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Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and
biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular
thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum
albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS− or with O2. The
results provide evidence that the reaction of azanone with the anionic form of thiols (RS−) is favored over reactions with the
protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the
HNO reaction with thiolates is provided.
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Introduction

HNO (nitroxyl, IUPAC name azanone) is the protonated
product of the one-electron reduction of nitric oxide (•NO).
In contrast to •NO, azanone is a strong electrophile that is
highly reactive toward various nucleophiles. It can also be
oxidized to •NO [E]°(•NO/HNO)=− 0.14 V [1], recently
revised as E°(•NO/HNO)= 0.27 V [2]. HNO reacts with
molecular oxygen, [3–9], nitric oxide [10], nitrite [11, 12],
hydroxylamine [12, 13], sulfite [12], thiosulfate [12, 13],
metalloproteins [14–18], metalloporphyrines [19–22], thiols
[3, 13, 14, 23], C- and S-nitroso compounds [12, 24],
nitroxides [13, 25–27] and phosphines [12, 13, 28–33].
Thiols constitute the main biological target of HNO [34].
The fast reaction between HNO and thiols (~106 M−1s−1

[3, 13, 14]) results in the formation of N-hydro-
xysulfenamide (Reaction 1), which in the presence of
excess thiol is converted into the corresponding disulfide
and hydroxylamine (Reaction 2). N-hydroxysulfenamide
can also undergo spontaneous isomerization to sulfinamide
(Reaction 3). It has been postulated that sulfinamides are

unique products of the HNO reaction with thiols and might
serve as in vivo biomarkers of azanone formation [34].

HNOþ RS� ! RSNHO� �!H
þ
RSNHOH ð1Þ

RSNHOHþ RSH ! RSSRþ NH2OH ð2Þ

RSNHOH ! RSðOÞNH2 ð3Þ

The high reactivity of HNO toward thiols and their
abundance in biological systems are major factors deter-
mining the short lifetime of azanone in vivo [34]. On the
other hand, it has been proposed that azanone can be gen-
erated in several thiol-related pathways [35, 36]. The first is
the reaction of thiols with S-nitrosothiols (Reaction 4)
[37, 38]. Similar routes of HNO generation include RSNO
reactions with H2S (Reaction 5 and/or Reactions 6–7) [39]
or ascorbate anion (Asc−) (Reactions 8–9) [40].

RSNO þ R0SH ! RSSR0 þ HNO ð4Þ

RSNO þ HS� ! RSS� þ HNO ð5Þ

RSNO þ HS� ! RSHþ SNO� ð6Þ

SNO� þ HS� þ Hþ ! HSS� þ HNO ð7Þ
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RSNO þ Asc� ! RSHþ AscNO� ð8Þ

AscNO� ! DHAþ HNO ð9Þ

Doctorovich et al. demonstrated that azanone can also be
formed during the reactions of •NO with ascorbate or phe-
nols (e.g., tyrosine, hydroquinone, salicylic acid, α-toco-
pherol or acetaminophen), according to Reaction 10
[41, 42].

�NO þ ROH ! RO� þ HNO ð10Þ
Recently, it has been proposed that HNO is also pro-

duced in the reaction of thiols with nitric oxide [36]. •NO is
known to react with thiols, with the formation of N2O and
corresponding disulfides [43] and/or sulfenic acids [44].
However, both the mechanism [36, 43, 44] and the kinetics
of these processes are elusive [36, 45–47]. The formation of
HNO has also been linked to the mechanism describing the
formation of dinitrosyl-iron complexes (DNIC) from •NO,
RS− and Fe2+ [48–50]. DNIC are biologically relevant
bioinorganic complexes of •NO, and perhaps the most
abundant nitric oxide-derived adducts present in cells pro-
ducing •NO [51, 52]. It has been suggested that they can act
as RSNO precursors [49, 50, 53] and HNO/NO− donors
[54, 55]. Due to the rapid scavenging of HNO by thiols, the
generation of azanone is not expected to affect the DNIC-
dependent RSNO formation. The number of these processes
makes it challenging to formulate a proper description of the
thiols/•NO/HNO interactome.

In the absence of scavengers, HNO is known to spon-
taneously dimerize with a second-order rate constant of
~8 × 106 M−1s−1 [10]. The intermediate product of this
reaction, hyponitrous acid, dehydrates to final decomposi-
tion products, nitrous oxide and water (Reaction 11).

2HNO ! HONNOH½ � ! N2Oþ H2O ð11Þ
The propensity of HNO to undergo the above reaction

requires the use of donor molecules, the decomposition pro-
duct of which is the HNO molecule. The most often studied
and commonly used HNO donor is Angeli’s salt, which
decomposes at 25 ˚C with a rate constant of 6.8 × 10−4 s−1

(t1/2 ~ 17 min) in a pH range from 4 to 8.6 [56, 57]. The fact
that its decomposition rate constant is independent of pH is a
unique feature of Angeli’s salt compared to other HNO
donors. Other frequently used HNO donors are Piloty’s acid
and its derivatives [57–61]. Unsubstituted Piloty’s acid (N-
hydroxybenzenesulfonamide) releases azanone favorably
under alkaline conditions only, whereas Piloty’s acid deriva-
tives, substituted at different positions of the aromatic ring,
release azanone across a wide range of pH values [57, 60, 61].
The rate constant of HNO release at a given pH depends on
the ring substituents in Piloty’s acid derivatives [60, 61].

Similarly to •NO, HNO exhibits unique pharmacological
effects that have potential benefits for the treatment of a
variety of diseases. Chronologically, the first described
biological action of HNO was the inhibition of alcohol
dehydrogenase by cyanamide (a pharmacological alcohol
deterrent agent), via its catalase-dependent bioactivation
into an HNO donor [62–64]. More recently, HNO donors
have been proposed as agents for the treatment of heart
failure [65–68]. Azanone donors have been shown to induce
apoptosis, suppress tumor angiogenesis, and help to achieve
analgesia [69–73]. Some of these effects could be connected
to HNO reactions, mainly with cysteine residues of key
enzymes responsible for the observed pharmacological
effects. For instance, HNO generated from cyanamide
modifies the cysteine-302 residue in aldehyde dehy-
drogenase, leading to irreversible inhibition of the enzyme
[63]. The mechanism by which azanone affects the heart is a
matter of intense research. It has been proposed that HNO
donors enhance cardiac contractility, by targeting the reg-
ulatory protein phospholamban [74, 75]. Keceli et al. found
that HNO reacts with Cys-41 and Cys-46 via the formation
of the intramolecular disulfide bond, which forces con-
formational changes in the protein and enhances cardiac
function as a result [74].

In a previous study, we investigated the reactivity of
HNO toward selected thiols: cysteine (kCys= (4.5 ± 0.9) ×
106 M−1s−1, pKa= 8.3), glutathione (kGSH= (3.1 ± 0.6) ×
106 M−1s−1, pKa= 8.8), N-acetylcysteine (kNAC= (1.4 ±
0.3) × 106 M−1s−1, pKa= 9.5) and captopril (kCap= (6 ±
1) × 105 M−1s−1, pKa= 9.8). We found that at pH 7.4 the
rate constant of the HNO reaction with thiol depends on its
–SH group pKa. [3] In the present study, we explored the
dependence of the rate constants of the reactions of HNO
with selected biologically important thiols on pH. The data
show the effect of pH on HNO reactivity toward the low
molecular thiols N-acetylcysteine and glutathione and the
thiol proteins bovine and human serum albumins.

Materials and Methods

Materials

Angeli’s salt (AS, Sodium Trioxodinitrate, Na2N2O3) was
synthesized according to a published procedure [57]. Stable
solutions of Angeli’s salt prepared in 1 mM NaOH (pH
∼11) were stored on ice during the experiments and each
day a fresh AS stock solution was prepared [56, 57]. A
boronate probe, coumarin boronic acid (CBA), which
enables the detection of peroxynitrite (ONOO–) formed in
the reaction of HNO with molecular oxygen, was synthe-
sized according to a published procedure [76]. All thiols
(glutathione (GSH), N-acetylcysteine (NAC), bovine serum
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albumin (BSA) and human serum albumin (HSA)), as well
as all other chemicals (of the highest purity available) were
purchased from Sigma-Aldrich Corp. By varying the
amounts of salts (monobasic dihydrogen phosphate and
dibasic monohydrogen phosphate) a range of buffers
between pH 6.4 and 8.3 were prepared. All solutions were
prepared using deionized water (Millipore Milli-Q system).

Competition Kinetic Method

The competition kinetic method used in this study followed
the procedure described previously [3, 12]. Angeli’s salt, the
most common HNO donor, was used. Azanone released from
Angeli’s salt reacts either with a corresponding thiol (RSH
and RS−) or with molecular oxygen (Scheme 1). The latter,
relatively fast reaction (k= (1.8 ± 0.3) × 104M−1s−1) [3]
results in the formation of peroxynitrite, which can be easily
detected fluorometrically with the use of the fluorogenic
probe, coumarin boronic acid (CBA). Across the whole stu-
died pH range, CBA reacts rapidly and directly with ONOO–

(k= 7.3 × 105M−1s−1, pH 6.6; k= 1 × 106M−1s−1, pH 7.4;
k= 4.5 × 105M−1s−1, pH 8.2), with the formation of blue
fluorescent 7-hydroxycoumarin (COH) as the main product
[3, 76]. The ratio of initial rates of COH formation in the
absence and presence of scavenger S can be expressed by the
equation

v0
vi

¼ 1þ kobs S½ �i
kO2 O2½ � ð12Þ

where kobs and kO2 are the second order rate constants of
HNO reactions with the scavenger (thiol/thiolate) and
molecular oxygen, respectively, and [S] and [O2] denote the
total concentrations of thiol ([S]= [RSH] + [RS−]) and
molecular oxygen. In solutions remaining in equilibrium
with air the concentration of molecular oxygen is equal to
225 μM [77]. Based on Eq. (1), the kobs/kO2 ratio was
determined for each pH value. Figure 1 illustrates the used
method to determine the kobs/kO2 ratio at pH 6.5.

Stopped-flow Measurements

Angeli’s salt (6 μM in 1mM NaOH) was mixed rapidly with a
solution containing the coumarin based monoborate probe

CBA (50 μM), phosphate buffer (50mM, pH range 6.4–8.3),
metal chelator dtpa (100 μM), 10% CH3CN and the corre-
sponding thiol compound at the appropriate concentration.
Glutathione and N-acetylcysteine were used in a concentration
range from 1 to 3 μM. Human or bovine serum albumin were
used in the concentration range from 2 to 6 μM. Both reaction
mixtures - the alkaline solution of the HNO donor and the
solution of the corresponding thiol in the appropriate phos-
phate buffer - remained in equilibrium with air. The formation
of fluorescent COH was monitored using an Applied Photo-
physics SX20 stopped-flow spectrophotometer equipped with
a fluorescence detector and a thermostatically controlled cell
(25 °C) with a 10-mm optical pathway. The reaction mixtures
were excited at 332 nm and the emitted light intensity was
measured at 470 nm (PMT voltage= 850V, emission/excita-
tion slit= 2.5 nm). The initial rates of the increase in the
fluorescence intensity were fitted with a linear function. The
data were analyzed using the Origin Pro 2015 program (Ori-
ginLab Corporation, Northampton, MA, USA).

pH Determination

The pH of the phosphate buffers and the exact pH of the
solutions after mixing were measured using a Seven-
MultiTM pH meter (Mettler Toledo GmbH, Schwerzen-
bach, Switzerland).

Computational Details

Quantum mechanical calculations were performed in the
Gaussian G09 suite of programs, Revision E01 [78]. The
geometries of the stationary points were fully optimized
using the Hartree-Fock (HF) method as well as Density
Functional Theory (DFT). The functionals M06-2X [79],
B2PLYP and B3LYP were used with Grimme’s D3 dis-
persion correction, B2PLYP-D3 [80–82] and B3LYP-D3
[83, 84], respectively. A 6–311++G(2df,2p) basis set [85]
was used, with the inclusion of a water solvent. Water was
represented according to the IEFPCM [86, 87] method by a

Scheme 1 The reaction model used to determine the rate constants of
the reactions of HNO with RSH/RS−

Fig. 1 The υ0/υi ratio as a function of [BSA]/[O2] at pH= 6.5
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default polarizable continuum solvent model in Gaussian.
Structure optimizations were followed by frequency calcu-
lations, in order to verify the nature of the stationary points
and to obtain corresponding free energy values. We were
unable to locate any transition states for the reaction
between CH3SH and CH2O.

Results

To examine the effect of pH on the reactivity of azanone
toward thiols, we used the competition kinetics method
previously described in the literature [3, 12]. Due to the
spontaneous dimerization of azanone, donor compounds are
required that decompose with the release of the HNO
molecule [10]. In our study, Angeli’s salt was used as the
HNO donor because it decomposes with a constant rate in
the pH range from 4 to 8.6 [56, 57]. Above pH 8, the rate of
decomposition decreases [56, 57]. The low concentration of
the donor compound (3 μM) in the system resulted in an
initial flux of HNO below 0.15 μM/min. Therefore, the
steady-state concentration of HNO was very low. In the
entire considered pH range, the system remained in equili-
brium with air. Hence, the concentration of molecular
oxygen was equal to 225 μM [77]. Given all the above-
mentioned factors, the HNO dimerization process was
negligible and was not taken into account.

Azanone is a weak acid, with a pKa value of 11.4 [1].
Therefore, released azanone exists in its protonated form in
the studied pH range. The rate constant of the HNO reaction
with molecular oxygen had been determined previously as
equal to (1.8 ± 0.3) × 104 M−1 s−1. We assume that this rate
constant does not depend on the pH [3]. The reaction
between HNO and O2 results in the formation of perox-
ynitrite (ONOO−) [3], which in aqueous solutions exists in
an acid-base equilibrium with its protonated form perox-
ynitrous acid (ONOOH, pKa= 6.8) [88]. In the absence of
scavengers, peroxynitrite undergoes isomerization to HNO3

(~70%) (Reaction 12) and homolysis to •OH and •NO2

radicals (~30%) (Reaction 13). All these radical species are
highly oxidizing and nitrating agents. Its formation in the
presence of the HNO donor could lead to one-electron
oxidation of the donor compound, affecting the kinetics and
mechanism of its decay [61]. The use of boronate probes in
the system helps effectively scavenge peroxynitrite and
prevent oxidation of Angeli’s salt [61].

ONOOH ! NO�
3 þ Hþ ð13Þ

ONOOH ! NO2 þ� OH ð14Þ

The oxidation of boronate compounds by ONOO− is a
direct, stoichiometric and rapid reaction (k ~ 105–106M−1s−1),

leading to the formation of the corresponding phenols as major
products [76, 89–93]. However, at pH higher than 9 boronates
undergo an addition reaction with hydroxyl ions (HO–),
yielding a product unreactive toward ONOO– [91]. Given the
pH-dependence of boronates reactivity toward ONOO− and
the lower release of HNO from Angeli’s salt in alkaline
solutions (pH > 8.6), our studies were performed in a limited
pH range (6.4–8.3) [56, 57]. The probe used in our study,
coumarin boronic acid (CBA), is converted by peroxynitrite to
blue fluorescent 7-hydroxycoumarin (COH) as a major pro-
duct [76]. The high reactivity of CBA toward peroxynitrite
within the studied pH range ensures quantitative peroxynitrite
scavenging in the presence of low micromolar concentrations
of the studied thiols. The formation of COH formation in the
presence of thiols was slower than in their absence. Based on
Eq. (1), we determined the ratios of the second-order rate
constants of the HNO reactions with thiol and molecular
oxygen for each pH in the range from 6.4 to 8.3.

Assuming that HNO can react with the thiolate anion
RS– (kRS-) as well as with its protonated form RSH (kRSH),
the observed rate constant (kobs) can be expressed as a
function of pH, which depends on thiol pKa, and the rate
constants kRS- and kRSH:

kobs ¼ kRS� � 10�pka þ kRSH � 10�pH

10�pka þ 10�pH
ð15Þ

The ratio kobs /kO2 can be expressed in a similar way:

kobs=kO2 ¼
kRS� � 10�pka þ kRSH � 10�pH

10�pka þ 10�pHð Þ � kO2

ð16Þ

The kobs /kO2 ratios obtained for different pH were fitted
to Eq. (3), which allowed us to estimate the rate constants
of the HNO reaction with the corresponding thiol and
thiolate, separately. Figure 2A shows the dependence of
the kobs/kO2 ratio on pH for the reaction between HNO
and glutathione. It is noticeable that the reactivity of HNO
toward thiols is pH-dependent. The pKa value for the
dissociation of the -SH group in glutathione was taken
from the literature as being equal to 8.8 [94]. The best
fitting was obtained assuming kRS- /kO2 equal to (2.1 ±
0.1) × 103 and kRSH/kO2 = 100 ± 10. These results indicate
that thiolate anions are much more reactive toward HNO
than their protonated forms (kRS- » kRSH). A similar
observation was made for N-acetylcysteine (Fig. 2B). The
pKa value of the -SH group in N-acetylcysteine is equal to
9.5 [94] and the corresponding ratios kRS-/kO2 and kRSH/
kO2 are equal to (5.5 ± 0.4) × 103 and 5 ± 7, respectively.
Again, the reaction of HNO with thiolate is faster, hence
favored.

We also performed analogical experiments for the two
most abundant thiol proteins, bovine (BSA) and human
(HSA) serum albumins. The pKa values of these proteins
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are debatable. In the literature, the pKa value of BSA
cysteine -SH group is estimated to be in the range from
7.86 to 8.00 [95], whereas the spectrum of pKa values for
HSA is even broader (5.0–8.8) [96–101]. Figure 2C
shows the dependence of the kobs/kO2 ratio on pH for the
reaction between HNO and BSA. The experimental data
are best fitted with Eq. (3) and give a pKa value for the
dissociation of the -SH group in BSA equal to 7.9 ± 0.1.
The obtained pKa value fits well into the range of values
described in the literature. The ratios kRS-/kO2 and kRSH/
kO2 are equal to 180 ± 20 and 3 ± 4, respectively. Figure
2D shows the dependence of the kobs/kO2 ratio on pH for
the reaction between HNO and HSA. In calculations
performed for HSA, we used a value for pKa of 8.1
[101], as has been recently established by three inde-
pendent approaches. The experimental data, best fitted
with Eq. (3) assuming the above-mentioned pKa value
for the dissociation of the -SH group in HSA, give the
ratios kRS-/kO2 = 310 ± 20 and kRSH/kO2 = 14 ± 6. The
ratio values obtained for the thiol proteins confirm the
observed relationship between HNO reactivity and pro-
tonation of the sulfhydryl group in the studied
compounds.

To further examine the reaction of HNO with thiolates,
we analyzed the correlation between kobs and the thiolate
concentration. The values for kobs were determined based on
the rate constant of the HNO reaction with molecular
oxygen kO2 = (1.8 ± 0.3) × 104 M−1s−1 [3], whereas the
concentration of thiolate was calculated based on the cor-
responding pKa value of the thiol. The linear relationship
between kobs and the thiolate concentration can be expres-
sed by Eq. 4. The correlation is illustrated in Fig. 3.

kobs ¼ RS�½ �
½S� � kRS� � kRSHð Þ þ kRSH ð17Þ

The variables [RS–] and [S] denote the concentration of
thiolate and the total concentrations of the thiol ([S]=
[RSH] + [RS−]), respectively, while kRS− or kRSH are the
rate constants of the HNO reaction with the thiolate (RS−)
and thiol (RSH), respectively. Therefore, our approach also
allows us to estimate the rate constants of the HNO reaction
with the corresponding thiol and thiolate, separately. The
rate constants of the HNO reaction with the appropriate
thiolates is high and varies in the range k ~106 – 107M−1s−1,
whereas the rate constants of the HNO reaction with the

Fig. 2 The kobs/kO2 ratio as a function of pH. A Glutathione (GSH), B
N-acetylcysteine (NAC), C Bovine serum albumin (BSA), D Human
serum albumin (HSA). Reaction mixtures consisted of 0; 0,5; 1;
1,5 μM GSH or NAC or 0; 1; 2; 3 μM BSA or HSA, 25 μM coumarin
boronic acid (CBA), 3 μM Angeli’s salt (AS) in phosphate buffers

(25 mM) at appropriate pH with addition of dtpa (50 μM) and 5%
CH3CN. The solutions were excited at 332 nm, the emitted light
intensity was measured at 470 nm (photomultiplier voltage: 850 V,
emission/excitation slit: 2.5 nm)

Cell Biochemistry and Biophysics (2021) 79:845–856 849



respective thiols is an order of magnitude lower at k ~105 –
106 M−1s−1 (Table 1). Therefore, the same tendency can be
observed: the reaction between azanone and thiolate is
favored. There is a slight discrepancy between the kRSH
values for thiol proteins computed with the aid of each
approach. As can be seen in Fig. 3, the thiolate percentage is
strongly dependent on the pKa value, which according to
the literature varies in the case of BSA and HSA [95–101].

To confirm our findings, quantum mechanical calcula-
tions were performed using different computational
methods (Tables 2, 3). Different calculation methods for

estimation of the energy barrier in the reaction of methyl
thiolate (MeS−) with HNO give discrepant values. The
relatively high energy barrier (125 kJ/mol) was computed
with ab initio HF theory, whereas DFT calculations pre-
dicted the barrier to be about 27 kJ/mol for the M06-2X
DFT functional and 13, 12 kJ/mol for the B2PLYP-D3
and B3PLYP-D3 functionals, respectively. It is worth
underlining that the energy barrier calculated for the
reaction of HNO with MeS− is about 130–150 kJ/mol
lower than the corresponding energy barrier estimated for
the reaction of neutral reactants, i.e., HNO and MeSH.

Fig. 3 Correlation between the observed rate constant (kobs) and the
deprotonated form of (A) Glutathione (GSH), B N-acetylcysteine
(NAC), C Bovine serum albumin (BSA), D Human serum albumin
(HSA). The concentration of the deprotonated form of each thiol was
assessed using the appropriate pKa value: A pKa= 8.8 [94], B pKa=
9.5 [94], C pKa= 7.9 (this work), D pKa= 8.1 [101]. The appropriate
kobs was calculated from the experimentally obtained ratio kobs/kO2

using kO2 = (1.8 ± 0.3) × 104 M−1 s−1 [3]. Reaction mixtures consisted
of 0; 0,5; 1; 1,5 μM GSH or NAC or 0; 1; 2; 3 μM BSA or HSA,
25 μM coumarin boronic acid (CBA), 3 μM Angeli’s salt (AS) in
phosphate buffers (25 mM) at appropriate pH with addition of dtpa
(50 μM) and 5% CH3CN. The solutions were excited at 332 nm, the
emitted light intensity was measured at 470 nm (photomultiplier vol-
tage 850 V, emission/excitation slit 2.5 nm)

Table 1 Comparison of the rate
constants of the HNO reaction
with protonated and
deprotonated forms of the
studied thiols based on two
different approaches: (a) based
on pH dependence of the kobs/
kO2 ratio presented in Fig. 2; (b)
based on the correlation between
kobs and the thiolate
concentration of the appropriate
thiol presented in Fig. 3

Thiol akRS- (M
−1s−1) akRSH (M−1s−1) bkRS- (M

−1s−1) bkRSH (M−1s−1)

GSH (3.8 ± 0.8) × 107 (1.8 ± 0.5) × 106 (3.8 ± 0.3) × 107 (1.9 ± 0.2) × 106

NAC (9.9 ± 2.4) × 107 (0.9 ± 1.4) × 105 (9.8 ± 0.8) × 107 (0.8 ± 1.3) × 105

BSA (3.2 ± 0.9) × 106 (5.4 ± 8.1) × 104 (3.4 ± 0.3) × 106 (7.0 ± 6.0) × 105

HSA (5.6 ± 1.3) × 106 (2.5 ± 1.5) × 105 (7.0 ± 0.4) × 106 (1.4 ± 0.5) × 105

850 Cell Biochemistry and Biophysics (2021) 79:845–856



The 130 kJ/mol difference was computed based on HF
theory, while DFT calculations estimated the difference as
about 136 kJ/mol for the M06-2X DFT functional and
145, 148 kJ/mol for the B2PLYP-D3 and B3PLYP-D3
DFT functionals, respectively. It is interesting that even
though the absolute energies computed for stationary
points using DFT methods were significantly lower than
the values obtained with HF, they resulted in slightly
higher energy differences. Nevertheless, the qualitative
outcomes of the different theoretical calculations were
consistent, showing that azanone reacts faster with the
thiolate. In the reverse reaction, ~185–200 kJ/mol more
energy is required for MeSNHOH decomposition than for
decomposition of its deprotonated form MeSNHO– into
substrates, i.e., HNO and the thiolate. The calculated
energy barriers for the reaction of methyl thiolate (MeS−)
with electrophilic CH2O (isoelectric with HNO) are
similar in value to those calculated for the MeS− reaction
with HNO (Table 2).

Discussion

The mechanism of the HNO reaction with thiols is cur-
rently understood to involve an initial nucleophilic attack
of the thiol on the electrophilic nitrogen of azanone,
forming N-hydroxysulfenamide (Reaction 1) [34, 35].
Therefore, our finding that the rate constant of the reac-
tion of HNO with thiols depends on its pKa value is not
surprising. Using the presented approaches, we were able
to estimate the rate constants of the HNO reaction with
the corresponding thiol and thiolate separately. Supported
by quantum mechanical calculations, the results indicate
that azanone is much more reactive toward thiolates (RS
−) than toward protonated forms of thiols (RSH). This
leads to the conclusion that it is the thiolate that
nucleophilically attacks the HNO double bond. This
mechanism is similar to the well-established reaction
mechanism of thiols with carbonyl compounds, including

CH2O, leading to the formation of hemithioacetals. It is
commonly accepted that in these reactions the addition of
thiols proceeds by the reaction of thiolate anion RS—

[102, 103].
The mechanism of the reaction between azanone and

thiols may be comparable to the formaldehyde (CH2O)
reaction with thiols, in which formaldehyde acts as an
electrophile that reacts with biological nucleophiles,
including thiols [104]. By analogy, the first step of the
reaction may be a nucleophilic attack by the thiolate on the
CH2O double bond, leading to the formation of the S-
hydroxymethyl adduct, an analog of N-hydroxysulfenamide
[104].

Quantum mechanical results obtained for the detachment
of HNO from MeSNHO–/ MeSNHOH can be compared
with our recently published data on the decomposition of
Piloty’s acid (N-hydroxybenzenesulfonamide, C6H5SO2N-
HOH) and its derivatives [61]. The mechanisms in the
processes are quite similar. The decomposition mechanism
of Piloty’s acid and its derivatives include initial deproto-
nation of oxygen (C6H5SO2NHO

−) and subsequent S–N
bond heterolysis, leading to slow release of the products—
benzenesulfinate and HNO [57, 61]. We hypothesize that
the pKa value of RSNHOH at physiological pH may be
high, so the protonation reaction of RSNHO– occurs
spontaneously. As a consequence, the stable RSNHOH is
formed.

Conclusion

The reaction of azanone with thiol proteins is one of the
major factors responsible for its unique pharmacological
effects. In the present study, we have demonstrated both
that this reaction depends strongly on pH and that HNO is
highly reactive toward thiolates (RS−). These results sup-
port the currently proposed reaction mechanism of HNO
with thiols, involving an initial nucleophilic attack by the
thiol on the electrophilic nitrogen of azanone.

Table 2 Comparison of
computationally evaluated
Gibbs free energies (ΔG‡) of the
studied reactions obtained using
various theoretical methods

Reaction ΔG‡(kJ/mol)

HF M06-2X B2PLYP-D3 B3LYP-D3

HNO+MES−→MeSNHO− 125.0 26.7 12.7 11.7

HNO+MESH→MeSNHOH 257.1 163.3 158.2 159.8

CH2O+MeS−→MeSCH2O
− 101.4 29.8 28.0 –a

MeSNHO−→HNO+MeS− 45.4 16.6 3.3 2.1

MeSNHOH→HNO+MeSH 245.5 204.9 187.4 187.6

MeSCH2O
−→CH2O+MeS− 0.2 1.6 0.8 –

aLack of data due to no transition state found
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