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Animal-based traditional medicine not only plays a significant role in therapeutic practices worldwide but also provides a potential
compound library for drug discovery. However, persistent hunting and illegal trade markedly threaten numerous medicinal
animal species, and increasing demand further provokes the emergence of various adulterants. As the conventional methods
are difficult and time-consuming to detect processed products or identify animal species with similar morphology, developing
novel authentication methods for animal-based traditional medicine represents an urgent need. During the last decade, DNA
barcoding offers an accurate and efficient strategy that can identify existing species and discover unknown species via analysis
of sequence variation in a standardized region of DNA. Recent studies have shown that DNA barcoding as well as minibarcoding
and metabarcoding is capable of identifying animal species and discriminating the authentics from the adulterants in various types
of traditional medicines, including raw materials, processed products, and complex preparations. These techniques can also be
used to detect the unlabelled and threatened animal species in traditional medicine. Here, we review the recent progress of DNA
barcoding for the identification and authentication of animal species used in traditional medicine, which provides a reference for

quality control and trade supervision of animal-based traditional medicine.

1. Introduction

Traditional medicine (TM) has been widely used for the
prevention and treatment of various common ailments and
complicated illnesses in human history, and the use of ani-
mals as medicine, which is known as zootherapy, has
long been an essential part of traditional therapeutic prac-
tices, such as Traditional Chinese Medicine (TCM), Kampo
medicine, Ayurvedic medicine, and American folk medicine
[1-6]. Besides the traditional usages, modern clinical studies
have demonstrated that animal-based TMs possess a num-
ber of pharmacological effects, including anti-inflammatory,
antitumor, anti-infective, anticonvulsant, analgesic, and im-
munomodulatory activities [6-9]. Therefore, zootherapy
continues to serve as an important complementary and alter-
native therapy in modern societies. For example, over 1,500

animal species have medicinal benefits according to the
historical records in China, and approximately 77 kinds
of medicinal animals and 50 kinds of medicinal materials
derived from animal sources have been included in the
Chinese Pharmacopoeia 2015 Edition [1, 10]. In Brazil and
Latin America, at least 354 and 584 animal species have
been reported to be used in TM, respectively [4, 5]. It is
estimated that animal-derived TM has been increasingly
used in many countries and its annual global trade accounts
for billions of dollars [2]. Moreover, recent studies have
revealed that animal-based TM contains a variety of bioactive
compounds, which provides a valuable chemical library for
drug discovery [11], indicating the potential of medicinal
animals in developing modern pharmaceuticals.

During recent centuries, a wide range of wild animal
species is known to be threatened with extinction; for
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example, according to the latest statistics of the International
Union for Conservation of Nature (IUCN) Red List of
Threatened Species, the number of endangered and criti-
cally endangered animal species has reached 7597 and 5101,
respectively [12]. Such rapid loss of biodiversity is closely
associated with animal habitat loss and human overexploita-
tion. For instance, despite some parts such as horns and
secretions, almost all types of tissues and organs used in TM
require animal sacrifice, which inflicts substantial stress to
medicinal animal resources [2, 13, 14]. To solve the species
crisis, the trade of threatened animals has been regulated
under international legislation including the Convention on
International Trade in Endangered Species (CITES), and the
therapeutic application of such species has been forbidden in
many countries. However, some countries such as those in
East and Southeast Asia still utilize threatened animals for
medicinal purposes [2, 15], and the illegal trade of medicinal
animals further impairs biodiversity [16, 17]. Moreover, a
variety of adulterants and counterfeits has emerged in the
market for greater interests, which brings challenges to the
safety of animal-based TM. Therefore, identification and
authentication of animal species is of vital importance for TM
trade supervision and quality control.

It is known that animal-based TMs are mainly derived
from animal tissues, organs, or metabolites, and these parts
are usually processed into diverse preparations such as slice,
powder, and tablet, resulting in difficulties for morphology-
based species identification. In addition, several commer-
cial technologies used for species identification, including
chromatography and immunoassay, are relatively costly and
expertise-dependent, which is not suitable for bulk detec-
tion of TM preparations and forensic specimens [18, 19].
Therefore, developing an accurate and efficient identification
method represents an urgent need for animal-based TM.
In recent decade, advance in molecular techniques has
promoted the application of simple and precise DNA analysis
in taxonomic field. Among the prevailing genome-based
approaches, DNA barcoding provides a robust strategy to
identify existing species and discover unknown species via
comparative analysis of sequence variation [19-21]. Exten-
sive studies have shown that DNA barcoding is capable
of identifying a wide range of animal species, including
mammals, birds, reptiles, amphibians, fishes, and crustaceans
[21-24]. Moreover, many international organizations such as
the Consortium for the Barcode of Life (CBOL) and the
Barcode of Life Data System (BOLD) have been established
to promote DNA barcoding as a global standard for species
identification. In addition to taxonomy, DNA barcoding has
recently been applied in various fields, including medicine
and food science, forensics, and conservation biology [19,
20, 25-27]. In the field of TM, DNA barcoding has been
widely used to authenticate herbal sources [19, 20]. However,
studies on identifying medicinal animal species including
the threatened species and discriminating the authentic
TMs from the adulterants are relatively less addressed.
Therefore, we tend to review the general process and cur-
rent progress of DNA barcoding in analyzing animal-based
TM and then discuss its limitations and potential strate-
gies.
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2. Animal Identification by DNA Barcoding

2.1. DNA Barcoding and Minibarcoding. The accurate species
identification by DNA barcoding relies on a suitable DNA
barcode, which refers to a standardized sequence (usually less
than 1,000 bp) of the genome [21]. The barcode should have
universality so that it can be easily amplified from diverse
species, and it should contain few insertions or deletions to
facilitate sequence alignment. Also, its mutation rate must
be sufficient to generate a barcoding gap, which means the
maximum intraspecific variation is less than the minimum
interspecific distance [21]. For animal identification, the most
broadly used barcode marker is mitochondrial cytochrome
¢ oxidase subunit I (COI), which is highly conserved across
species employing oxidative phosphorylation for metabolism
[22]. Numerous studies have shown that COI-based DNA
barcoding can delimit diverse animal species, indicating the
high rates of sequence change at species level and constraints
on intraspecific divergence in COI sequence [21-24]. For ana-
lyzing fresh and well-preserved animal tissues, a full-length
barcode such as a 658-bp region of COI gene is recommended
as its PCR amplification and sequencing can be feasible.
However, animal tissues are usually processed before used as
TM materials, and some processing approaches, such as sun-
drying, stir-frying, and boiling, can cause DNA degradation,
leading to difficulties for PCR amplification of full-length
barcodes [19]. Since the amplification feasibility improves
with reduced sequence length, a minibarcoding method,
which utilizes a shorter region within the standard barcode,
has received increasing attention [28]. Recent studies have
shown that an array of minibarcodes can be effectively
amplified and sequenced from various processed products
including TMs and foods and provide sufficient sequence
information necessary for species identification [26, 29, 30].

2.2. DNA Metabarcoding. It is known that many TM prepa-
rations are composed of multiple materials derived from
diverse animal and/or plant species. In such mixtures, mul-
tiple barcode sequences will be coamplified and the con-
ventional sequencing will generate multiple or overlaying
sequencing peaks, resulting in ambiguity or false sequence
information [31]. Therefore, DNA metabarcoding has been
proposed to identify multiple species within complex samples
using next-generation sequencing (NGS) technology [32, 33].
NGS can rapidly yield millions of DNA reads and obtain
all representative sequences presented in mixtures, which
facilitates a high-throughput multitaxa identification. This
technology can also be used for sequencing minibarcodes
(approximately 50-400bp), which makes it suitable for
analyzing processed samples with degraded DNA [19]. For
example, Arulandhu et al. [34] have shown that a multilocus
DNA metabarcoding, including a set of full-length bar-
codes and minibarcodes combined with Illumina MiSeq
amplicon sequencing, can reproducibly identify animal and
plant species present in mixtures with both low and high
complexity at 1% dry weight content, demonstrating its
accuracy and sensitivity in analyzing complex samples. Due
to these advantages, DNA metabarcoding has been widely
applied in biodiversity research, ecological management, and
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FIGURE I: A diagrammatic process of DNA barcoding as well as minibarcoding and metabarcoding for identifying animal species in traditional

medicine samples containing single or multiple species.

community analysis [33, 35]. Recently, it has also been used
to identify animal species in medicinal preparations, foods,
and forensic specimens [34, 36-38]. For instance, Coghlan et
al. [36] used mitochondrial 16S ribosomal RNA (16S rRNA)
barcode and NGS technology to detect species in 15 complex
TCMs presented in the form of powders, capsules, and tablets
and revealed that some of them contained CITES-listed
animal species and unlabeled species, demonstrating the
capability of DNA metabarcoding in analyzing TM formulae.

3. General Process of Animal
Identification by DNA Barcoding

Although diverse animal tissues and animal-based TMs are
used in different studies, the main procedures of DNA bar-
coding are similar. After extraction of DNA from the tested
samples, appropriate DNA barcodes must be selected and
then amplified via the polymerase chain reaction (PCR).
The amplified regions can be sequenced by conventional
methods or NGS according to the sample complexity and
then matched to existing sequences from reference database
or voucher specimens. Further comparative analysis can
be performed to detect the intraspecific and interspecific
sequence divergences (Figure 1).

3.1. DNA Extraction. Extraction of DNA with high yield and
quality is a crucial premise for DNA barcoding of animal
species. For some types of animal tissues that contain a
small amount of DNA, appropriate sampling and sufficient
homogenization are important before DNA extraction. The
extraction protocol usually involves several critical steps,
including tissue lysis, removal of impurities from DNA, and
DNA precipitation [39]. There are many classical methods
for extracting out DNA from animal tissues, such as Sodium
Dodecyl Sulfate (SDS) extraction, guanidinium thiocyanate-
phenol-chloroform extraction, silica matrix-based purifica-
tion, and magnetic bead-based purification [40]. In many
laboratories, these conventional methods have been mod-
ified to improve DNA extraction efficiency; for example,
Ivanova et al. [41] developed an inexpensive and automation-
friendly animal DNA extraction protocol, which employed
SDS and proteinase K for tissue lysis followed by silica-
based purification using glass fiber filtration plates. In addi-
tion, most of these protocols have been developed into
commercial kits, which provide standard DNA extraction
means for different studies. As different types of ani-
mal tissues have distinct characteristics, it is necessary to
select appropriate extraction methods or commercial kits
(Table 1).
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3.2. Selection of Barcode Region. Extensive studies have dem-
onstrated the capability of COI region in animal taxonomy;
however, this barcode still has several limitations [38, 42].
For instance, COI barcoding region has been found to offer
insufficient and unreliable discrimination for some species in
the class Gastropod and Anthozoa [43, 44]. In fact, several
other genes, such as mitochondrial cytochrome b (Cytb), 16S
rRNA, 12S ribosomal RNA (12S rRNA), and nuclear riboso-
mal internal transcribed spacer (ITS), have also been used
for barcoding of animal species [42, 45, 46]. For example,
the ITS2 region can achieve an identification rate of 91.7%
at the species level among 12,221 kinds of animals recorded
in GenBank and differentiate some animal species such as
the Argasidae that can be not identified by COI barcode
[45]. On the other hand, minibarcodes usually exhibit higher
success rate of amplification than full-length barcodes in
highly processed samples. However, since the success of
taxonomic differentiation is positively correlated with the
barcode length, the minibarcode length is usually kept above
100 bp. For example, an approximately 250-bp region of 16S
rRNA can be successfully amplified from various medicinal
preparations and food products and further provides correct
identification of animal species [34, 36, 47]. In addition,
as a single DNA barcode may generate insufficient or false
identification of hybrid species as well as animal species
with high diversity [48], multilocus barcodes can be used
to improve the identification accuracy and sensitivity. The
DNA barcoding guideline for molecular identification of
TCM, which is included in the Appendix of Chinese Pharma-
copoeia, has proposed a comprehensive animal identification
using both COI and ITS2 barcodes [10].

3.3. PCR Amplification of Barcode Region. The amplification
efficiency of the barcode region is closely associated with
the primer pairs; for example, appropriate barcode primers
should be versatile across a wide range of animal species and
have high affinity to DNA templates and a balanced melting
temperature [49]. Ivanova et al. [50] have developed universal
primer sets for amplifying COI barcode. When the universal
primers are not applicable for certain taxa or specimens, it
is necessary to redesign primers, such as those for minibar-
codes [19, 47]. Many molecular biology software and related
websites, including Primer Premier, Oligo, and Whitehead,
can be used to design and evaluate primers. In addition to the
primers, PCR reaction system also contains other necessities
including heat-stable DNA polymerases, dNTP mixtures,
and DNA templates. The reaction parameters, such as the
temperature and time of melting and annealing processes,
play an important role in the selective amplification of
target templates, and these parameters should be optimized
according to the specific circumstances [51].

3.4. Sequencing of Amplified Region. As a widely used DNA
sequencing method, Sanger dideoxy sequencing is capable
of generating sequencing reads up to 1,000 bp [52]. However,
Sanger sequencing is low throughput, which makes it suitable
for DNA barcoding of single species at a small scale [31,
53]. In contrast, NGS technology can parallelly sequencing
multiple DNA fragments in a single reaction [38]. The 454

pyrosequencing is the first commercially available NGS and
has been used to analyze various types of mixtures, including
environmental specimens, food products, and medicinal
preparations [36, 38, 54, 55]. Recently, a number of bench-
top sequencers, such as Roche 454 GS Junior System, Ion
Proton System, and Illumina MiSeq and MiniSeq, have been
developed for routine tests in the laboratory [34, 36, 38, 56].
As NGS may produce sequencing errors, quality filtering
and trimming of raw reads must be performed to remove
erroneous data before barcoding analysis.

3.5. Reference Database. The accurate identification of ani-
mal species depends on the availability of reference sequence
data, which are currently deposited in many public libraries,
including GenBank, BOLD, Medicinal Materials DNA Bar-
code Database (MMDBD), International Nucleotide Se-
quence Database Collaboration (INSDC), and Barcode Index
Number System (BIN). These databases contain a variety
of sequences assigned to corresponding taxa, which is use-
ful for comparative analysis of sequence variations. For
example, GenBank, a commonly used database in barcod-
ing studies, has included more than 1 Terabase sequence
data with relatively broad taxon coverage [115]. Another
database BOLD has already collected more than 2 million
COI sequences from about 170,000 species, and INSDC has
recorded extensive Cytb and ITS sequence information [38].
In addition, MMDBD focuses on the barcode information of
medicinal plants and animals (over 1,700 species) listed in the
Chinese Pharmacopoeia, American Herbal Pharmacopoeia,
and other related references. Interestingly, MMDBD also
includes sequence information of common adulterants and
substitutes [116].

3.6. Sequence Analysis. Several comparative methods, in-
cluding similarity-, distance-, and tree-based approaches,
have been widely used to analyze sequence variations [38,
117]. The Basic Local Alignment Search Tool (BLAST) is
a similarity-based algorithm, which matches the query se-
quence to those in reference databases and then provides a
similarity score according to the portion of the query aligned
to the reference [118]. For distance-based analysis, Kimura 2-
parameter (K2P) model can be used to calculate the intraspe-
cificand interspecific genetic distances among sequences, and
then the barcoding gap can be used for species delimitation
[117, 119]. In addition, tree-based methods are often used to
establish the phylogenetic relationships, which assign query
sequences to species on the basis of their membership of clus-
ters in a barcode tree. The closest relative animal species will
appear in a cluster, while distinct species should form discreet
clusters. Several hierarchical clustering algorithms, including
neighbor joining (NJ), maximum likelihood (ML), maximum
parsimony (MP), and Bayesian inference (BI), have been
used to establish phylogenetic tree, and a combination of
these algorithms can provide more reliable identification
as compared with a single algorithm [22, 117, 120, 121].
A number of commercial tools, such as MEGA, PHYLIP,
and PAUP, can be used for tree construction and visualiza-
tion.



4. Authentication of Animal-Based Traditional
Medicine by DNA Barcoding

It is estimated that the animals used in TM are mainly from
several phyla, including Chordata, Arthropoda, Echinoder-
mata, Annelida, Mollusca, and Coelenterata. The authentica-
tion of genetic composition is important for quality control
of animal-based TM and trade regulation of threatened
medicinal animals. Recently, DNA barcoding as well as mini-
barcoding and metabarcoding has been successfully applied
to identify single (Table 2) and multiple species (Table 3)
in various types of animal-based TMs and discriminate the
authentics from the adulterants [34, 36, 57-114].

4.1. Identification of Single Species

4.1.1. Phylum Chordata-Derived Traditional Medicine. The
phylum Chordata used in TM mainly includes mammals,
reptiles, fishes, and amphibians. Among these vertebrates,
many kinds of wild mammals as well as their organs and
tissues, such as horns, scales, muscles, and gallbladders, have
long been an important source of TM materials in many
countries, especially those in Asia and Africa [2, 122]. For
example, the horns from a migratory ungulate Saiga tatarica
have been used in TCM for thousands of years, but the
wild population of S. tatarica has rapidly declined in recent
decades due to persistent hunting [57, 58]. CITES has listed
this antelope in Appendix II since 1995, and the market
trade of Saiga horns has been rigorously monitored. However,
the horns from other species such as Capra hircus and
Procapra gutturosa have been sold as Saiga horns in the
market [57]. It is difficult to discriminate these horns as they
share similar appearance, especially when they are processed
in slices or powders. To distinguish the authentics from the
adulterants, Chen et al. [57] recovered a 644 bp region of
COI gene from well-preserved horns with specific primers
and a 349bp fragment from degraded horn samples with
nested primers. Further analysis using K2P model and NJ
tree method revealed that the mean intraspecific genetic
distances of both full-length barcode and minibarcode are
far less than the mean interspecific distances, and S. tatarica
and its adulterant species can form independent clades in
phylogenetic tree. Another famous horn-based TCM is Pilos
antler, which is used for many illnesses including impotence,
arthritis, and anemia [123]. It is officially derived from velvet
antlers of Cervus nippon and Cervus elaphus according to the
Chinese Pharmacopoeia [10], while the antlers of other deer
such as Rangifer tarandus and Dama dama are often sold
as the genuine products [62]. Recently, several studies have
shown that using a set of DNA barcodes, including COI, Cytb,
and 16S rRNA, can identify the biological origins of various
animal horn samples and discriminate Pilos antler from its
adulterants with high sensitivity [58, 62, 64]. Together, these
results demonstrate that DNA barcoding and minibarcoding
are capable of authenticating horn-based TM. Moreover,
barcoding techniques have been used to analyze TM derived
from other mammalian tissues, such as pangolin scales, deer
musk, bear bile, and donkey-hide gelatin [36, 65-70]. For
instance, pangolin scales, a rare TM used for many conditions
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including asthma and rheumatism, are derived from Manis
pentadactyla according to the Chinese Pharmacopoeia [10].
However, the scales of other pangolin species often cause
market confusion due to the scarcity of effective detection
methods, and the illegal pangolin trade has escalated globally
in recent years despite the legislation that all pangolin
species have been listed in CITES Appendix II since 1994.
To identify several batches of confiscated pangolin remains
in Philippines and Hong Kong, several studies used COI
and Cytb barcodes and found that barcoding approach can
accurately assign unknown scales to specific species and
distinguish different pangolin species [66, 67], indicating that
DNA barcoding is a useful strategy for customs to suppress
illegal trade of threatened mammals.

It is reported that many reptiles, including snakes,
geckos, and turtles, play an important role in traditional folk
medicine worldwide, and these reptile-based TMs have vari-
ous therapeutic benefits, such as anti-inflammatory, sedative,
and analgesic effects [124]. To identify the medicinal rep-
tiles that exhibit similar morphology interspecifically, DNA
barcoding provides a simple but reliable strategy (Table 2).
For example, Zaocys dhumnades and Bungarus multicinctus
are two important snakes used in TCM, and their dried
bodies without the viscera have been widely applied to treat
several disorders including rheumatoid arthritis, stroke, and
convulsion [73-77]. However, many other snake species are
marked as Z. dhumnades and B. multicinctus in the market,
and the accurate identification of these snake-based TMs
highly relies on professional experience. Interestingly, several
recent studies have used a panel of full-length barcodes and
minibarcodes including COI, 125 rRNA, 16S rRNA, and Cytb
to analyze various snake specimens and related TMs collected
from the wild and markets in China. The results showed that
each sample can be identified as specific snake species, and
Z. dhumnades and B. multicinctus as well as their adulterants
can be clearly distinguished at the species level [73-77],
indicating the efficacy of DNA barcoding and minibarcoding
in authentication of snake-based TM. Another example is
the dried body of Gekko gecko, which is traditionally used
for relieving coughing and asthma [72]. Using 150-bp and
648-bp fragments of COI sequence, G. gecko specimens and
their adulterants such as G. japonicas and Calotes versicolor
have been found to exhibit significant barcoding gaps [72],
further demonstrating the capacity of barcoding techniques
in analyzing reptile-based TM.

As an indispensable group of vertebrates in aquatic
animals, fish provides an enormous resource for humans as
foods and medicines. Modern research has revealed that
many fish species, especially marine fish, contain various sub-
stances with nutritional and pharmacological benefits [125].
For example, shark fins are not only the main constituent
of the delicacy shark fin soup in Asian cuisines but also
the precious TCM materials used for arthritis treatment
and immune enhancement [97, 126]. Although twelve shark
species have been listed in Appendix II of CITES, overfishing
and illegal trade continue to induce a rapid decline of shark
populations. In response to this issue, DNA barcoding has
recently been adopted to authenticate shark species in the
market [94-98]. For processed shark products, degraded
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genomic DNA may lead to unsuccessful amplification of
tull-length barcodes. Therefore, several studies used shorter
fragments of COI (less than 200 bp) and showed that these
minibarcodes can accurately identify CITES-listed shark
species from processed fins and even fin soup and skin-care
products [97, 98], demonstrating the capability of DNA mini-
barcoding in analyzing processed animal tissues. Another
example is Hippocampus spp., which has a unique appearance
in the family Syngnathidae and is a famous TM material used
to treat impotence, asthma, and insomnia [84, 85]. As a mass
of seahorses have been harvested and traded annually, all
seahorse species have been included in Appendix II of CITES
since 2004. To investigate the usage of seahorses in Chinese
TM market, several recent studies employed DNA barcoding
to analyze dried seashore specimens and revealed that both
COI and Cytb barcodes can efficiently authenticate seahorse
species and identify endangered species [84, 85]. Together,
these studies demonstrate the availability of DNA barcoding
in trade supervision of threatened fish species used in TM.

Amphibians are a group of ectothermic vertebrates char-
acterized by their ability to exploit both aquatic and terrestrial
habitats. Some of them, such as toads, frogs, and salamanders,
are traditionally used to treat a number of ailments in many
countries, including China, Japan, South Korea, and Spanish
(127, 128]. For example, Rana temporaria and Bufo gar-
garizans are two common amphibians used in TM. The dried
body and oil derived from R. temporaria are traditionally
used to relieve cough and asthma, while the toad cake and
skin of B. gargarizans have been used for treating heart
diseases, skin ailments, and other systemic illnesses [10, 129].
However, other frog and toad species are often counterfeited
as the authentics in the market. Recently, several studies have
shown that distinct frogs and toads including R. temporaria
and B. gargarizans can be clearly distinguished using DNA
barcoding approach based on COI and 16S rRNA sequences
[99, 100], which provides a reference for authentication of
amphibian-based TM.

4.1.2. Other Phyla-Derived Traditional Medicine. A variety
of animal species in the phylum Arthropoda have been
reported to be used in traditional therapeutic practices
worldwide [130]. For example, the dried larvae of Chrysomya
megacephala are traditionally used to treat malnutrition
and skin and soft tissue wounds [101]. To discriminate this
blowfly from other Diptera, a recent study used a full-length
COI-based DNA barcoding and found that C. megacephala
exhibited a complete nonoverlapping barcode divergence
with other flies including the closest relative species C.
pinguis [101], demonstrating the ability of DNA barcoding
in authentication of insect-based TM. Moreover, barcoding
technique has been applied to identify other medicinal
animals in the phylum Arthropoda, such as scorpions and
crabs [73, 106]. Interestingly, some animals have symbiotic
associations with fungi, and they can be used together as
TM materials. For the authentication of fungal species in
such TMs, it is noteworthy that COI barcode cannot provide
sufficient discrimination, while ITS barcode exhibits signif-
icant interspecific divergence [131]. For instance, Cordyceps
sinensis, a well-documented tonic TCM widely used in Asia,
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is a combination of an entomopathogenic fungus and the
larvae of the Hepialidae such as Hepialus armoricanus [104].
A number of close relative species such as C. gunnii and C.
cicadae are commonly sold as C. sinensis, which seriously
reduces the therapeutic efficacy or even leads to poisoning. To
distinguish C. sinensis from counterfeit species, several recent
studies have designed species-specific primers to amplify
certain segments of ITS sequence and found significant
barcoding gaps among these Cordyceps species [102-104].
Therefore, a combination of COI and ITS barcodes can be
feasible to detect TM containing both insects and fungi.
In addition to Arthropoda, a number of species in other
phyla, including Echinodermata, Annelida, Mollusca, and
Coelenterata, also provide important medicinal resources for
traditional therapeutics [132-135]. Although DNA barcoding
is relatively less addressed in TMs derived from these phyla,
limited evidence has shown that it is still capable of identi-
tying several species, including sea cucumbers, earthworms,
oysters, and corals [108-113]. Together, these studies demon-
strate that DNA barcoding and minibarcoding are accurate
and efficient approaches to authenticate TM derived from a
wide range of animal species.

4.2. Identification of Multiple Species. Recent concerns about
the safety and legality of TM have prompted more rigorous
surveillance. Interestingly, several studies have shown that
DNA metabarcoding is capable of authenticating labeled
species and detecting undeclared taxa in animal-based TM
formulae (Table 3). For example, using 16S rRNA barcode
combined with Roche GS Junior sequencing, half of the TCM
preparations legally purchased in South Australia were found
to contain DNA from undeclared animal or plant taxa [114].
Another recent study has developed a multilocus metabar-
coding approach that employs 12 DNA barcode markers and
[lumina MiSeq amplicon sequencing and revealed that Ma
pak leung sea-dog hard capsules and Cobra performance
enhancer hard capsules, both of which are used to treat sexual
weakness, contain DNA from nondeclared taxa such as Bos
taurus and Homo sapiens instead of labeled species [34].
Together, these studies suggest that metabarcoding can pro-
vide a pharmacovigilance measure for pre- and postmarket
auditing of TM. In addition, metabarcoding has recently been
used to identify threatened animal species in a variety of
complex samples including TM preparations (Table 3). For
instance, Coghlan et al. [114] have shown that 16S rRNA-
based DNA metabarcoding can detect DNA from endangered
animals Panthera uncia and possibly Panthera tigrisina TCM
sample used to treat arthritis and pain. Moreover, similar
technique was used to audit the genetic composition of some
TCM samples seized by Australian Customs and Border
Protection Service, and the results showed that Saiga antelope
horn powder contained DNA from the known CITES-listed
species Saiga tatarica and other species including goat and
sheep, and Chu pak hou tsao san powder contained DNA
from Ursus thibetanus, which is recorded in both CITES
AppendixIand IUCN Red List [36]. These results suggest that
DNA metabarcoding is useful for custom authority to analyze
forensic specimens. Interestingly, DNA metabarcoding has
also been used to identify the diet composition from animal
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secretions, such as the floral species of honey [136], further
demonstrating its ability in biodiversity analysis.

5. Limitation and Prospect

Although DNA barcoding is an effective complement to
conventional identification methods, it still has a few short-
comings [42, 137]; for example, some animal tissues such
as horns, shells, and scales contain relatively small amount
of DNA, resulting in difficulties for template amplification.
Moreover, a false identification may be generated due to the
contamination in DNA extraction and PCR reaction pro-
cesses. Thus it is important to sample the tissues containing
more cells and make sure all procedures are standardized.
For example, to obtain a high yield and quality of DNA from
animal horns, 75% ethanol can be used for sterilization, and
middle layer between the bone core and outer sheath can be
collected and then ground into powder in liquid nitrogen
[57]. On the other hand, some TM preparations such as
the extracts are highly processed, inducing degradation of
DNA into very small fragments or even complete removal
of DNA. In such cases, it is preferred to perform DNA
barcoding analysis before the raw materials are processed.
Another concern for complex samples with degraded DNA
is that the amplification success of a barcode region may be
different for distinct species due to varied gene copy number
[20, 31]. It is thus necessary to employ multilocus barcoding
and minibarcoding approaches and design novel primers for
certain taxa.

The feasibility and accuracy of DNA barcoding are closely
associated with both reference sequence data and taxonomi-
cally confirmed specimens. Although GenBank has included
extensive COI sequences in a wide range of animal species,
the information of some species used in TM is still lacking,
and the sequence inventory of other barcodes such as 16S
rRNA and Cytb also needs to be extended [38, 42]. Moreover,
it is important to improve the availability of professionally
authentic vouchers in public DNA databases as the misiden-
tified species will generate incorrect sequence information
[138,139]. In addition, although MMDBD includes thousands
of TM materials, the listed animal species and their adul-
terants are still insufficient, and the animal species used in
other TM systems are also lacking. Therefore, more related
databases should be established to provide sufficient bases for
DNA barcoding analysis of animal-derived TM.

The quality of animal-based TM is known to be related
to multiple factors, such as the specified tissues, the effective
substances and even the growth stage. DNA-based analysis
is feasible for genetic authenticity but unable to evaluate
the pharmacological effects of TMs [19]; for example, DNA
barcoding cannot distinguish different tissues from the same
animal or determine the content of bioactive substances. It
also fails to detect animal growth stages while some TM
materials require animals at specific stages. Moreover, DNA
barcoding is not feasible to identify the adulterants that do not
contain DNA. To overcome these restrictions, it is necessary
to combine genetic techniques with conventional approaches
such as chromatography and metabolomics. Interestingly,
a recent study used multidisciplinary techniques, including
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NGS, high performance liquid chromatography, and mass
spectrometer, and showed that some TCM samples not only
contained unlabelled animal species but also had undeclared
pharmaceutical agents and excess heavy metals [114], indi-
cating the potential of comprehensive analysis system in
evaluating TM quality and reducing market fraud.

6. Conclusion

DNA barcoding offers a reliable and efficient strategy for
the identification of authentic animal species and their
adulterants in TM. It is noteworthy that the success of DNA
barcoding is related to many factors, such as high quality of
DNA and appropriate barcodes. For processed animal tissues
with degraded DNA, minibarcodes usually exhibit higher
success rate in species identification as compared with full-
length barcodes. For complex mixtures such as TM formulae,
metabarcoding provides a feasible approach to simultane-
ously detect multiple animal ingredients. With a global accu-
mulation of open access reference sequences, DNA barcoding
gradually becomes an authoritative approach in TM authen-
tication. Despite these advantages, DNA barcoding still has
several inherent limitations, such as inability to identify
medicinal parts or determine compounds with pharmacolog-
ical activities. Therefore, establishing a comprehensive identi-
fication system including barcoding and other techniques will
provide more information for quality assessment and trade
monitor of animal-based TM.
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