transforming one or several related 
genes into glycophytes may not cause radical changes 
in salt tolerance; instead, the transformed genes must 
function coordinately. Nevertheless, these solutions 
appear feasible, but additional time is needed to carry out 
such experiments. 

For the discovery of salt-tolerance genes and 
networks, high-throughput RNA-seq has been used in 
several halophytes such as L. bicolor [13], M. crystallinum 
[102,103], and Reaumuria trigyna [104]. Although many 
salt-tolerance genes have been identified in halophytes, 
which genes should we focus on first? Perhaps we can 
focus on the genes controlling primary salt-tolerance traits 
as mentioned in this review (such as succulent leaves, 
salt glands, and root hydrophobic barriers), followed 
by regulatory genes (such as transcription factor genes) 
that control these traits (e.g., Table 1) by transforming 
the halophyte itself. Using this procedure, we can target 
the key traits directly involved in salt tolerance and the 
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corresponding phenotypes, allowing a single trait to be 
improved in non-halophytes via the transformation of these 
genes. Good transformation systems are clearly needed 
for this strategy and, therefore, there is an urgent need to 
establish such systems for use in various halophytes, such 
as Leymus chinensis and L. bicolor [105,106]. Based on this 
system, CRISPR/Cas9-mediated genome editing will likely 
prove to be a useful tool for verifying target gene function 
[107]. In addition, many recent studies have found that 
long non-coding RNAs play an important role in salt 
tolerance in plants [108-110]. Therefore, more attention 
should be paid to non-coding RNAs that participate in the 
unique salt-tolerance strategies of halophytes via high-
throughput RNA sequencing. 

Overall, given that the expanding saline lands 
threaten human existence, there are two ways to make 
good use of halophytes to preserve soils and fresh water: 
1) increasing the planting areas of halophytes in arid 
and semi-arid areas to help prevent water loss and 2) 
transforming non-halophytes with salt-tolerance genes 
to enable them to tolerate irrigation with full-strength or 
diluted seawater in the near future.
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